# /// script # requires-python = ">=3.12" # dependencies = [ # "transformers", # "torch", # ] # /// try: # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("image-text-to-text", model="LiquidAI/LFM2-VL-1.6B", trust_remote_code=True) messages = [ { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"}, {"type": "text", "text": "What animal is on the candy?"} ] }, ] pipe(text=messages) with open('LiquidAI_LFM2-VL-1.6B_0.txt', 'w') as f: f.write('Everything was good in LiquidAI_LFM2-VL-1.6B_0.txt') except Exception as e: with open('LiquidAI_LFM2-VL-1.6B_0.txt', 'w') as f: import traceback traceback.print_exc(file=f) finally: from huggingface_hub import upload_file upload_file( path_or_fileobj='LiquidAI_LFM2-VL-1.6B_0.txt', repo_id='model-metadata/custom_code_execution_files', path_in_repo='LiquidAI_LFM2-VL-1.6B_0.txt', repo_type='dataset', )