Upload HuggingFaceTB_SmolLM3-3B_0.py with huggingface_hub
Browse files
HuggingFaceTB_SmolLM3-3B_0.py
CHANGED
|
@@ -21,6 +21,95 @@ try:
|
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 22 |
|
| 23 |
pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f:
|
| 25 |
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt')
|
| 26 |
except Exception as e:
|
|
|
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 22 |
|
| 23 |
pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer)
|
| 24 |
+
|
| 25 |
+
messages = [
|
| 26 |
+
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."},
|
| 27 |
+
]
|
| 28 |
+
pipe(messages)
|
| 29 |
+
|
| 30 |
+
messages = [
|
| 31 |
+
{"role": "system", "content": "/no_think"},
|
| 32 |
+
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."},
|
| 33 |
+
]
|
| 34 |
+
pipe(messages)
|
| 35 |
+
|
| 36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 37 |
+
|
| 38 |
+
model_name = "HuggingFaceTB/SmolLM3-3B"
|
| 39 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
| 40 |
+
|
| 41 |
+
# load the tokenizer and the model
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
).to(device)
|
| 46 |
+
|
| 47 |
+
# prepare the model input
|
| 48 |
+
prompt = "Give me a brief explanation of gravity in simple terms."
|
| 49 |
+
messages_think = [
|
| 50 |
+
{"role": "user", "content": prompt}
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
text = tokenizer.apply_chat_template(
|
| 54 |
+
messages_think,
|
| 55 |
+
tokenize=False,
|
| 56 |
+
add_generation_prompt=True,
|
| 57 |
+
)
|
| 58 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 59 |
+
|
| 60 |
+
# Generate the output
|
| 61 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
| 62 |
+
|
| 63 |
+
# Get and decode the output
|
| 64 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
| 65 |
+
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
| 66 |
+
|
| 67 |
+
prompt = "Give me a brief explanation of gravity in simple terms."
|
| 68 |
+
messages = [
|
| 69 |
+
{"role": "system", "content": "/no_think"},
|
| 70 |
+
{"role": "user", "content": prompt}
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
text = tokenizer.apply_chat_template(
|
| 74 |
+
messages,
|
| 75 |
+
tokenize=False,
|
| 76 |
+
add_generation_prompt=True,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 80 |
+
|
| 81 |
+
# Generate the output
|
| 82 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
| 83 |
+
|
| 84 |
+
# Get and decode the output
|
| 85 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
| 86 |
+
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
| 87 |
+
|
| 88 |
+
tools = [
|
| 89 |
+
{
|
| 90 |
+
"name": "get_weather",
|
| 91 |
+
"description": "Get the weather in a city",
|
| 92 |
+
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
messages = [
|
| 96 |
+
{
|
| 97 |
+
"role": "user",
|
| 98 |
+
"content": "Hello! How is the weather today in Copenhagen?"
|
| 99 |
+
}
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
inputs = tokenizer.apply_chat_template(
|
| 103 |
+
messages,
|
| 104 |
+
enable_thinking=False, # True works as well, your choice!
|
| 105 |
+
xml_tools=tools,
|
| 106 |
+
add_generation_prompt=True,
|
| 107 |
+
tokenize=True,
|
| 108 |
+
return_tensors="pt"
|
| 109 |
+
).to(model.device)
|
| 110 |
+
|
| 111 |
+
outputs = model.generate(inputs)
|
| 112 |
+
print(tokenizer.decode(outputs[0]))
|
| 113 |
with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f:
|
| 114 |
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt')
|
| 115 |
except Exception as e:
|