niuniandaji commited on
Commit
3dbf358
·
verified ·
1 Parent(s): b265a23

Upload mini_imagenet_c_loader.py (#2)

Browse files

- Upload mini_imagenet_c_loader.py (ec2b6fc77e5ce9c3f5c90894468c8ff0465f6bde)

Files changed (1) hide show
  1. mini_imagenet_c_loader.py +133 -0
mini_imagenet_c_loader.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import webdataset as wds
3
+ from pathlib import Path
4
+ import torch
5
+ from torchvision import transforms
6
+ from PIL import Image
7
+ import io
8
+
9
+ def identity(x):
10
+ return x
11
+
12
+ def pil_decoder(key, data):
13
+ """Decodes image data from bytes to a PIL Image."""
14
+ if not key.endswith((".jpg", ".jpeg", ".png")):
15
+ return None
16
+ try:
17
+ return Image.open(io.BytesIO(data)).convert("RGB")
18
+ except Exception:
19
+ return None
20
+
21
+ def cls_decoder(key, data):
22
+ """Decodes class label from bytes."""
23
+ if not key.endswith(".cls"):
24
+ return None
25
+ try:
26
+ return int(data.decode('utf-8'))
27
+ except (ValueError, UnicodeDecodeError):
28
+ return None
29
+
30
+ class MiniImageNetCWebDataset(torch.utils.data.IterableDataset):
31
+ """
32
+ A PyTorch Dataset for the WebDataset version of MiniImageNet-C.
33
+
34
+ Args:
35
+ root (str): The root directory of the WebDataset shards.
36
+ corruption (str): The corruption type to load (e.g., 'gaussian_noise').
37
+ severity (int): The severity level (should be 5 for MiniImageNet-C).
38
+ transform (callable, optional): A function/transform that takes in a PIL image
39
+ and returns a transformed version. E.g, `transforms.ToTensor()`.
40
+ target_transform (callable, optional): A function/transform that takes in the
41
+ target and transforms it.
42
+ """
43
+ def __init__(self, root, corruption, severity=5, transform=None, target_transform=None):
44
+ self.root = Path(root)
45
+ self.corruption = corruption
46
+ self.severity = severity
47
+ self.transform = transform if transform is not None else identity
48
+ self.target_transform = target_transform if target_transform is not None else identity
49
+
50
+ self.shard_path = self.root / self.corruption / str(self.severity)
51
+ if not self.shard_path.exists():
52
+ raise FileNotFoundError(f"Shards not found at: {self.shard_path}")
53
+
54
+ shard_urls = [str(p) for p in sorted(self.shard_path.glob("*.tar"))]
55
+ if not shard_urls:
56
+ raise FileNotFoundError(f"No .tar shards found in {self.shard_path}")
57
+
58
+ self.dataset = (
59
+ wds.WebDataset(shard_urls, shardshuffle=True)
60
+ .decode(pil_decoder, cls_decoder)
61
+ .to_tuple("jpg", "cls")
62
+ .map(self.apply_transforms)
63
+ )
64
+
65
+ def apply_transforms(self, sample):
66
+ image, target = sample
67
+ return self.transform(image), self.target_transform(target)
68
+
69
+ def __iter__(self):
70
+ return iter(self.dataset)
71
+
72
+ def __len__(self):
73
+ # The length of a WebDataset is not trivially known beforehand.
74
+ # You can estimate it or, if needed, iterate through it once to count.
75
+ # For Mini-ImageNet-C, each class has 50 images, and there are 1000 classes.
76
+ return 50 * 1000
77
+
78
+ # Example Usage
79
+ if __name__ == '__main__':
80
+ print("Example of how to use MiniImageNetCWebDataset")
81
+
82
+ # This assumes you have a 'mini-imagenet-c-webdataset' directory
83
+ # created by the convert_to_webdataset.py script.
84
+ dataset_root = "../data/mini-imagenet-c-webdataset"
85
+ if not Path(dataset_root).exists():
86
+ print(f"\nERROR: Example dataset root '{dataset_root}' not found.")
87
+ print("Please run 'python data/scripts/convert_to_webdataset.py' first.")
88
+ exit()
89
+
90
+ # Define transformations for the images
91
+ image_transform = transforms.Compose([
92
+ transforms.Resize((224, 224)),
93
+ transforms.ToTensor(),
94
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
95
+ ])
96
+
97
+ # 1. Create a dataset for a specific corruption
98
+ try:
99
+ corruption_type = 'gaussian_noise'
100
+ print(f"\nLoading dataset for corruption: '{corruption_type}'")
101
+
102
+ dataset = MiniImageNetCWebDataset(
103
+ root=dataset_root,
104
+ corruption=corruption_type,
105
+ transform=image_transform
106
+ )
107
+
108
+ # 2. Create a DataLoader
109
+ # WebDataset is designed for streaming, so shuffling is handled differently.
110
+ # For shuffling, you typically shuffle the shard URLs and the samples within each shard.
111
+ # The loader here provides a basic sequential stream.
112
+ dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4)
113
+
114
+ # 3. Iterate through a few batches
115
+ print("Iterating through a few batches...")
116
+ for i, (images, labels) in enumerate(dataloader):
117
+ if i >= 3:
118
+ break
119
+ print(f" Batch {i+1}:")
120
+ print(f" Images shape: {images.shape}")
121
+ print(f" Labels shape: {labels.shape}")
122
+ print(f" Sample labels: {labels[:4].tolist()}")
123
+
124
+ print("\nExample finished successfully!")
125
+
126
+ except FileNotFoundError as e:
127
+ print(f"\nERROR: Could not run example. {e}")
128
+ print("Please ensure the WebDataset has been generated and the paths are correct.")
129
+
130
+ except ImportError:
131
+ print("\nERROR: 'webdataset' library not found.")
132
+ print("Please install it by running: pip install webdataset")
133
+