skasapis commited on
Commit
a0fbce7
·
verified ·
1 Parent(s): 7e66f58

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -5
README.md CHANGED
@@ -1,9 +1,89 @@
1
  ---
2
  license: mit
3
  tags:
4
- - Helio
5
- - AR_emmergence
6
- - downstream
 
 
7
  size_categories:
8
- - n>1T
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  tags:
4
+ - heliophysics
5
+ - solar_active_regions
6
+ - AR_emergence
7
+ - space_weather
8
+ - machine_learning
9
  size_categories:
10
+ - 1GB<n<100GB
11
+ ---
12
+
13
+ # AR Emergence Dataset
14
+
15
+ The **AR Emergence Dataset** is designed to support research on the early detection of solar Active Regions (ARs) and the development of predictive models for space weather. By characterizing the evolution of ARs before, during, and after their emergence, the dataset enables studies of pre-emergence signatures and early warning methods.
16
+
17
+ This dataset is derived from NASA’s **Solar Dynamics Observatory (SDO)** using measurements from the **Helioseismic and Magnetic Imager (HMI)**. It includes timeline data of:
18
+
19
+ - **Acoustic power** (from Doppler velocity maps)
20
+ - **Photospheric magnetic field**
21
+ - **Continuum intensity**
22
+
23
+ for **56 large ARs** that emerged on the visible solar disk between **2010 and 2023**. Each AR is tracked within a **30° × 30° patch** over multiple days.
24
+
25
+ These data products have already been applied successfully in machine learning models for AR emergence forecasting in [1].
26
+
27
+ [1] Kasapis, S., Kitiashvili, I. N., Kosovichev, A. G. & Stefan, J. T. Prediction of intensity variations associated with emerging active regions using helioseismic power maps and machine learning. The Astrophys. J. Suppl. Ser. 10.3847/1538-4365/adfbe2 (2025)
28
+
29
+ ---
30
+
31
+ ## File Structure
32
+
33
+ The repository contains the following:
34
+
35
+ ar_emergence/
36
+
37
+ ├── data.zip # Compressed folder with all AR subfolders
38
+ │ ├── AR11130/
39
+ │ │ ├── mean_int11130_flat.npz
40
+ │ │ ├── mean_mag11130_flat.npz
41
+ │ │ └── mean_pmdop11130_flat.npz
42
+ │ ├── AR11149/
43
+ │ ├── ...
44
+ │ └── AR13183/
45
+
46
+ ├── train.csv # Training split (36 ARs)
47
+ ├── valid.csv # Validation split (8 ARs)
48
+ ├── test.csv # Test split (12 ARs)
49
+ └── README.md
50
+
51
+ Each AR folder contains three `.npz` files:
52
+
53
+ - `mean_int{AR}_flat.npz` → continuum intensity timeline
54
+ - `mean_mag{AR}_flat.npz` → magnetic field timeline
55
+ - `mean_pmdop{AR}_flat.npz` → 4 acoustic power timelines
56
+
57
+ The split CSV files (`train.csv`, `valid.csv`, `test.csv`) include:
58
+
59
+ | Column | Description |
60
+ |----------------|-----------------------------------------------|
61
+ | `AR` | NOAA Active Region number |
62
+ | `t_start` | Start time of tracked patch |
63
+ | `t_end` | End time of tracked patch |
64
+ | `dataset_type` | train/valid/test split assignment |
65
+ | `mean_int_path`| Path to continuum intensity `.npz` file |
66
+ | `mean_mag_path`| Path to magnetic field `.npz` file |
67
+ | `mean_pmdop_path` | Path to acoustic power `.npz` file |
68
+
69
+ ---
70
+
71
+ ## Example Usage
72
+
73
+ ```python
74
+ import numpy as np
75
+ import pandas as pd
76
+
77
+ # Load CSV metadata
78
+ df = pd.read_csv("train.csv")
79
+ print(df.head())
80
+
81
+ # Load one AR’s continuum intensity data
82
+ sample_path = df.iloc[0]["mean_int_path"]
83
+
84
+ # Update to local path after unzipping data.zip
85
+ sample_path = sample_path.replace("/Users/sk6617/Desktop/data", "data")
86
+
87
+ data = np.load(sample_path)
88
+ print("Keys in npz file:", data.files)
89
+ print("Data shape:", data[data.files[0]].shape)