Upload gemma-tokenizer-test.ipynb
Browse files- gemma-tokenizer-test.ipynb +168 -0
gemma-tokenizer-test.ipynb
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "f9427918",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"## Load original and transformers tokenizers"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
+
"id": "48a7fddf",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"from huggingface_hub import hf_hub_download\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"original_path = hf_hub_download(repo_id=\"google/codegemma-1.1-2b\", filename=\"tokenizer.model\")"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": 2,
|
| 26 |
+
"id": "aae9d9de",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"from gemma.tokenizer import Tokenizer\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"original = Tokenizer(original_path)"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": 3,
|
| 38 |
+
"id": "06b063cf",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"from transformers import GemmaTokenizer, AutoTokenizer"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 4,
|
| 48 |
+
"id": "a584d69f",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Fails for \"main\"\n",
|
| 53 |
+
"revision = \"refs/pr/4\"\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"t_fast = AutoTokenizer.from_pretrained(\"google/codegemma-1.1-7b-it\", revision=revision)\n",
|
| 56 |
+
"t_slow = GemmaTokenizer.from_pretrained(\"google/codegemma-1.1-7b-it\", revision=revision)"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "code",
|
| 61 |
+
"execution_count": 5,
|
| 62 |
+
"id": "72a1c087",
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"outputs": [],
|
| 65 |
+
"source": [
|
| 66 |
+
"for s in [\n",
|
| 67 |
+
" '<start_of_turn>', '<end_of_turn>', '<mask>',\n",
|
| 68 |
+
" '<|fim_prefix|>', '<|fim_suffix|>', '<|fim_middle|>', '<|file_separator|>'\n",
|
| 69 |
+
"]:\n",
|
| 70 |
+
" encoded = original.encode(s, bos=False, eos=False)\n",
|
| 71 |
+
" assert t_fast.encode(s, add_special_tokens=False) == encoded, f\"Failed: {s}\"\n",
|
| 72 |
+
" assert t_slow.encode(s, add_special_tokens=False) == encoded, f\"Failed: {s}\"\n",
|
| 73 |
+
" assert t_fast.decode(encoded) == s, f\"Failed: {s}\"\n",
|
| 74 |
+
" assert t_slow.decode(encoded) == s, f\"Failed: {s}\""
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "markdown",
|
| 79 |
+
"id": "8ab89d7b",
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"source": [
|
| 82 |
+
"## Verify on XNLI (validation split)"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": 6,
|
| 88 |
+
"id": "0160405a",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"from datasets import load_dataset\n",
|
| 93 |
+
"from tqdm import tqdm"
|
| 94 |
+
]
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"cell_type": "code",
|
| 98 |
+
"execution_count": 7,
|
| 99 |
+
"id": "a743115c",
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"xnli = load_dataset(\"xnli\", \"all_languages\", split=\"validation\")"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": 8,
|
| 109 |
+
"id": "9a52691b",
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"def verify(lang, text):\n",
|
| 114 |
+
" encoded_original = original.encode(text, bos=True, eos=False)\n",
|
| 115 |
+
" encoded_fast = t_fast.encode(text)\n",
|
| 116 |
+
" encoded_slow = t_slow.encode(text)\n",
|
| 117 |
+
" assert encoded_fast == encoded_original, f\"Fast encode error: {lang} - {text}\"\n",
|
| 118 |
+
" assert encoded_slow == encoded_original, f\"Slow encode error: {lang} - {text}\"\n",
|
| 119 |
+
" decoded = original.decode(encoded_original)\n",
|
| 120 |
+
" decoded_fast = t_fast.decode(encoded_fast, skip_special_tokens=True)\n",
|
| 121 |
+
" decoded_slow = t_slow.decode(encoded_slow, skip_special_tokens=True)\n",
|
| 122 |
+
" assert decoded_fast == decoded, f\"Fast decode error: {lang} - {text}\"\n",
|
| 123 |
+
" assert decoded_slow == decoded, f\"Slow decode error: {lang} - {text}\""
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "code",
|
| 128 |
+
"execution_count": 9,
|
| 129 |
+
"id": "f3123ffd",
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [
|
| 132 |
+
{
|
| 133 |
+
"name": "stderr",
|
| 134 |
+
"output_type": "stream",
|
| 135 |
+
"text": [
|
| 136 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2490/2490 [00:30<00:00, 80.45it/s]\n"
|
| 137 |
+
]
|
| 138 |
+
}
|
| 139 |
+
],
|
| 140 |
+
"source": [
|
| 141 |
+
"for p in tqdm(xnli[\"premise\"]):\n",
|
| 142 |
+
" for lang, text in p.items():\n",
|
| 143 |
+
" verify(lang, text)"
|
| 144 |
+
]
|
| 145 |
+
}
|
| 146 |
+
],
|
| 147 |
+
"metadata": {
|
| 148 |
+
"kernelspec": {
|
| 149 |
+
"display_name": "Python 3 (ipykernel)",
|
| 150 |
+
"language": "python",
|
| 151 |
+
"name": "python3"
|
| 152 |
+
},
|
| 153 |
+
"language_info": {
|
| 154 |
+
"codemirror_mode": {
|
| 155 |
+
"name": "ipython",
|
| 156 |
+
"version": 3
|
| 157 |
+
},
|
| 158 |
+
"file_extension": ".py",
|
| 159 |
+
"mimetype": "text/x-python",
|
| 160 |
+
"name": "python",
|
| 161 |
+
"nbconvert_exporter": "python",
|
| 162 |
+
"pygments_lexer": "ipython3",
|
| 163 |
+
"version": "3.10.12"
|
| 164 |
+
}
|
| 165 |
+
},
|
| 166 |
+
"nbformat": 4,
|
| 167 |
+
"nbformat_minor": 5
|
| 168 |
+
}
|