--- license: mit task_categories: - video-classification tags: - medical - ultrasound - eye - ocular - classification size_categories: - 1K Data Statistics ### **2. Annotations** Each clip is labeled by sonologists for: - Presence/absence of retinal detachment. - Macular involvement (detached/intact).
Data Statistics
### **3. Preprocessing** - **Privacy**: PHI removed using YOLO-based globe detection. - **Consistency**: Cropped to the ocular ROI. - **Format**: MP4 videos.
Data Statistics
--- ## 📥 Download Access the dataset via the HuggingFace API: ```py from datasets import load_dataset dataset = load_dataset("pnavard/erdes") ``` --- ## 🛠️ Code & Baselines Repository: we open source our baseline experimetns on our **[GitHub](https://github.com/OSUPCVLab/ERDES)** repo. Which includes: - Baseline 3D CNN and ViT models for classification. - End-to-end diagnostic pipeline for macular detachment. --- ## 📜 Citation If you use ERDES, cite: ```bibtex @inproceedings{navardocular, title={A Benchmark Dataset for Retinal Detachment Classification in Spatiotemporal Ocular Ultrasound}, author={Navard, Pouyan and Ozkut, Yasemin and Adhikari, Srikar and Yilmaz, Alper}, booktitle={Nature Scientific Data (Under Review)}, year={2025} } ```