--- annotations_creators: - derived language: - eng license: mit multilinguality: monolingual task_categories: - text-ranking task_ids: [] dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 44843804 num_examples: 19899 download_size: 27963474 dataset_size: 44843804 - config_name: instruction features: - name: query-id dtype: string - name: instruction dtype: string splits: - name: test num_bytes: 13675 num_examples: 40 download_size: 7443 dataset_size: 13675 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 311980 num_examples: 9480 download_size: 93738 dataset_size: 311980 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 5050 num_examples: 40 download_size: 3561 dataset_size: 5050 - config_name: top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 498500 num_examples: 40 download_size: 213125 dataset_size: 498500 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: instruction data_files: - split: test path: instruction/test-* - config_name: qrels data_files: - split: test path: qrels/test-* - config_name: queries data_files: - split: test path: queries/test-* - config_name: top_ranked data_files: - split: test path: top_ranked/test-* tags: - mteb - text ---
Measuring retrieval instruction following ability on Core17 narratives for the FollowIR benchmark. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | News, Written | | Reference | https://arxiv.org/abs/2403.15246 | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["Core17InstructionRetrieval"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{weller2024followir, archiveprefix = {arXiv}, author = {Orion Weller and Benjamin Chang and Sean MacAvaney and Kyle Lo and Arman Cohan and Benjamin Van Durme and Dawn Lawrie and Luca Soldaini}, eprint = {2403.15246}, primaryclass = {cs.IR}, title = {FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics