Upload HuggingFaceTB_SmolLM3-3B_0.py with huggingface_hub
Browse files
HuggingFaceTB_SmolLM3-3B_0.py
CHANGED
@@ -21,6 +21,95 @@ try:
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
|
23 |
pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f:
|
25 |
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt')
|
26 |
except Exception as e:
|
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
|
23 |
pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer)
|
24 |
+
|
25 |
+
messages = [
|
26 |
+
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."},
|
27 |
+
]
|
28 |
+
pipe(messages)
|
29 |
+
|
30 |
+
messages = [
|
31 |
+
{"role": "system", "content": "/no_think"},
|
32 |
+
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."},
|
33 |
+
]
|
34 |
+
pipe(messages)
|
35 |
+
|
36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
+
|
38 |
+
model_name = "HuggingFaceTB/SmolLM3-3B"
|
39 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
40 |
+
|
41 |
+
# load the tokenizer and the model
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_name,
|
45 |
+
).to(device)
|
46 |
+
|
47 |
+
# prepare the model input
|
48 |
+
prompt = "Give me a brief explanation of gravity in simple terms."
|
49 |
+
messages_think = [
|
50 |
+
{"role": "user", "content": prompt}
|
51 |
+
]
|
52 |
+
|
53 |
+
text = tokenizer.apply_chat_template(
|
54 |
+
messages_think,
|
55 |
+
tokenize=False,
|
56 |
+
add_generation_prompt=True,
|
57 |
+
)
|
58 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
59 |
+
|
60 |
+
# Generate the output
|
61 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
62 |
+
|
63 |
+
# Get and decode the output
|
64 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
65 |
+
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
66 |
+
|
67 |
+
prompt = "Give me a brief explanation of gravity in simple terms."
|
68 |
+
messages = [
|
69 |
+
{"role": "system", "content": "/no_think"},
|
70 |
+
{"role": "user", "content": prompt}
|
71 |
+
]
|
72 |
+
|
73 |
+
text = tokenizer.apply_chat_template(
|
74 |
+
messages,
|
75 |
+
tokenize=False,
|
76 |
+
add_generation_prompt=True,
|
77 |
+
)
|
78 |
+
|
79 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
80 |
+
|
81 |
+
# Generate the output
|
82 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
83 |
+
|
84 |
+
# Get and decode the output
|
85 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
86 |
+
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
87 |
+
|
88 |
+
tools = [
|
89 |
+
{
|
90 |
+
"name": "get_weather",
|
91 |
+
"description": "Get the weather in a city",
|
92 |
+
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
|
93 |
+
]
|
94 |
+
|
95 |
+
messages = [
|
96 |
+
{
|
97 |
+
"role": "user",
|
98 |
+
"content": "Hello! How is the weather today in Copenhagen?"
|
99 |
+
}
|
100 |
+
]
|
101 |
+
|
102 |
+
inputs = tokenizer.apply_chat_template(
|
103 |
+
messages,
|
104 |
+
enable_thinking=False, # True works as well, your choice!
|
105 |
+
xml_tools=tools,
|
106 |
+
add_generation_prompt=True,
|
107 |
+
tokenize=True,
|
108 |
+
return_tensors="pt"
|
109 |
+
).to(model.device)
|
110 |
+
|
111 |
+
outputs = model.generate(inputs)
|
112 |
+
print(tokenizer.decode(outputs[0]))
|
113 |
with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f:
|
114 |
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt')
|
115 |
except Exception as e:
|