Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Danish
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
fd94261
·
verified ·
1 Parent(s): b1e80d5

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +130 -0
README.md CHANGED
@@ -1,4 +1,16 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -83,4 +95,122 @@ configs:
83
  path: queries/val-*
84
  - split: test
85
  path: queries/test-*
 
 
 
86
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - dan
6
+ license: cc0-1.0
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - alexandrainst/nordjylland-news-summarization
10
+ task_categories:
11
+ - text-retrieval
12
+ task_ids:
13
+ - document-retrieval
14
  dataset_info:
15
  - config_name: corpus
16
  features:
 
95
  path: queries/val-*
96
  - split: test
97
  path: queries/test-*
98
+ tags:
99
+ - mteb
100
+ - text
101
  ---
102
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
103
+
104
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
105
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">TV2Nordretrieval</h1>
106
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
107
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
108
+ </div>
109
+
110
+ News Article and corresponding summaries extracted from the Danish newspaper TV2 Nord.
111
+
112
+ | | |
113
+ |---------------|---------------------------------------------|
114
+ | Task category | t2t |
115
+ | Domains | News, Non-fiction, Written |
116
+ | Reference | https://huggingface.co/datasets/alexandrainst/nordjylland-news-summarization |
117
+
118
+
119
+
120
+
121
+ ## How to evaluate on this task
122
+
123
+ You can evaluate an embedding model on this dataset using the following code:
124
+
125
+ ```python
126
+ import mteb
127
+
128
+ task = mteb.get_task("TV2Nordretrieval")
129
+ evaluator = mteb.MTEB([task])
130
+
131
+ model = mteb.get_model(YOUR_MODEL)
132
+ evaluator.run(model)
133
+ ```
134
+
135
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
136
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
137
+
138
+ ## Citation
139
+
140
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
141
+
142
+ ```bibtex
143
+
144
+ @inproceedings{flansmose-mikkelsen-etal-2022-ddisco,
145
+ abstract = {To date, there has been no resource for studying discourse coherence on real-world Danish texts. Discourse coherence has mostly been approached with the assumption that incoherent texts can be represented by coherent texts in which sentences have been shuffled. However, incoherent real-world texts rarely resemble that. We thus present DDisCo, a dataset including text from the Danish Wikipedia and Reddit annotated for discourse coherence. We choose to annotate real-world texts instead of relying on artificially incoherent text for training and testing models. Then, we evaluate the performance of several methods, including neural networks, on the dataset.},
146
+ address = {Marseille, France},
147
+ author = {Flansmose Mikkelsen, Linea and
148
+ Kinch, Oliver and
149
+ Jess Pedersen, Anders and
150
+ Lacroix, Oph{\'e}lie},
151
+ booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference},
152
+ editor = {Calzolari, Nicoletta and
153
+ B{\'e}chet, Fr{\'e}d{\'e}ric and
154
+ Blache, Philippe and
155
+ Choukri, Khalid and
156
+ Cieri, Christopher and
157
+ Declerck, Thierry and
158
+ Goggi, Sara and
159
+ Isahara, Hitoshi and
160
+ Maegaard, Bente and
161
+ Mariani, Joseph and
162
+ Mazo, H{\'e}l{\`e}ne and
163
+ Odijk, Jan and
164
+ Piperidis, Stelios},
165
+ month = jun,
166
+ pages = {2440--2445},
167
+ publisher = {European Language Resources Association},
168
+ title = {{DD}is{C}o: A Discourse Coherence Dataset for {D}anish},
169
+ url = {https://aclanthology.org/2022.lrec-1.260},
170
+ year = {2022},
171
+ }
172
+
173
+
174
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
175
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
176
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
177
+ publisher = {arXiv},
178
+ journal={arXiv preprint arXiv:2502.13595},
179
+ year={2025},
180
+ url={https://arxiv.org/abs/2502.13595},
181
+ doi = {10.48550/arXiv.2502.13595},
182
+ }
183
+
184
+ @article{muennighoff2022mteb,
185
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
186
+ title = {MTEB: Massive Text Embedding Benchmark},
187
+ publisher = {arXiv},
188
+ journal={arXiv preprint arXiv:2210.07316},
189
+ year = {2022}
190
+ url = {https://arxiv.org/abs/2210.07316},
191
+ doi = {10.48550/ARXIV.2210.07316},
192
+ }
193
+ ```
194
+
195
+ # Dataset Statistics
196
+ <details>
197
+ <summary> Dataset Statistics</summary>
198
+
199
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
200
+
201
+ ```python
202
+ import mteb
203
+
204
+ task = mteb.get_task("TV2Nordretrieval")
205
+
206
+ desc_stats = task.metadata.descriptive_stats
207
+ ```
208
+
209
+ ```json
210
+ {}
211
+ ```
212
+
213
+ </details>
214
+
215
+ ---
216
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*