# /// script | |
# requires-python = ">=3.12" | |
# dependencies = [ | |
# "numpy", | |
# "einops", | |
# "torch", | |
# "transformers", | |
# "datasets", | |
# "accelerate", | |
# "timm", | |
# ] | |
# /// | |
try: | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "HuggingFaceTB/SmolLM3-3B" | |
device = "cuda" # for GPU usage or "cpu" for CPU usage | |
# load the tokenizer and the model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
).to(device) | |
with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'w') as f: | |
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_3.txt') | |
except Exception as e: | |
with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'w') as f: | |
import traceback | |
traceback.print_exc(file=f) | |
finally: | |
from huggingface_hub import upload_file | |
upload_file( | |
path_or_fileobj='HuggingFaceTB_SmolLM3-3B_3.txt', | |
repo_id='model-metadata/custom_code_execution_files', | |
path_in_repo='HuggingFaceTB_SmolLM3-3B_3.txt', | |
repo_type='dataset', | |
) |