Dataset Viewer
Auto-converted to Parquet
file_path
stringlengths
29
100
content
stringlengths
0
26.3k
ManimML_helblazer811/LICENSE.md
MIT License Copyright (c) 2022 Alec Helbling Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
ManimML_helblazer811/setup.py
from setuptools import setup, find_packages setup( name="manim_ml", version="0.0.17", description=("Machine Learning Animations in python using Manim."), packages=find_packages(), )
ManimML_helblazer811/Readme.md
# ManimML <a href="https://github.com/helblazer811/ManimMachineLearning"> <img src="assets/readme/ManimMLLogo.gif"> </a> [![GitHub license](https://img.shields.io/github/license/helblazer811/ManimMachineLearning)](https://github.com/helblazer811/ManimMachineLearning/blob/main/LICENSE.md) [![GitHub tag](https://img.shields.io/github/v/release/helblazer811/ManimMachineLearning)](https://img.shields.io/github/v/release/helblazer811/ManimMachineLearning) [![Downloads](https://static.pepy.tech/badge/manim-ml)](https://pepy.tech/project/manim-ml) ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the [Manim Community Library](https://www.manim.community/). Please check out [our paper](https://arxiv.org/abs/2306.17108). We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine learning concepts. Additionally, we want to provide a set of abstractions which allow users to focus on explanations instead of software engineering. *A sneak peak ...* <img src="assets/readme/convolutional_neural_network.gif"> ## Table of Contents - [ManimML](#manimml) - [Table of Contents](#table-of-contents) - [Getting Started](#getting-started) - [Installation](#installation) - [First Neural Network](#first-neural-network) - [Guide](#guide) - [Setting Up a Scene](#setting-up-a-scene) - [A Simple Feed Forward Network](#a-simple-feed-forward-network) - [Animating the Forward Pass](#animating-the-forward-pass) - [Convolutional Neural Networks](#convolutional-neural-networks) - [Convolutional Neural Network with an Image](#convolutional-neural-network-with-an-image) - [Max Pooling](#max-pooling) - [Activation Functions](#activation-functions) - [More Complex Animations: Neural Network Dropout](#more-complex-animations-neural-network-dropout) - [Citation](#citation) ## Getting Started ### Installation First you will want to [install manim](https://docs.manim.community/en/stable/installation.html). Make sure it is the Manim Community edition, and not the original 3Blue1Brown Manim version. Then install the package form source or `pip install manim_ml`. Note: some recent features may only available if you install from source. ### First Neural Network This is a visualization of a Convolutional Neural Network. The code needed to generate this visualization is shown below. ```python from manim import * from manim_ml.neural_network import Convolutional2DLayer, FeedForwardLayer, NeuralNetwork # This changes the resolution of our rendered videos config.pixel_height = 700 config.pixel_width = 1900 config.frame_height = 7.0 config.frame_width = 7.0 # Here we define our basic scene class BasicScene(ThreeDScene): # The code for generating our scene goes here def construct(self): # Make the neural network nn = NeuralNetwork([ Convolutional2DLayer(1, 7, 3, filter_spacing=0.32), Convolutional2DLayer(3, 5, 3, filter_spacing=0.32), Convolutional2DLayer(5, 3, 3, filter_spacing=0.18), FeedForwardLayer(3), FeedForwardLayer(3), ], layer_spacing=0.25, ) # Center the neural network nn.move_to(ORIGIN) self.add(nn) # Make a forward pass animation forward_pass = nn.make_forward_pass_animation() # Play animation self.play(forward_pass) ``` You can generate the above video by copying the above code into a file called `example.py` and running the following in your command line (assuming everything is installed properly): ```bash $ manim -pql example.py ``` The above generates a low resolution rendering, you can improve the resolution (at the cost of slowing down rendering speed) by running: ```bash $ manim -pqh example.py ``` <img src="assets/readme/convolutional_neural_network.gif"> ## Guide This is a more in depth guide showing how to use various features of ManimML (Note: ManimML is still under development so some features may change, and documentation is lacking). ### Setting Up a Scene In Manim all of your visualizations and animations belong inside of a `Scene`. You can make a scene by extending the `Scene` class or the `ThreeDScene` class if your animation has 3D content (as does our example). Add the following code to a python module called `example.py`. ```python from manim import * # Import modules here class BasicScene(ThreeDScene): def construct(self): # Your code goes here text = Text("Your first scene!") self.add(text) ``` In order to render the scene we will run the following in the command line: ```bash $ manim -pq -l example.py ``` <img src="assets/readme/setting_up_a_scene.png"> This will generate an image file in low quality (use `-h` for high quality). For the rest of the tutorial the code snippets will need to be copied into the body of the `construct` function. ### A Simple Feed Forward Network With ManimML we can easily visualize a simple feed forward neural network. ```python from manim_ml.neural_network import NeuralNetwork, FeedForwardLayer nn = NeuralNetwork([ FeedForwardLayer(num_nodes=3), FeedForwardLayer(num_nodes=5), FeedForwardLayer(num_nodes=3) ]) self.add(nn) ``` In the above code we create a `NeuralNetwork` object and pass a list of layers to it. For each feed forward layer we specify the number of nodes. ManimML will automatically piece together the individual layers into a single neural network. We call `self.add(nn)` in the body of the scene's `construct` method in order to add the neural network to the scene. The majority of ManimML neural network objects and functions can be imported directly from `manim_ml.neural_network`. We can now render a still frame image of the scene by running: ```bash $ manim -pql example.py ``` <img src="assets/readme/a_simple_feed_forward_neural_network.png"> ### Animating the Forward Pass We can automatically render the forward pass of a neural network by creating the animation with the `neural_network.make_forward_pass_animation` method and play the animation in our scene with `self.play(animation)`. ```python from manim_ml.neural_network import NeuralNetwork, FeedForwardLayer # Make the neural network nn = NeuralNetwork([ FeedForwardLayer(num_nodes=3), FeedForwardLayer(num_nodes=5), FeedForwardLayer(num_nodes=3) ]) self.add(nn) # Make the animation forward_pass_animation = nn.make_forward_pass_animation() # Play the animation self.play(forward_pass_animation) ``` We can now render with: ```bash $ manim -pql example.py ``` <img src="assets/readme/animating_the_forward_pass.gif"> ### Convolutional Neural Networks ManimML supports visualizations of Convolutional Neural Networks. You can specify the number of feature maps, feature map size, and filter size as follows `Convolutional2DLayer(num_feature_maps, feature_map_size, filter_size)`. There are a number of other style parameters that we can change as well(documentation coming soon). Here is a multi-layer convolutional neural network. If you are unfamiliar with convolutional networks [this overview](https://cs231n.github.io/convolutional-networks/) is a great resource. Additionally, [CNN Explainer](https://poloclub.github.io/cnn-explainer/) is a great interactive tool for understanding CNNs, all in the browser. When specifying CNNs it is important for the feature map sizes and filter dimensions of adjacent layers match up. ```python from manim_ml.neural_network import NeuralNetwork, FeedForwardLayer, Convolutional2DLayer nn = NeuralNetwork([ Convolutional2DLayer(1, 7, 3, filter_spacing=0.32), # Note the default stride is 1. Convolutional2DLayer(3, 5, 3, filter_spacing=0.32), Convolutional2DLayer(5, 3, 3, filter_spacing=0.18), FeedForwardLayer(3), FeedForwardLayer(3), ], layer_spacing=0.25, ) # Center the neural network nn.move_to(ORIGIN) self.add(nn) # Make a forward pass animation forward_pass = nn.make_forward_pass_animation() ``` We can now render with: ```bash $ manim -pql example.py ``` <img src="assets/readme/convolutional_neural_network.gif"> And there we have it, a convolutional neural network. ### Convolutional Neural Network with an Image We can also animate an image being fed into a convolutional neural network by specifiying an `ImageLayer` before the first convolutional layer. ```python import numpy as np from PIL import Image from manim_ml.neural_network import NeuralNetwork, FeedForwardLayer, Convolutional2DLayer, ImageLayer image = Image.open("digit.jpeg") # You will need to download an image of a digit. numpy_image = np.asarray(image) nn = NeuralNetwork([ ImageLayer(numpy_image, height=1.5), Convolutional2DLayer(1, 7, 3, filter_spacing=0.32), # Note the default stride is 1. Convolutional2DLayer(3, 5, 3, filter_spacing=0.32), Convolutional2DLayer(5, 3, 3, filter_spacing=0.18), FeedForwardLayer(3), FeedForwardLayer(3), ], layer_spacing=0.25, ) # Center the neural network nn.move_to(ORIGIN) self.add(nn) # Make a forward pass animation forward_pass = nn.make_forward_pass_animation() ``` We can now render with: ```bash $ manim -pql example.py ``` <img src="assets/readme/convolutional_neural_network_with_an_image.gif"> ### Max Pooling A common operation in deep learning is the 2D Max Pooling operation, which reduces the size of convolutional feature maps. We can visualize max pooling with the `MaxPooling2DLayer`. ```python from manim_ml.neural_network import NeuralNetwork, Convolutional2DLayer, MaxPooling2DLayer # Make neural network nn = NeuralNetwork([ Convolutional2DLayer(1, 8), Convolutional2DLayer(3, 6, 3), MaxPooling2DLayer(kernel_size=2), Convolutional2DLayer(5, 2, 2), ], layer_spacing=0.25, ) # Center the nn nn.move_to(ORIGIN) self.add(nn) # Play animation forward_pass = nn.make_forward_pass_animation() self.wait(1) self.play(forward_pass) ``` We can now render with: ```bash $ manim -pql example.py ``` <img src="assets/readme/max_pooling.gif"> ### Activation Functions Activation functions apply non-linarities to the outputs of neural networks. They have different shapes, and it is useful to be able to visualize the functions. I added the ability to visualize activation functions over `FeedForwardLayer` and `Convolutional2DLayer` by passing an argument as follows: ```python layer = FeedForwardLayer(num_nodes=3, activation_function="ReLU") ``` We can add these to larger neural network as follows: ```python from manim_ml.neural_network import NeuralNetwork, Convolutional2DLayer, FeedForwardLayer # Make nn nn = NeuralNetwork([ Convolutional2DLayer(1, 7, filter_spacing=0.32), Convolutional2DLayer(3, 5, 3, filter_spacing=0.32, activation_function="ReLU"), FeedForwardLayer(3, activation_function="Sigmoid"), ], layer_spacing=0.25, ) self.add(nn) # Play animation forward_pass = nn.make_forward_pass_animation() self.play(forward_pass) ``` We can now render with: ```bash $ manim -pql example.py ``` <img src="assets/readme/activation_functions.gif"> ### More Complex Animations: Neural Network Dropout ```python from manim_ml.neural_network import NeuralNetwork, FeedForwardLayer from manim_ml.neural_network.animations.dropout import make_neural_network_dropout_animation # Make nn nn = NeuralNetwork([ FeedForwardLayer(3), FeedForwardLayer(5), FeedForwardLayer(3), FeedForwardLayer(5), FeedForwardLayer(4), ], layer_spacing=0.4, ) # Center the nn nn.move_to(ORIGIN) self.add(nn) # Play animation self.play( make_neural_network_dropout_animation( nn, dropout_rate=0.25, do_forward_pass=True ) ) self.wait(1) ``` We can now render with: ```bash $ manim -pql example.py ``` <img src="assets/readme/dropout.gif"> ## Citation If you found ManimML useful please cite it below! ``` @misc{helbling2023manimml, title={ManimML: Communicating Machine Learning Architectures with Animation}, author={Alec Helbling and Duen Horng and Chau}, year={2023}, eprint={2306.17108}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
ManimML_helblazer811/.github/FUNDING.yml
# These are supported funding model platforms github: [helblazer811] # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2] patreon: # Replace with a single Patreon username open_collective: # Replace with a single Open Collective username ko_fi: # Replace with a single Ko-fi username tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry liberapay: # Replace with a single Liberapay username issuehunt: # Replace with a single IssueHunt username otechie: # Replace with a single Otechie username lfx_crowdfunding: # Replace with a single LFX Crowdfunding project-name e.g., cloud-foundry custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']
ManimML_helblazer811/.github/workflows/black.yml
name: Lint on: [push, pull_request] jobs: lint: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - uses: psf/black@stable
ManimML_helblazer811/manim_ml/__init__.py
from argparse import Namespace from manim import * import manim from manim_ml.utils.colorschemes.colorschemes import light_mode, dark_mode, ColorScheme class ManimMLConfig: def __init__(self, default_color_scheme=dark_mode): self._color_scheme = default_color_scheme self.three_d_config = Namespace( three_d_x_rotation = 90 * DEGREES, three_d_y_rotation = 0 * DEGREES, rotation_angle = 75 * DEGREES, rotation_axis = [0.02, 1.0, 0.0] # rotation_axis = [0.0, 0.9, 0.0] #rotation_axis = [0.0, 0.9, 0.0] ) @property def color_scheme(self): return self._color_scheme @color_scheme.setter def color_scheme(self, value): if isinstance(value, str): if value == "dark_mode": self._color_scheme = dark_mode elif value == "light_mode": self._color_scheme = light_mode else: raise ValueError( "Color scheme must be either 'dark_mode' or 'light_mode'" ) elif isinstance(value, ColorScheme): self._color_scheme = value manim.config.background_color = self.color_scheme.background_color # These are accesible from the manim_ml namespace config = ManimMLConfig()
ManimML_helblazer811/manim_ml/scene.py
from manim import * class ManimML3DScene(ThreeDScene): """ This is a wrapper class for the Manim ThreeDScene Note: the primary purpose of this is to make it so that everything inside of a layer """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def play(self): """ """ pass
ManimML_helblazer811/manim_ml/diffusion/mcmc.py
""" Tool for animating Markov Chain Monte Carlo simulations in 2D. """ from manim import * import matplotlib import matplotlib.pyplot as plt from manim_ml.utils.mobjects.plotting import convert_matplotlib_figure_to_image_mobject import numpy as np import scipy import scipy.stats from tqdm import tqdm import seaborn as sns from manim_ml.utils.mobjects.probability import GaussianDistribution ######################## MCMC Algorithms ######################### def gaussian_proposal(x, sigma=0.3): """ Gaussian proposal distribution. Draw new parameters from Gaussian distribution with mean at current position and standard deviation sigma. Since the mean is the current position and the standard deviation is fixed. This proposal is symmetric so the ratio of proposal densities is 1. Parameters ---------- x : np.ndarray or list point to center proposal around sigma : float, optional standard deviation of gaussian for proposal, by default 0.1 Returns ------- np.ndarray propossed point """ # Draw x_star x_star = x + np.random.randn(len(x)) * sigma # proposal ratio factor is 1 since jump is symmetric qxx = 1 return (x_star, qxx) class MultidimensionalGaussianPosterior: """ N-Dimensional Gaussian distribution with mu ~ Normal(0, 10) var ~ LogNormal(0, 1.5) Prior on mean is U(-500, 500) """ def __init__(self, ndim=2, seed=12345, scale=3, mu=None, var=None): """_summary_ Parameters ---------- ndim : int, optional _description_, by default 2 seed : int, optional _description_, by default 12345 scale : int, optional _description_, by default 10 """ np.random.seed(seed) self.scale = scale if var is None: self.var = 10 ** (np.random.randn(ndim) * 1.5) else: self.var = var if mu is None: self.mu = scipy.stats.norm(loc=0, scale=self.scale).rvs(ndim) else: self.mu = mu def __call__(self, x): """ Call multivariate normal posterior. """ if np.all(x < 500) and np.all(x > -500): return scipy.stats.multivariate_normal(mean=self.mu, cov=self.var).logpdf(x) else: return -1e6 def metropolis_hastings_sampler( log_prob_fn=MultidimensionalGaussianPosterior(), prop_fn=gaussian_proposal, initial_location: np.ndarray = np.array([0, 0]), iterations=25, warm_up=0, ndim=2, sampling_seed=1 ): """Samples using a Metropolis-Hastings sampler. Parameters ---------- log_prob_fn : function, optional Function to compute log-posterior, by default MultidimensionalGaussianPosterior prop_fn : function, optional Function to compute proposal location, by default gaussian_proposal initial_location : np.ndarray, optional initial location for the chain iterations : int, optional number of iterations of the markov chain, by default 100 warm_up : int, optional, number of warm up iterations Returns ------- samples : np.ndarray numpy array of 2D samples of length `iterations` warm_up_samples : np.ndarray numpy array of 2D warm up samples of length `warm_up` candidate_samples: np.ndarray numpy array of the candidate samples for each time step """ np.random.seed(sampling_seed) # initialize chain, acceptance rate and lnprob chain = np.zeros((iterations, ndim)) proposals = np.zeros((iterations, ndim)) lnprob = np.zeros(iterations) accept_rate = np.zeros(iterations) # first samples chain[0] = initial_location proposals[0] = initial_location lnprob0 = log_prob_fn(initial_location) lnprob[0] = lnprob0 # start loop x0 = initial_location naccept = 0 for ii in range(1, iterations): # propose x_star, factor = prop_fn(x0) # draw random uniform number u = np.random.uniform(0, 1) # compute hastings ratio lnprob_star = log_prob_fn(x_star) H = np.exp(lnprob_star - lnprob0) * factor # accept/reject step (update acceptance counter) if u < H: x0 = x_star lnprob0 = lnprob_star naccept += 1 # update chain chain[ii] = x0 proposals[ii] = x_star lnprob[ii] = lnprob0 accept_rate[ii] = naccept / ii return chain, np.array([]), proposals #################### MCMC Visualization Tools ###################### def make_dist_image_mobject_from_samples(samples, ylim, xlim): # Make the plot matplotlib.use('Agg') plt.figure(figsize=(10,10), dpi=100) print(np.shape(samples[:, 0])) displot = sns.displot( x=samples[:, 0], y=samples[:, 1], cmap="Reds", kind="kde", norm=matplotlib.colors.LogNorm() ) plt.ylim(ylim[0], ylim[1]) plt.xlim(xlim[0], xlim[1]) plt.axis('off') fig = displot.fig image_mobject = convert_matplotlib_figure_to_image_mobject(fig) return image_mobject class Uncreate(Create): def __init__( self, mobject, reverse_rate_function: bool = True, introducer: bool = True, remover: bool = True, **kwargs, ) -> None: super().__init__( mobject, reverse_rate_function=reverse_rate_function, introducer=introducer, remover=remover, **kwargs, ) class MCMCAxes(Group): """Container object for visualizing MCMC on a 2D axis""" def __init__( self, dot_color=BLUE, dot_radius=0.02, accept_line_color=GREEN, reject_line_color=RED, line_color=BLUE, line_stroke_width=2, x_range=[-3, 3], y_range=[-3, 3], x_length=5, y_length=5 ): super().__init__() self.dot_color = dot_color self.dot_radius = dot_radius self.accept_line_color = accept_line_color self.reject_line_color = reject_line_color self.line_color = line_color self.line_stroke_width = line_stroke_width # Make the axes self.x_length = x_length self.y_length = y_length self.x_range = x_range self.y_range = y_range self.axes = Axes( x_range=x_range, y_range=y_range, x_length=x_length, y_length=y_length, x_axis_config={"stroke_opacity": 0.0}, y_axis_config={"stroke_opacity": 0.0}, tips=False, ) self.add(self.axes) @override_animation(Create) def _create_override(self, **kwargs): """Overrides Create animation""" return AnimationGroup(Create(self.axes)) def visualize_gaussian_proposal_about_point(self, mean, cov=None) -> AnimationGroup: """Creates a Gaussian distribution about a certain point Parameters ---------- mean : np.ndarray mean of proposal distribution cov : np.ndarray covariance matrix of proposal distribution Returns ------- AnimationGroup animation of creating the proposal Gaussian distribution """ gaussian = GaussianDistribution( axes=self.axes, mean=mean, cov=cov, dist_theme="gaussian" ) create_guassian = Create(gaussian) return create_guassian def make_transition_animation( self, start_point, end_point, candidate_point, show_dots=True, run_time=0.1 ) -> AnimationGroup: """Makes an transition animation for a single point on a Markov Chain Parameters ---------- start_point: Dot Start point of the transition end_point : Dot End point of the transition show_dots: boolean, optional Whether or not to show the dots Returns ------- AnimationGroup Animation of the transition from start to end """ start_location = self.axes.point_to_coords(start_point.get_center()) end_location = self.axes.point_to_coords(end_point.get_center()) candidate_location = self.axes.point_to_coords(candidate_point.get_center()) # Figure out if a point is accepted or rejected # point_is_rejected = not candidate_location == end_location point_is_rejected = False if point_is_rejected: return AnimationGroup(), Dot().set_opacity(0.0) else: create_end_point = Create(end_point) line = Line( start_point, end_point, color=self.line_color, stroke_width=self.line_stroke_width, buff=-0.1 ) create_line = Create(line) if show_dots: return AnimationGroup( create_end_point, create_line, lag_ratio=1.0, run_time=run_time ), line else: return AnimationGroup( create_line, lag_ratio=1.0, run_time=run_time ), line def show_ground_truth_gaussian(self, distribution): """ """ mean = distribution.mu var = np.eye(2) * distribution.var distribution_drawing = GaussianDistribution( self.axes, mean, var, dist_theme="gaussian" ).set_opacity(0.2) return AnimationGroup(Create(distribution_drawing)) def visualize_metropolis_hastings_chain_sampling( self, log_prob_fn=MultidimensionalGaussianPosterior(), prop_fn=gaussian_proposal, show_dots=False, true_samples=None, sampling_kwargs={}, ): """ Makes an animation for visualizing a 2D markov chain using metropolis hastings samplings Parameters ---------- axes : manim.mobject.graphing.coordinate_systems.Axes Manim 2D axes to plot the chain on log_prob_fn : function, optional Function to compute log-posterior, by default MultidmensionalGaussianPosterior prop_fn : function, optional Function to compute proposal location, by default gaussian_proposal initial_location : list, optional initial location for the markov chain, by default None show_dots : bool, optional whether or not to show the dots on the screen, by default False iterations : int, optional number of iterations of the markov chain, by default 100 Returns ------- animation : AnimationGroup animation for creating the markov chain """ # Compute the chain samples using a Metropolis Hastings Sampler mcmc_samples, warm_up_samples, candidate_samples = metropolis_hastings_sampler( log_prob_fn=log_prob_fn, prop_fn=prop_fn, **sampling_kwargs ) # print(f"MCMC samples: {mcmc_samples}") # print(f"Candidate samples: {candidate_samples}") # Make the animation for visualizing the chain transition_animations = [] # Place the initial point current_point = mcmc_samples[0] current_point = Dot( self.axes.coords_to_point(current_point[0], current_point[1]), color=self.dot_color, radius=self.dot_radius, ) create_initial_point = Create(current_point) transition_animations.append(create_initial_point) # Show the initial point's proposal distribution # NOTE: visualize the warm up and the iterations lines = [] warmup_points = [] num_iterations = len(mcmc_samples) + len(warm_up_samples) for iteration in tqdm(range(1, num_iterations)): next_sample = mcmc_samples[iteration] # print(f"Next sample: {next_sample}") candidate_sample = candidate_samples[iteration - 1] # Make the next point next_point = Dot( self.axes.coords_to_point( next_sample[0], next_sample[1] ), color=self.dot_color, radius=self.dot_radius, ) candidate_point = Dot( self.axes.coords_to_point( candidate_sample[0], candidate_sample[1] ), color=self.dot_color, radius=self.dot_radius, ) # Make a transition animation transition_animation, line = self.make_transition_animation( current_point, next_point, candidate_point ) # Save assets lines.append(line) if iteration < len(warm_up_samples): warmup_points.append(candidate_point) # Add the transition animation transition_animations.append(transition_animation) # Setup for next iteration current_point = next_point # Overall MCMC animation # 1. Fade in the distribution image_mobject = make_dist_image_mobject_from_samples( true_samples, xlim=(self.x_range[0], self.x_range[1]), ylim=(self.y_range[0], self.y_range[1]) ) image_mobject.scale_to_fit_height( self.y_length ) image_mobject.move_to(self.axes) fade_in_distribution = FadeIn( image_mobject, run_time=0.5 ) # 2. Start sampling the chain chain_sampling_animation = AnimationGroup( *transition_animations, lag_ratio=1.0, run_time=5.0 ) # 3. Convert the chain to points, excluding the warmup lines = VGroup(*lines) warm_up_points = VGroup(*warmup_points) fade_out_lines_and_warmup = AnimationGroup( Uncreate(lines), Uncreate(warm_up_points), lag_ratio=0.0 ) # Make the final animation animation_group = Succession( fade_in_distribution, chain_sampling_animation, fade_out_lines_and_warmup, lag_ratio=1.0 ) return animation_group
ManimML_helblazer811/manim_ml/utils/__init__.py
ManimML_helblazer811/manim_ml/utils/colorschemes/__init__.py
from manim_ml.utils.colorschemes.colorschemes import light_mode, dark_mode
ManimML_helblazer811/manim_ml/utils/colorschemes/colorschemes.py
from manim import * from dataclasses import dataclass @dataclass class ColorScheme: primary_color: str secondary_color: str active_color: str text_color: str background_color: str dark_mode = ColorScheme( primary_color=BLUE, secondary_color=WHITE, active_color=ORANGE, text_color=WHITE, background_color=BLACK ) light_mode = ColorScheme( primary_color=BLUE, secondary_color=BLACK, active_color=ORANGE, text_color=BLACK, background_color=WHITE )
ManimML_helblazer811/manim_ml/utils/mobjects/__init__.py
ManimML_helblazer811/manim_ml/utils/mobjects/connections.py
import numpy as np from manim import * class NetworkConnection(VGroup): """ This class allows for creating connections between locations in a network """ direction_vector_map = {"up": UP, "down": DOWN, "left": LEFT, "right": RIGHT} def __init__( self, start_mobject, end_mobject, arc_direction="straight", buffer=0.0, arc_distance=0.2, stroke_width=2.0, color=WHITE, active_color=ORANGE, ): """Creates an arrow with right angles in it connecting two mobjects. Parameters ---------- start_mobject : Mobject Mobject where the start of the connection is from end_mobject : Mobject Mobject where the end of the connection goes to arc_direction : str, optional direction that the connection arcs, by default "straight" buffer : float, optional amount of space between the connection and mobjects at the end arc_distance : float, optional Distance from start and end mobject that the arc bends stroke_width : float, optional Stroke width of the connection color : [float], optional Color of the connection active_color : [float], optional Color of active animations for this mobject """ super().__init__() assert arc_direction in ["straight", "up", "down", "left", "right"] self.start_mobject = start_mobject self.end_mobject = end_mobject self.arc_direction = arc_direction self.buffer = buffer self.arc_distance = arc_distance self.stroke_width = stroke_width self.color = color self.active_color = active_color self.make_mobjects() def make_mobjects(self): """Makes the submobjects""" if self.start_mobject.get_center()[0] < self.end_mobject.get_center()[0]: left_mobject = self.start_mobject right_mobject = self.end_mobject else: right_mobject = self.start_mobject left_mobject = self.end_mobject if self.arc_direction == "straight": # Make an arrow self.straight_arrow = Arrow( start=left_mobject.get_right() + np.array([self.buffer, 0.0, 0.0]), end=right_mobject.get_left() + np.array([-1 * self.buffer, 0.0, 0.0]), color=WHITE, fill_color=WHITE, stroke_opacity=1.0, buff=0.0, ) self.add(self.straight_arrow) else: # Figure out the direction of the arc direction_vector = NetworkConnection.direction_vector_map[ self.arc_direction ] # Based on the position of the start and end layer, and direction # figure out how large to make each line # Whichever mobject has a critical point the farthest # distance in the direction_vector direction we will use that end left_mobject_critical_point = left_mobject.get_critical_point(direction_vector) right_mobject_critical_point = right_mobject.get_critical_point(direction_vector) # Take the dot product of each # These dot products correspond to the orthogonal projection # onto the direction vectors left_dot_product = np.dot( left_mobject_critical_point, direction_vector ) right_dot_product = np.dot( right_mobject_critical_point, direction_vector ) extra_distance = abs(left_dot_product - right_dot_product) # The difference between the dot products if left_dot_product < right_dot_product: right_is_farthest = False else: right_is_farthest = True # Make the start arc piece start_line_start = left_mobject.get_critical_point(direction_vector) start_line_start += direction_vector * self.buffer start_line_end = start_line_start + direction_vector * self.arc_distance if not right_is_farthest: start_line_end = start_line_end + direction_vector * extra_distance self.start_line = Line( start_line_start, start_line_end, color=self.color, stroke_width=self.stroke_width, ) # Make the end arc piece with an arrow end_line_end = right_mobject.get_critical_point(direction_vector) end_line_end += direction_vector * self.buffer end_line_start = end_line_end + direction_vector * self.arc_distance if right_is_farthest: end_line_start = end_line_start + direction_vector * extra_distance self.end_arrow = Arrow( start=end_line_start, end=end_line_end, color=WHITE, fill_color=WHITE, stroke_opacity=1.0, buff=0.0, ) # Make the middle arc piece self.middle_line = Line( start_line_end, end_line_start, color=self.color, stroke_width=self.stroke_width, ) # Add the mobjects self.add( self.start_line, self.middle_line, self.end_arrow, ) @override_animation(ShowPassingFlash) def _override_passing_flash(self, run_time=1.0, time_width=0.2): """Passing flash animation""" if self.arc_direction == "straight": return ShowPassingFlash( self.straight_arrow.copy().set_color(self.active_color), time_width=time_width, ) else: # Animate the start line start_line_animation = ShowPassingFlash( self.start_line.copy().set_color(self.active_color), time_width=time_width, ) # Animate the middle line middle_line_animation = ShowPassingFlash( self.middle_line.copy().set_color(self.active_color), time_width=time_width, ) # Animate the end line end_line_animation = ShowPassingFlash( self.end_arrow.copy().set_color(self.active_color), time_width=time_width, ) return AnimationGroup( start_line_animation, middle_line_animation, end_line_animation, lag_ratio=1.0, run_time=run_time, )
ManimML_helblazer811/manim_ml/utils/mobjects/image.py
from manim import * import numpy as np from PIL import Image class GrayscaleImageMobject(Group): """Mobject for creating images in Manim from numpy arrays""" def __init__(self, numpy_image, height=2.3): super().__init__() self.numpy_image = numpy_image assert len(np.shape(self.numpy_image)) == 2 input_image = self.numpy_image[None, :, :] # Convert grayscale to rgb version of grayscale input_image = np.repeat(input_image, 3, axis=0) input_image = np.rollaxis(input_image, 0, start=3) self.image_mobject = ImageMobject( input_image, image_mode="RBG", ) self.add(self.image_mobject) self.image_mobject.set_resampling_algorithm( RESAMPLING_ALGORITHMS["nearest"] ) self.image_mobject.scale_to_fit_height(height) @classmethod def from_path(cls, path, height=2.3): """Loads image from path""" image = Image.open(path) numpy_image = np.asarray(image) return cls(numpy_image, height=height) @override_animation(Create) def create(self, run_time=2): return FadeIn(self) def scale(self, scale_factor, **kwargs): """Scales the image mobject""" # super().scale(scale_factor) # height = self.height self.image_mobject.scale(scale_factor) # self.scale_to_fit_height(2) # self.apply_points_function_about_point( # lambda points: scale_factor * points, **kwargs # ) def set_opacity(self, opacity): """Set the opacity""" self.image_mobject.set_opacity(opacity) class LabeledColorImage(Group): """Labeled Color Image""" def __init__( self, image, color=RED, label="Positive", stroke_width=5, font_size=24, buff=0.2 ): super().__init__() self.image = image self.color = color self.label = label self.stroke_width = stroke_width self.font_size = font_size text = Text(label, font_size=self.font_size) text.next_to(self.image, UP, buff=buff) rectangle = SurroundingRectangle( self.image, color=color, buff=0.0, stroke_width=self.stroke_width ) self.add(text) self.add(rectangle) self.add(self.image)
ManimML_helblazer811/manim_ml/utils/mobjects/list_group.py
from manim import * class ListGroup(Mobject): """Indexable Group with traditional list operations""" def __init__(self, *layers): super().__init__() self.items = [*layers] def __getitem__(self, indices): """Traditional list indexing""" return self.items[indices] def insert(self, index, item): """Inserts item at index""" self.items.insert(index, item) self.submobjects = self.items def remove_at_index(self, index): """Removes item at index""" if index > len(self.items): raise Exception(f"ListGroup index out of range: {index}") item = self.items[index] del self.items[index] self.submobjects = self.items return item def remove_at_indices(self, indices): """Removes items at indices""" items = [] for index in indices: item = self.remove_at_index(index) items.append(item) return items def remove(self, item): """Removes first instance of item""" self.items.remove(item) self.submobjects = self.items return item def get(self, index): """Gets item at index""" return self.items[index] def add(self, item): """Adds to end""" self.items.append(item) self.submobjects = self.items def replace(self, index, item): """Replaces item at index""" self.items[index] = item self.submobjects = self.items def index_of(self, item): """Returns index of item if it exists""" for index, obj in enumerate(self.items): if item is obj: return index return -1 def __len__(self): """Length of items""" return len(self.items) def set_z_index(self, z_index_value, family=True): """Sets z index of all values in ListGroup""" for item in self.items: item.set_z_index(z_index_value, family=True) def __iter__(self): self.current_index = -1 return self def __next__(self): # Python 2: def next(self) self.current_index += 1 if self.current_index < len(self.items): return self.items[self.current_index] raise StopIteration def __repr__(self): return f"ListGroup({self.items})"
ManimML_helblazer811/manim_ml/utils/mobjects/probability.py
from manim import * import numpy as np import math class GaussianDistribution(VGroup): """Object for drawing a Gaussian distribution""" def __init__( self, axes, mean=None, cov=None, dist_theme="gaussian", color=ORANGE, **kwargs ): super(VGroup, self).__init__(**kwargs) self.axes = axes self.mean = mean self.cov = cov self.dist_theme = dist_theme self.color = color if mean is None: self.mean = np.array([0.0, 0.0]) if cov is None: self.cov = np.array([[1, 0], [0, 1]]) # Make the Gaussian if self.dist_theme is "gaussian": self.ellipses = self.construct_gaussian_distribution( self.mean, self.cov, color=self.color ) self.add(self.ellipses) elif self.dist_theme is "ellipse": self.ellipses = self.construct_simple_gaussian_ellipse( self.mean, self.cov, color=self.color ) self.add(self.ellipses) else: raise Exception(f"Uncrecognized distribution theme: {self.dist_theme}") """ @override_animation(Create) def _create_gaussian_distribution(self): return Create(self) """ def compute_covariance_rotation_and_scale(self, covariance): def eigsorted(cov): """ Eigenvalues and eigenvectors of the covariance matrix. """ vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:, order] def cov_ellipse(cov, nstd): """ Source: http://stackoverflow.com/a/12321306/1391441 """ vals, vecs = eigsorted(cov) theta = np.degrees(np.arctan2(*vecs[:, 0][::-1])) # Width and height are "full" widths, not radius width, height = 2 * nstd * np.sqrt(vals) return width, height, theta width, height, angle = cov_ellipse(covariance, 1) scale_factor = ( np.abs(self.axes.x_range[0] - self.axes.x_range[1]) / self.axes.x_length ) width /= scale_factor height /= scale_factor return angle, width, height def construct_gaussian_distribution( self, mean, covariance, color=ORANGE, num_ellipses=4 ): """Returns a 2d Gaussian distribution object with given mean and covariance""" # map mean and covariance to frame coordinates mean = self.axes.coords_to_point(*mean) # Figure out the scale and angle of rotation rotation, width, height = self.compute_covariance_rotation_and_scale(covariance) # Make covariance ellipses opacity = 0.0 ellipses = VGroup() for ellipse_number in range(num_ellipses): opacity += 1.0 / num_ellipses ellipse_width = width * (1 - opacity) ellipse_height = height * (1 - opacity) ellipse = Ellipse( width=ellipse_width, height=ellipse_height, color=color, fill_opacity=opacity, stroke_width=2.0, ) ellipse.move_to(mean) ellipse.rotate(rotation) ellipses.add(ellipse) return ellipses def construct_simple_gaussian_ellipse(self, mean, covariance, color=ORANGE): """Returns a 2d Gaussian distribution object with given mean and covariance""" # Map mean and covariance to frame coordinates mean = self.axes.coords_to_point(*mean) angle, width, height = self.compute_covariance_rotation_and_scale(covariance) # Make covariance ellipses ellipses = VGroup() opacity = 0.4 ellipse = Ellipse( width=width, height=height, color=color, fill_opacity=opacity, stroke_width=1.0, ) ellipse.move_to(mean) ellipse.rotate(angle) ellipses.add(ellipse) ellipses.set_z_index(3) return ellipses
ManimML_helblazer811/manim_ml/utils/mobjects/plotting.py
from manim import * import numpy as np import matplotlib import matplotlib.pyplot as plt from PIL import Image import io def convert_matplotlib_figure_to_image_mobject(fig, dpi=200): """Takes a matplotlib figure and makes an image mobject from it Parameters ---------- fig : matplotlib figure matplotlib figure """ fig.tight_layout(pad=0) # plt.axis('off') fig.canvas.draw() # Save data into a buffer image_buffer = io.BytesIO() plt.savefig(image_buffer, format='png', dpi=dpi) # Reopen in PIL and convert to numpy image = Image.open(image_buffer) image = np.array(image) # Convert it to an image mobject image_mobject = ImageMobject(image, image_mode="RGB") return image_mobject
ManimML_helblazer811/manim_ml/utils/mobjects/gridded_rectangle.py
from manim import * import numpy as np class GriddedRectangle(VGroup): """Rectangle object with grid lines""" def __init__( self, color=ORANGE, height=2.0, width=4.0, mark_paths_closed=True, close_new_points=True, grid_xstep=None, grid_ystep=None, grid_stroke_width=0.0, # DEFAULT_STROKE_WIDTH/2, grid_stroke_color=ORANGE, grid_stroke_opacity=1.0, stroke_width=2.0, fill_opacity=0.2, show_grid_lines=False, dotted_lines=False, **kwargs ): super().__init__() # Fields self.color = color self.mark_paths_closed = mark_paths_closed self.close_new_points = close_new_points self.grid_xstep = grid_xstep self.grid_ystep = grid_ystep self.grid_stroke_width = grid_stroke_width self.grid_stroke_color = grid_stroke_color self.grid_stroke_opacity = grid_stroke_opacity if show_grid_lines else 0.0 self.stroke_width = stroke_width self.rotation_angles = [0, 0, 0] self.show_grid_lines = show_grid_lines self.untransformed_width = width self.untransformed_height = height self.dotted_lines = dotted_lines # Make rectangle if self.dotted_lines: no_border_rectangle = Rectangle( width=width, height=height, color=color, fill_color=color, stroke_opacity=0.0, fill_opacity=fill_opacity, shade_in_3d=True, ) self.rectangle = no_border_rectangle border_rectangle = Rectangle( width=width, height=height, color=color, fill_color=color, fill_opacity=fill_opacity, shade_in_3d=True, stroke_width=stroke_width, ) self.dotted_lines = DashedVMobject( border_rectangle, num_dashes=int((width + height) / 2) * 20, ) self.add(self.dotted_lines) else: self.rectangle = Rectangle( width=width, height=height, color=color, stroke_width=stroke_width, fill_color=color, fill_opacity=fill_opacity, shade_in_3d=True, ) self.add(self.rectangle) # Make grid lines grid_lines = self.make_grid_lines() self.add(grid_lines) # Make corner rectangles self.corners_dict = self.make_corners_dict() self.add(*self.corners_dict.values()) def make_corners_dict(self): """Make corners dictionary""" corners_dict = { "top_right": Dot( self.rectangle.get_corner([1, 1, 0]), fill_opacity=0.0, radius=0.0 ), "top_left": Dot( self.rectangle.get_corner([-1, 1, 0]), fill_opacity=0.0, radius=0.0 ), "bottom_left": Dot( self.rectangle.get_corner([-1, -1, 0]), fill_opacity=0.0, radius=0.0 ), "bottom_right": Dot( self.rectangle.get_corner([1, -1, 0]), fill_opacity=0.0, radius=0.0 ), } return corners_dict def get_corners_dict(self): """Returns a dictionary of the corners""" # Sort points through clockwise rotation of a vector in the xy plane return self.corners_dict def make_grid_lines(self): """Make grid lines in rectangle""" grid_lines = VGroup() v = self.rectangle.get_vertices() if self.grid_xstep is not None: grid_xstep = abs(self.grid_xstep) count = int(self.width / grid_xstep) grid = VGroup( *( Line( v[1] + i * grid_xstep * RIGHT, v[1] + i * grid_xstep * RIGHT + self.height * DOWN, stroke_color=self.grid_stroke_color, stroke_width=self.grid_stroke_width, stroke_opacity=self.grid_stroke_opacity, shade_in_3d=True, ) for i in range(1, count) ) ) grid_lines.add(grid) if self.grid_ystep is not None: grid_ystep = abs(self.grid_ystep) count = int(self.height / grid_ystep) grid = VGroup( *( Line( v[1] + i * grid_ystep * DOWN, v[1] + i * grid_ystep * DOWN + self.width * RIGHT, stroke_color=self.grid_stroke_color, stroke_width=self.grid_stroke_width, stroke_opacity=self.grid_stroke_opacity, ) for i in range(1, count) ) ) grid_lines.add(grid) return grid_lines def get_center(self): return self.rectangle.get_center() def get_normal_vector(self): vertex_1 = self.rectangle.get_vertices()[0] vertex_2 = self.rectangle.get_vertices()[1] vertex_3 = self.rectangle.get_vertices()[2] # First vector normal_vector = np.cross((vertex_1 - vertex_2), (vertex_1 - vertex_3)) return normal_vector def set_color(self, color): """Sets the color of the gridded rectangle""" self.color = color self.rectangle.set_color(color) self.rectangle.set_stroke_color(color)
ManimML_helblazer811/manim_ml/utils/testing/frames_comparison.py
from __future__ import annotations import functools import inspect from pathlib import Path from typing import Callable from _pytest.fixtures import FixtureRequest from manim import Scene from manim._config import tempconfig from manim._config.utils import ManimConfig from manim.camera.three_d_camera import ThreeDCamera from manim.renderer.cairo_renderer import CairoRenderer from manim.scene.three_d_scene import ThreeDScene from manim.utils.testing._frames_testers import _ControlDataWriter, _FramesTester from manim.utils.testing._test_class_makers import ( DummySceneFileWriter, _make_scene_file_writer_class, _make_test_renderer_class, _make_test_scene_class, ) SCENE_PARAMETER_NAME = "scene" _tests_root_dir_path = Path(__file__).absolute().parents[2] print(f"Tests root path: {_tests_root_dir_path}") PATH_CONTROL_DATA = _tests_root_dir_path / Path("control_data", "graphical_units_data") def frames_comparison( func=None, *, last_frame: bool = True, renderer_class=CairoRenderer, base_scene=Scene, **custom_config, ): """Compares the frames generated by the test with control frames previously registered. If there is no control frames for this test, the test will fail. To generate control frames for a given test, pass ``--set_test`` flag to pytest while running the test. Note that this decorator can be use with or without parentheses. Parameters ---------- last_frame whether the test should test the last frame, by default True. renderer_class The base renderer to use (OpenGLRenderer/CairoRenderer), by default CairoRenderer base_scene The base class for the scene (ThreeDScene, etc.), by default Scene .. warning:: By default, last_frame is True, which means that only the last frame is tested. If the scene has a moving animation, then the test must set last_frame to False. """ def decorator_maker(tested_scene_construct): if ( SCENE_PARAMETER_NAME not in inspect.getfullargspec(tested_scene_construct).args ): raise Exception( f"Invalid graphical test function test function : must have '{SCENE_PARAMETER_NAME}'as one of the parameters.", ) # Exclude "scene" from the argument list of the signature. old_sig = inspect.signature( functools.partial(tested_scene_construct, scene=None), ) if "__module_test__" not in tested_scene_construct.__globals__: raise Exception( "There is no module test name indicated for the graphical unit test. You have to declare __module_test__ in the test file.", ) module_name = tested_scene_construct.__globals__.get("__module_test__") test_name = tested_scene_construct.__name__[len("test_") :] @functools.wraps(tested_scene_construct) # The "request" parameter is meant to be used as a fixture by pytest. See below. def wrapper(*args, request: FixtureRequest, tmp_path, **kwargs): # Wraps the test_function to a construct method, to "freeze" the eventual additional arguments (parametrizations fixtures). construct = functools.partial(tested_scene_construct, *args, **kwargs) # Kwargs contains the eventual parametrization arguments. # This modifies the test_name so that it is defined by the parametrization # arguments too. # Example: if "length" is parametrized from 0 to 20, the kwargs # will be once with {"length" : 1}, etc. test_name_with_param = test_name + "_".join( f"_{str(tup[0])}[{str(tup[1])}]" for tup in kwargs.items() ) config_tests = _config_test(last_frame) config_tests["text_dir"] = tmp_path config_tests["tex_dir"] = tmp_path if last_frame: config_tests["frame_rate"] = 1 config_tests["dry_run"] = True setting_test = request.config.getoption("--set_test") try: test_file_path = tested_scene_construct.__globals__["__file__"] except Exception: test_file_path = None real_test = _make_test_comparing_frames( file_path=_control_data_path( test_file_path, module_name, test_name_with_param, setting_test, ), base_scene=base_scene, construct=construct, renderer_class=renderer_class, is_set_test_data_test=setting_test, last_frame=last_frame, show_diff=request.config.getoption("--show_diff"), size_frame=(config_tests["pixel_height"], config_tests["pixel_width"]), ) # Isolate the config used for the test, to avoid modifying the global config during the test run. with tempconfig({**config_tests, **custom_config}): real_test() parameters = list(old_sig.parameters.values()) # Adds "request" param into the signature of the wrapper, to use the associated pytest fixture. # This fixture is needed to have access to flags value and pytest's config. See above. if "request" not in old_sig.parameters: parameters += [inspect.Parameter("request", inspect.Parameter.KEYWORD_ONLY)] if "tmp_path" not in old_sig.parameters: parameters += [ inspect.Parameter("tmp_path", inspect.Parameter.KEYWORD_ONLY), ] new_sig = old_sig.replace(parameters=parameters) wrapper.__signature__ = new_sig # Reach a bit into pytest internals to hoist the marks from our wrapped # function. setattr(wrapper, "pytestmark", []) new_marks = getattr(tested_scene_construct, "pytestmark", []) wrapper.pytestmark = new_marks return wrapper # Case where the decorator is called with and without parentheses. # If func is None, callabl(None) returns False if callable(func): return decorator_maker(func) return decorator_maker def _make_test_comparing_frames( file_path: Path, base_scene: type[Scene], construct: Callable[[Scene], None], renderer_class: type, # Renderer type, there is no superclass renderer yet ..... is_set_test_data_test: bool, last_frame: bool, show_diff: bool, size_frame: tuple, ) -> Callable[[], None]: """Create the real pytest test that will fail if the frames mismatch. Parameters ---------- file_path The path of the control frames. base_scene The base scene class. construct The construct method (= the test function) renderer_class The renderer base class. show_diff whether to visually show_diff (see --show_diff) Returns ------- Callable[[], None] The pytest test. """ if is_set_test_data_test: frames_tester = _ControlDataWriter(file_path, size_frame=size_frame) else: frames_tester = _FramesTester(file_path, show_diff=show_diff) file_writer_class = ( _make_scene_file_writer_class(frames_tester) if not last_frame else DummySceneFileWriter ) testRenderer = _make_test_renderer_class(renderer_class) def real_test(): with frames_tester.testing(): sceneTested = _make_test_scene_class( base_scene=base_scene, construct_test=construct, # NOTE this is really ugly but it's due to the very bad design of the two renderers. # If you pass a custom renderer to the Scene, the Camera class given as an argument in the Scene # is not passed to the renderer. See __init__ of Scene. # This potentially prevents OpenGL testing. test_renderer=testRenderer(file_writer_class=file_writer_class) if base_scene is not ThreeDScene else testRenderer( file_writer_class=file_writer_class, camera_class=ThreeDCamera, ), # testRenderer(file_writer_class=file_writer_class), ) scene_tested = sceneTested(skip_animations=True) scene_tested.render() if last_frame: frames_tester.check_frame(-1, scene_tested.renderer.get_frame()) return real_test def _control_data_path( test_file_path: str | None, module_name: str, test_name: str, setting_test: bool ) -> Path: if test_file_path is None: # For some reason, path to test file containing @frames_comparison could not # be determined. Use local directory instead. test_file_path = __file__ path = Path(test_file_path).absolute().parent / "control_data" / module_name if setting_test: # Create the directory if not existing. path.mkdir(exist_ok=True) if not setting_test and not path.exists(): raise Exception(f"The control frames directory can't be found in {path}") path = (path / test_name).with_suffix(".npz") if not setting_test and not path.is_file(): raise Exception( f"The control frame for the test {test_name} cannot be found in {path.parent}. " "Make sure you generated the control frames first.", ) return path def _config_test(last_frame: bool) -> ManimConfig: return ManimConfig().digest_file( str( Path(__file__).parent / ( "config_graphical_tests_monoframe.cfg" if last_frame else "config_graphical_tests_multiframes.cfg" ), ), )
ManimML_helblazer811/manim_ml/utils/testing/doc_directive.py
r""" A directive for including Manim videos in a Sphinx document """ from __future__ import annotations import csv import itertools as it import os import re import shutil import sys from pathlib import Path from timeit import timeit import jinja2 from docutils import nodes from docutils.parsers.rst import Directive, directives # type: ignore from docutils.statemachine import StringList from manim import QUALITIES classnamedict = {} class SkipManimNode(nodes.Admonition, nodes.Element): """Auxiliary node class that is used when the ``skip-manim`` tag is present or ``.pot`` files are being built. Skips rendering the manim directive and outputs a placeholder instead. """ pass def visit(self, node, name=""): self.visit_admonition(node, name) if not isinstance(node[0], nodes.title): node.insert(0, nodes.title("skip-manim", "Example Placeholder")) def depart(self, node): self.depart_admonition(node) def process_name_list(option_input: str, reference_type: str) -> list[str]: r"""Reformats a string of space separated class names as a list of strings containing valid Sphinx references. Tests ----- :: >>> process_name_list("Tex TexTemplate", "class") [':class:`~.Tex`', ':class:`~.TexTemplate`'] >>> process_name_list("Scene.play Mobject.rotate", "func") [':func:`~.Scene.play`', ':func:`~.Mobject.rotate`'] """ return [f":{reference_type}:`~.{name}`" for name in option_input.split()] class ManimDirective(Directive): r"""The manim directive, rendering videos while building the documentation. See the module docstring for documentation. """ has_content = True required_arguments = 1 optional_arguments = 0 option_spec = { "hide_source": bool, "no_autoplay": bool, "quality": lambda arg: directives.choice( arg, ("low", "medium", "high", "fourk"), ), "save_as_gif": bool, "save_last_frame": bool, "ref_modules": lambda arg: process_name_list(arg, "mod"), "ref_classes": lambda arg: process_name_list(arg, "class"), "ref_functions": lambda arg: process_name_list(arg, "func"), "ref_methods": lambda arg: process_name_list(arg, "meth"), } final_argument_whitespace = True def run(self): # Rendering is skipped if the tag skip-manim is present, # or if we are making the pot-files should_skip = ( "skip-manim" in self.state.document.settings.env.app.builder.tags.tags or self.state.document.settings.env.app.builder.name == "gettext" ) if should_skip: node = SkipManimNode() self.state.nested_parse( StringList( [ f"Placeholder block for ``{self.arguments[0]}``.", "", ".. code-block:: python", "", ] + [" " + line for line in self.content] ), self.content_offset, node, ) return [node] from manim import config, tempconfig global classnamedict clsname = self.arguments[0] if clsname not in classnamedict: classnamedict[clsname] = 1 else: classnamedict[clsname] += 1 hide_source = "hide_source" in self.options no_autoplay = "no_autoplay" in self.options save_as_gif = "save_as_gif" in self.options save_last_frame = "save_last_frame" in self.options assert not (save_as_gif and save_last_frame) ref_content = ( self.options.get("ref_modules", []) + self.options.get("ref_classes", []) + self.options.get("ref_functions", []) + self.options.get("ref_methods", []) ) if ref_content: ref_block = "References: " + " ".join(ref_content) else: ref_block = "" if "quality" in self.options: quality = f'{self.options["quality"]}_quality' else: quality = "example_quality" frame_rate = QUALITIES[quality]["frame_rate"] pixel_height = QUALITIES[quality]["pixel_height"] pixel_width = QUALITIES[quality]["pixel_width"] state_machine = self.state_machine document = state_machine.document source_file_name = Path(document.attributes["source"]) source_rel_name = source_file_name.relative_to(setup.confdir) source_rel_dir = source_rel_name.parents[0] dest_dir = Path(setup.app.builder.outdir, source_rel_dir).absolute() if not dest_dir.exists(): dest_dir.mkdir(parents=True, exist_ok=True) source_block = [ ".. code-block:: python", "", " from manim import *\n", *(" " + line for line in self.content), ] source_block = "\n".join(source_block) config.media_dir = (Path(setup.confdir) / "media").absolute() config.images_dir = "{media_dir}/images" config.video_dir = "{media_dir}/videos/{quality}" output_file = f"{clsname}-{classnamedict[clsname]}" config.assets_dir = Path("_static") config.progress_bar = "none" config.verbosity = "WARNING" example_config = { "frame_rate": frame_rate, "no_autoplay": no_autoplay, "pixel_height": pixel_height, "pixel_width": pixel_width, "save_last_frame": save_last_frame, "write_to_movie": not save_last_frame, "output_file": output_file, } if save_last_frame: example_config["format"] = None if save_as_gif: example_config["format"] = "gif" user_code = self.content if user_code[0].startswith(">>> "): # check whether block comes from doctest user_code = [ line[4:] for line in user_code if line.startswith((">>> ", "... ")) ] code = [ "from manim import *", *user_code, f"{clsname}().render()", ] with tempconfig(example_config): run_time = timeit(lambda: exec("\n".join(code), globals()), number=1) video_dir = config.get_dir("video_dir") images_dir = config.get_dir("images_dir") _write_rendering_stats( clsname, run_time, self.state.document.settings.env.docname, ) # copy video file to output directory if not (save_as_gif or save_last_frame): filename = f"{output_file}.mp4" filesrc = video_dir / filename destfile = Path(dest_dir, filename) shutil.copyfile(filesrc, destfile) elif save_as_gif: filename = f"{output_file}.gif" filesrc = video_dir / filename elif save_last_frame: filename = f"{output_file}.png" filesrc = images_dir / filename else: raise ValueError("Invalid combination of render flags received.") rendered_template = jinja2.Template(TEMPLATE).render( clsname=clsname, clsname_lowercase=clsname.lower(), hide_source=hide_source, filesrc_rel=Path(filesrc).relative_to(setup.confdir).as_posix(), no_autoplay=no_autoplay, output_file=output_file, save_last_frame=save_last_frame, save_as_gif=save_as_gif, source_block=source_block, ref_block=ref_block, ) state_machine.insert_input( rendered_template.split("\n"), source=document.attributes["source"], ) return [] rendering_times_file_path = Path("../rendering_times.csv") def _write_rendering_stats(scene_name, run_time, file_name): with rendering_times_file_path.open("a") as file: csv.writer(file).writerow( [ re.sub(r"^(reference\/)|(manim\.)", "", file_name), scene_name, "%.3f" % run_time, ], ) def _log_rendering_times(*args): if rendering_times_file_path.exists(): with rendering_times_file_path.open() as file: data = list(csv.reader(file)) if len(data) == 0: sys.exit() print("\nRendering Summary\n-----------------\n") max_file_length = max(len(row[0]) for row in data) for key, group in it.groupby(data, key=lambda row: row[0]): key = key.ljust(max_file_length + 1, ".") group = list(group) if len(group) == 1: row = group[0] print(f"{key}{row[2].rjust(7, '.')}s {row[1]}") continue time_sum = sum(float(row[2]) for row in group) print( f"{key}{f'{time_sum:.3f}'.rjust(7, '.')}s => {len(group)} EXAMPLES", ) for row in group: print(f"{' '*(max_file_length)} {row[2].rjust(7)}s {row[1]}") print("") def _delete_rendering_times(*args): if rendering_times_file_path.exists(): rendering_times_file_path.unlink() def setup(app): app.add_node(SkipManimNode, html=(visit, depart)) setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_directive("manim", ManimDirective) app.connect("builder-inited", _delete_rendering_times) app.connect("build-finished", _log_rendering_times) metadata = {"parallel_read_safe": False, "parallel_write_safe": True} return metadata TEMPLATE = r""" {% if not hide_source %} .. raw:: html <div id="{{ clsname_lowercase }}" class="admonition admonition-manim-example"> <p class="admonition-title">Example: {{ clsname }} <a class="headerlink" href="#{{ clsname_lowercase }}">¶</a></p> {% endif %} {% if not (save_as_gif or save_last_frame) %} .. raw:: html <video class="manim-video" controls loop {{ '' if no_autoplay else 'autoplay' }} src="./{{ output_file }}.mp4"> </video> {% elif save_as_gif %} .. image:: /{{ filesrc_rel }} :align: center {% elif save_last_frame %} .. image:: /{{ filesrc_rel }} :align: center {% endif %} {% if not hide_source %} {{ source_block }} {{ ref_block }} .. raw:: html </div> {% endif %} """
ManimML_helblazer811/manim_ml/decision_tree/decision_tree_surface.py
from manim import * import numpy as np from collections import deque from sklearn.tree import _tree as ctree class AABB: """Axis-aligned bounding box""" def __init__(self, n_features): self.limits = np.array([[-np.inf, np.inf]] * n_features) def split(self, f, v): left = AABB(self.limits.shape[0]) right = AABB(self.limits.shape[0]) left.limits = self.limits.copy() right.limits = self.limits.copy() left.limits[f, 1] = v right.limits[f, 0] = v return left, right def tree_bounds(tree, n_features=None): """Compute final decision rule for each node in tree""" if n_features is None: n_features = np.max(tree.feature) + 1 aabbs = [AABB(n_features) for _ in range(tree.node_count)] queue = deque([0]) while queue: i = queue.pop() l = tree.children_left[i] r = tree.children_right[i] if l != ctree.TREE_LEAF: aabbs[l], aabbs[r] = aabbs[i].split(tree.feature[i], tree.threshold[i]) queue.extend([l, r]) return aabbs def compute_decision_areas( tree_classifier, maxrange, x=0, y=1, n_features=None ): """Extract decision areas. tree_classifier: Instance of a sklearn.tree.DecisionTreeClassifier maxrange: values to insert for [left, right, top, bottom] if the interval is open (+/-inf) x: index of the feature that goes on the x axis y: index of the feature that goes on the y axis n_features: override autodetection of number of features """ tree = tree_classifier.tree_ aabbs = tree_bounds(tree, n_features) maxrange = np.array(maxrange) rectangles = [] for i in range(len(aabbs)): if tree.children_left[i] != ctree.TREE_LEAF: continue l = aabbs[i].limits r = [l[x, 0], l[x, 1], l[y, 0], l[y, 1], np.argmax(tree.value[i])] # clip out of bounds indices """ if r[0] < maxrange[0]: r[0] = maxrange[0] if r[1] > maxrange[1]: r[1] = maxrange[1] if r[2] < maxrange[2]: r[2] = maxrange[2] if r[3] > maxrange[3]: r[3] = maxrange[3] print(r) """ rectangles.append(r) rectangles = np.array(rectangles) rectangles[:, [0, 2]] = np.maximum(rectangles[:, [0, 2]], maxrange[0::2]) rectangles[:, [1, 3]] = np.minimum(rectangles[:, [1, 3]], maxrange[1::2]) return rectangles def plot_areas(rectangles): for rect in rectangles: color = ["b", "r"][int(rect[4])] print(rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1]) rp = Rectangle( [rect[0], rect[2]], rect[1] - rect[0], rect[3] - rect[2], color=color, alpha=0.3, ) plt.gca().add_artist(rp) def merge_overlapping_polygons(all_polygons, colors=[BLUE, GREEN, ORANGE]): # get all polygons of each color polygon_dict = { str(BLUE).lower(): [], str(GREEN).lower(): [], str(ORANGE).lower(): [], } for polygon in all_polygons: print(polygon_dict) polygon_dict[str(polygon.color).lower()].append(polygon) return_polygons = [] for color in colors: color = str(color).lower() polygons = polygon_dict[color] points = set() for polygon in polygons: vertices = polygon.get_vertices().tolist() vertices = [tuple(vert) for vert in vertices] for pt in vertices: if pt in points: # Shared vertice, remove it. points.remove(pt) else: points.add(pt) points = list(points) sort_x = sorted(points) sort_y = sorted(points, key=lambda x: x[1]) edges_h = {} edges_v = {} i = 0 while i < len(points): curr_y = sort_y[i][1] while i < len(points) and sort_y[i][1] == curr_y: edges_h[sort_y[i]] = sort_y[i + 1] edges_h[sort_y[i + 1]] = sort_y[i] i += 2 i = 0 while i < len(points): curr_x = sort_x[i][0] while i < len(points) and sort_x[i][0] == curr_x: edges_v[sort_x[i]] = sort_x[i + 1] edges_v[sort_x[i + 1]] = sort_x[i] i += 2 # Get all the polygons. while edges_h: # We can start with any point. polygon = [(edges_h.popitem()[0], 0)] while True: curr, e = polygon[-1] if e == 0: next_vertex = edges_v.pop(curr) polygon.append((next_vertex, 1)) else: next_vertex = edges_h.pop(curr) polygon.append((next_vertex, 0)) if polygon[-1] == polygon[0]: # Closed polygon polygon.pop() break # Remove implementation-markers from the polygon. poly = [point for point, _ in polygon] for vertex in poly: if vertex in edges_h: edges_h.pop(vertex) if vertex in edges_v: edges_v.pop(vertex) polygon = Polygon(*poly, color=color, fill_opacity=0.3, stroke_opacity=1.0) return_polygons.append(polygon) return return_polygons class IrisDatasetPlot(VGroup): def __init__(self, iris): points = iris.data[:, 0:2] labels = iris.feature_names targets = iris.target # Make points self.point_group = self._make_point_group(points, targets) # Make axes self.axes_group = self._make_axes_group(points, labels) # Make legend self.legend_group = self._make_legend( [BLUE, ORANGE, GREEN], iris.target_names, self.axes_group ) # Make title # title_text = "Iris Dataset Plot" # self.title = Text(title_text).match_y(self.axes_group).shift([0.5, self.axes_group.height / 2 + 0.5, 0]) # Make all group self.all_group = Group(self.point_group, self.axes_group, self.legend_group) # scale the groups self.point_group.scale(1.6) self.point_group.match_x(self.axes_group) self.point_group.match_y(self.axes_group) self.point_group.shift([0.2, 0, 0]) self.axes_group.scale(0.7) self.all_group.shift([0, 0.2, 0]) @override_animation(Create) def create_animation(self): animation_group = AnimationGroup( # Perform the animations Create(self.point_group, run_time=2), Wait(0.5), Create(self.axes_group, run_time=2), # add title # Create(self.title), Create(self.legend_group), ) return animation_group def _make_point_group(self, points, targets, class_colors=[BLUE, ORANGE, GREEN]): point_group = VGroup() for point_index, point in enumerate(points): # draw the dot current_target = targets[point_index] color = class_colors[current_target] dot = Dot(point=np.array([point[0], point[1], 0])).set_color(color) dot.scale(0.5) point_group.add(dot) return point_group def _make_legend(self, class_colors, feature_labels, axes): legend_group = VGroup() # Make Text setosa = Text("Setosa", color=BLUE) verisicolor = Text("Verisicolor", color=ORANGE) virginica = Text("Virginica", color=GREEN) labels = VGroup(setosa, verisicolor, virginica).arrange( direction=RIGHT, aligned_edge=LEFT, buff=2.0 ) labels.scale(0.5) legend_group.add(labels) # surrounding rectangle surrounding_rectangle = SurroundingRectangle(labels, color=WHITE) surrounding_rectangle.move_to(labels) legend_group.add(surrounding_rectangle) # shift the legend group legend_group.move_to(axes) legend_group.shift([0, -3.0, 0]) legend_group.match_x(axes[0][0]) return legend_group def _make_axes_group(self, points, labels, font="Source Han Sans", font_scale=0.75): axes_group = VGroup() # make the axes x_range = [ np.amin(points, axis=0)[0] - 0.2, np.amax(points, axis=0)[0] - 0.2, 0.5, ] y_range = [np.amin(points, axis=0)[1] - 0.2, np.amax(points, axis=0)[1], 0.5] axes = Axes( x_range=x_range, y_range=y_range, x_length=9, y_length=6.5, # axis_config={"number_scale_value":0.75, "include_numbers":True}, tips=False, ).shift([0.5, 0.25, 0]) axes_group.add(axes) # make axis labels # x_label x_label = ( Text(labels[0], font=font) .match_y(axes.get_axes()[0]) .shift([0.5, -0.75, 0]) .scale(font_scale) ) axes_group.add(x_label) # y_label y_label = ( Text(labels[1], font=font) .match_x(axes.get_axes()[1]) .shift([-0.75, 0, 0]) .rotate(np.pi / 2) .scale(font_scale) ) axes_group.add(y_label) return axes_group class DecisionTreeSurface(VGroup): def __init__(self, tree_clf, data, axes, class_colors=[BLUE, ORANGE, GREEN]): # take the tree and construct the surface from it self.tree_clf = tree_clf self.data = data self.axes = axes self.class_colors = class_colors self.surface_rectangles = self.generate_surface_rectangles() def generate_surface_rectangles(self): # compute data bounds left = np.amin(self.data[:, 0]) - 0.2 right = np.amax(self.data[:, 0]) - 0.2 top = np.amax(self.data[:, 1]) bottom = np.amin(self.data[:, 1]) - 0.2 maxrange = [left, right, bottom, top] rectangles = compute_decision_areas( self.tree_clf, maxrange, x=0, y=1, n_features=2 ) # turn the rectangle objects into manim rectangles def convert_rectangle_to_polygon(rect): # get the points for the rectangle in the plot coordinate frame bottom_left = [rect[0], rect[3]] bottom_right = [rect[1], rect[3]] top_right = [rect[1], rect[2]] top_left = [rect[0], rect[2]] # convert those points into the entire manim coordinates bottom_left_coord = self.axes.coords_to_point(*bottom_left) bottom_right_coord = self.axes.coords_to_point(*bottom_right) top_right_coord = self.axes.coords_to_point(*top_right) top_left_coord = self.axes.coords_to_point(*top_left) points = [ bottom_left_coord, bottom_right_coord, top_right_coord, top_left_coord, ] # construct a polygon object from those manim coordinates rectangle = Polygon( *points, color=color, fill_opacity=0.3, stroke_opacity=0.0 ) return rectangle manim_rectangles = [] for rect in rectangles: color = self.class_colors[int(rect[4])] rectangle = convert_rectangle_to_polygon(rect) manim_rectangles.append(rectangle) manim_rectangles = merge_overlapping_polygons( manim_rectangles, colors=[BLUE, GREEN, ORANGE] ) return manim_rectangles @override_animation(Create) def create_override(self): # play a reveal of all of the surface rectangles animations = [] for rectangle in self.surface_rectangles: animations.append(Create(rectangle)) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Uncreate) def uncreate_override(self): # play a reveal of all of the surface rectangles animations = [] for rectangle in self.surface_rectangles: animations.append(Uncreate(rectangle)) animation_group = AnimationGroup(*animations) return animation_group def make_split_to_animation_map(self): """ Returns a dictionary mapping a given split node to an animation to be played """ # Create an initial decision tree surface # Go through each split node # 1. Make a line split animation # 2. Create the relevant classification areas # and transform the old ones to them pass
ManimML_helblazer811/manim_ml/decision_tree/helpers.py
def compute_node_depths(tree): """Computes the depths of nodes for level order traversal""" def depth(node_index, current_node_index=0): """Compute the height of a node""" if current_node_index == node_index: return 0 elif ( tree.children_left[current_node_index] == tree.children_right[current_node_index] ): return -1 else: # Compute the height of each subtree l_depth = depth(node_index, tree.children_left[current_node_index]) r_depth = depth(node_index, tree.children_right[current_node_index]) # The index is only in one of them if l_depth != -1: return l_depth + 1 elif r_depth != -1: return r_depth + 1 else: return -1 node_depths = [depth(index) for index in range(tree.node_count)] return node_depths def compute_level_order_traversal(tree): """Computes level order traversal of a sklearn tree""" def depth(node_index, current_node_index=0): """Compute the height of a node""" if current_node_index == node_index: return 0 elif ( tree.children_left[current_node_index] == tree.children_right[current_node_index] ): return -1 else: # Compute the height of each subtree l_depth = depth(node_index, tree.children_left[current_node_index]) r_depth = depth(node_index, tree.children_right[current_node_index]) # The index is only in one of them if l_depth != -1: return l_depth + 1 elif r_depth != -1: return r_depth + 1 else: return -1 node_depths = [(index, depth(index)) for index in range(tree.node_count)] node_depths = sorted(node_depths, key=lambda x: x[1]) sorted_inds = [node_depth[0] for node_depth in node_depths] return sorted_inds def compute_bfs_traversal(tree): """Traverses the tree in BFS order and returns the nodes in order""" traversal_order = [] tree_root_index = 0 queue = [tree_root_index] while len(queue) > 0: current_index = queue.pop(0) traversal_order.append(current_index) left_child_index = tree.children_left[node_index] right_child_index = tree.children_right[node_index] is_leaf_node = left_child_index == right_child_index if not is_leaf_node: queue.append(left_child_index) queue.append(right_child_index) return traversal_order def compute_best_first_traversal(tree): """Traverses the tree according to the best split first order""" pass def compute_node_to_parent_mapping(tree): """Returns a hashmap mapping node indices to their parent indices""" node_to_parent = {0: -1} # Root has no parent num_nodes = tree.node_count for node_index in range(num_nodes): # Explore left children left_child_node_index = tree.children_left[node_index] if left_child_node_index != -1: node_to_parent[left_child_node_index] = node_index # Explore right children right_child_node_index = tree.children_right[node_index] if right_child_node_index != -1: node_to_parent[right_child_node_index] = node_index return node_to_parent
ManimML_helblazer811/manim_ml/decision_tree/decision_tree.py
""" Module for visualizing decision trees in Manim. It parses a decision tree classifier from sklearn. TODO return a map from nodes to split animation for BFS tree expansion TODO reimplement the decision 2D decision tree surface drawing. """ from manim import * from manim_ml.decision_tree.decision_tree_surface import ( compute_decision_areas, merge_overlapping_polygons, ) import manim_ml.decision_tree.helpers as helpers import numpy as np from PIL import Image class LeafNode(Group): """Leaf node in tree""" def __init__( self, class_index, display_type="image", class_image_paths=[], class_colors=[] ): super().__init__() self.display_type = display_type self.class_image_paths = class_image_paths self.class_colors = class_colors assert self.display_type in ["image", "text"] if self.display_type == "image": self._construct_image_node(class_index) else: raise NotImplementedError() def _construct_image_node(self, class_index): """Make an image node""" # Get image image_path = self.class_image_paths[class_index] pil_image = Image.open(image_path) node = ImageMobject(pil_image) node.scale(1.5) rectangle = Rectangle( width=node.width + 0.05, height=node.height + 0.05, color=self.class_colors[class_index], stroke_width=6, ) rectangle.move_to(node.get_center()) rectangle.shift([-0.02, 0.02, 0]) self.add(rectangle) self.add(node) class SplitNode(VGroup): """Node for splitting decision in tree""" def __init__(self, feature, threshold): super().__init__() node_text = f"{feature}\n<= {threshold:.2f} cm" # Draw decision text decision_text = Text(node_text, color=WHITE) # Draw the surrounding box bounding_box = SurroundingRectangle(decision_text, buff=0.3, color=WHITE) self.add(bounding_box) self.add(decision_text) class DecisionTreeDiagram(Group): """Decision Tree Diagram Class for Manim""" def __init__( self, sklearn_tree, feature_names=None, class_names=None, class_images_paths=None, class_colors=[RED, GREEN, BLUE], ): super().__init__() self.tree = sklearn_tree self.feature_names = feature_names self.class_names = class_names self.class_image_paths = class_images_paths self.class_colors = class_colors # Make graph container for the tree self.tree_group, self.nodes_map, self.edge_map = self._make_tree() self.add(self.tree_group) def _make_node( self, node_index, ): """Make node""" is_split_node = ( self.tree.children_left[node_index] != self.tree.children_right[node_index] ) if is_split_node: node_feature = self.tree.feature[node_index] node_threshold = self.tree.threshold[node_index] node = SplitNode(self.feature_names[node_feature], node_threshold) else: # Get the most abundant class for the given leaf node # Make the leaf node object tree_class_index = np.argmax(self.tree.value[node_index]) node = LeafNode( class_index=tree_class_index, class_colors=self.class_colors, class_image_paths=self.class_image_paths, ) return node def _make_connection(self, top, bottom, is_leaf=False): """Make a connection from top to bottom""" top_node_bottom_location = top.get_center() top_node_bottom_location[1] -= top.height / 2 bottom_node_top_location = bottom.get_center() bottom_node_top_location[1] += bottom.height / 2 line = Line(top_node_bottom_location, bottom_node_top_location, color=WHITE) return line def _make_tree(self): """Construct the tree diagram""" tree_group = Group() max_depth = self.tree.max_depth # Make the root node nodes_map = {} root_node = self._make_node( node_index=0, ) nodes_map[0] = root_node tree_group.add(root_node) # Save some information node_height = root_node.height node_width = root_node.width scale_factor = 1.0 edge_map = {} # tree height tree_height = scale_factor * node_height * max_depth tree_width = scale_factor * 2**max_depth * node_width # traverse tree def recurse(node_index, depth, direction, parent_object, parent_node): # make the node object is_leaf = ( self.tree.children_left[node_index] == self.tree.children_right[node_index] ) node_object = self._make_node(node_index=node_index) nodes_map[node_index] = node_object node_height = node_object.height # set the node position direction_factor = -1 if direction == "left" else 1 shift_right_amount = ( 0.9 * direction_factor * scale_factor * tree_width / (2**depth) / 2 ) if is_leaf: shift_down_amount = -1.0 * scale_factor * node_height else: shift_down_amount = -1.8 * scale_factor * node_height node_object.match_x(parent_object).match_y(parent_object).shift( [shift_right_amount, shift_down_amount, 0] ) tree_group.add(node_object) # make a connection connection = self._make_connection( parent_object, node_object, is_leaf=is_leaf ) edge_name = str(parent_node) + "," + str(node_index) edge_map[edge_name] = connection tree_group.add(connection) # recurse if not is_leaf: recurse( self.tree.children_left[node_index], depth + 1, "left", node_object, node_index, ) recurse( self.tree.children_right[node_index], depth + 1, "right", node_object, node_index, ) recurse(self.tree.children_left[0], 1, "left", root_node, 0) recurse(self.tree.children_right[0], 1, "right", root_node, 0) tree_group.scale(0.35) return tree_group, nodes_map, edge_map def create_level_order_expansion_decision_tree(self, tree): """Expands the decision tree in level order""" raise NotImplementedError() def create_bfs_expansion_decision_tree(self, tree): """Expands the tree using BFS""" animations = [] split_node_animations = {} # Dictionary mapping split node to animation # Compute parent mapping parent_mapping = helpers.compute_node_to_parent_mapping(self.tree) # Create the root node as most common class placeholder_class_nodes = {} root_node_class_index = np.argmax( self.tree.value[0] ) root_placeholder_node = LeafNode( class_index=root_node_class_index, class_colors=self.class_colors, class_image_paths=self.class_image_paths, ) root_placeholder_node.move_to(self.nodes_map[0]) placeholder_class_nodes[0] = root_placeholder_node root_create_animation = AnimationGroup( FadeIn(root_placeholder_node), lag_ratio=0.0 ) animations.append(root_create_animation) # Iterate through the nodes queue = [0] while len(queue) > 0: node_index = queue.pop(0) # Check if a node is a split node or not left_child_index = self.tree.children_left[node_index] right_child_index = self.tree.children_right[node_index] is_leaf_node = left_child_index == right_child_index if not is_leaf_node: # Remove the currently placeholder class node fade_out_animation = FadeOut( placeholder_class_nodes[node_index] ) animations.append(fade_out_animation) # Fade in the split node fade_in_animation = FadeIn( self.nodes_map[node_index] ) animations.append(fade_in_animation) # Split the node by creating the children and connecting them # to the parent # Handle left child assert left_child_index in self.nodes_map.keys() left_node = self.nodes_map[left_child_index] left_parent_edge = self.edge_map[f"{node_index},{left_child_index}"] # Get the children of the left node left_node_left_index = self.tree.children_left[left_child_index] left_node_right_index = self.tree.children_right[left_child_index] left_is_leaf = left_node_left_index == left_node_right_index if left_is_leaf: # If a child is a leaf then just create it left_animation = FadeIn(left_node) else: # If the child is a split node find the dominant class and make a temp left_node_class_index = np.argmax( self.tree.value[left_child_index] ) new_leaf_node = LeafNode( class_index=left_node_class_index, class_colors=self.class_colors, class_image_paths=self.class_image_paths, ) new_leaf_node.move_to(self.nodes_map[leaf_child_index]) placeholder_class_nodes[left_child_index] = new_leaf_node left_animation = AnimationGroup( FadeIn(new_leaf_node), Create(left_parent_edge), lag_ratio=0.0 ) # Handle right child assert right_child_index in self.nodes_map.keys() right_node = self.nodes_map[right_child_index] right_parent_edge = self.edge_map[f"{node_index},{right_child_index}"] # Get the children of the left node right_node_left_index = self.tree.children_left[right_child_index] right_node_right_index = self.tree.children_right[right_child_index] right_is_leaf = right_node_left_index == right_node_right_index if right_is_leaf: # If a child is a leaf then just create it right_animation = FadeIn(right_node) else: # If the child is a split node find the dominant class and make a temp right_node_class_index = np.argmax( self.tree.value[right_child_index] ) new_leaf_node = LeafNode( class_index=right_node_class_index, class_colors=self.class_colors, class_image_paths=self.class_image_paths, ) placeholder_class_nodes[right_child_index] = new_leaf_node right_animation = AnimationGroup( FadeIn(new_leaf_node), Create(right_parent_edge), lag_ratio=0.0 ) # Combine the animations split_animation = AnimationGroup( left_animation, right_animation, lag_ratio=0.0, ) animations.append(split_animation) # Add the split animation to the split node dict split_node_animations[node_index] = split_animation # Add the children to the queue if left_child_index != -1: queue.append(left_child_index) if right_child_index != -1: queue.append(right_child_index) return Succession( *animations, lag_ratio=1.0 ), split_node_animations def make_expand_tree_animation(self, node_expand_order): """ Make an animation for expanding the decision tree Shows each split node as a leaf node initially, and then when it comes up shows it as a split node. The reason for this is for purposes of animating each of the splits in a decision surface. """ # Show the root node as a leaf node # Iterate through the nodes in the traversal order for node_index in node_expand_order[1:]: # Figure out if it is a leaf or not # If it is not a leaf then remove the placeholder leaf node # then show the split node # If it is a leaf then just show the leaf node pass pass @override_animation(Create) def create_decision_tree(self, traversal_order="bfs"): """Makes a create animation for the decision tree""" # Comptue the node expand order if traversal_order == "level": node_expand_order = helpers.compute_level_order_traversal(self.tree) elif traversal_order == "bfs": node_expand_order = helpers.compute_bfs_traversal(self.tree) else: raise Exception(f"Uncrecognized traversal: {traversal_order}") # Make the animation expand_tree_animation = self.make_expand_tree_animation(node_expand_order) return expand_tree_animation class DecisionTreeContainer(): """Connects the DecisionTreeDiagram to the DecisionTreeEmbedding""" def __init__(self, sklearn_tree, points, classes): self.sklearn_tree = sklearn_tree self.points = points self.classes = classes def make_unfold_tree_animation(self): """Unfolds the tree through an in order traversal This animations unfolds the tree diagram as well as showing the splitting of a shaded region in the Decision Tree embedding. """ # Draw points in the embedding # Start the tree splitting animation pass
ManimML_helblazer811/manim_ml/neural_network/neural_network.py
"""Neural Network Manim Visualization This module is responsible for generating a neural network visualization with manim, specifically a fully connected neural network diagram. Example: # Specify how many nodes are in each node layer layer_node_count = [5, 3, 5] # Create the object with default style settings NeuralNetwork(layer_node_count) """ import textwrap from manim_ml.neural_network.layers.embedding import EmbeddingLayer from manim_ml.utils.mobjects.connections import NetworkConnection import numpy as np from manim import * from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer, ThreeDLayer from manim_ml.neural_network.layers.util import get_connective_layer from manim_ml.utils.mobjects.list_group import ListGroup from manim_ml.neural_network.animations.neural_network_transformations import ( InsertLayer, RemoveLayer, ) import manim_ml class NeuralNetwork(Group): """Neural Network Visualization Container Class""" def __init__( self, input_layers, layer_spacing=0.2, animation_dot_color=manim_ml.config.color_scheme.active_color, edge_width=2.5, dot_radius=0.03, title=" ", layout="linear", layout_direction="left_to_right", debug_mode=False ): super(Group, self).__init__() self.input_layers_dict = self.make_input_layers_dict(input_layers) self.input_layers = ListGroup(*self.input_layers_dict.values()) self.edge_width = edge_width self.layer_spacing = layer_spacing self.animation_dot_color = animation_dot_color self.dot_radius = dot_radius self.title_text = title self.created = False self.layout = layout self.layout_direction = layout_direction self.debug_mode = debug_mode # TODO take layer_node_count [0, (1, 2), 0] # and make it have explicit distinct subspaces # Construct all of the layers self._construct_input_layers() # Place the layers self._place_layers(layout=layout, layout_direction=layout_direction) # Make the connective layers self.connective_layers, self.all_layers = self._construct_connective_layers() # Place the connective layers self._place_connective_layers() # Make overhead title self.title = Text( self.title_text, font_size=DEFAULT_FONT_SIZE / 2 ) self.title.next_to(self, UP * self.layer_spacing, buff=0.25) self.add(self.title) # Place layers at correct z index self.connective_layers.set_z_index(2) self.input_layers.set_z_index(3) # Center the whole diagram by default self.all_layers.move_to(ORIGIN) self.add(self.all_layers) # Make container for connections self.connections = [] # Print neural network print(repr(self)) def make_input_layers_dict(self, input_layers): """Make dictionary of input layers""" if isinstance(input_layers, dict): # If input layers is dictionary then return it return input_layers elif isinstance(input_layers, list): # If input layers is a list then make a dictionary with default return_dict = {} for layer_index, input_layer in enumerate(input_layers): return_dict[f"layer{layer_index}"] = input_layer return return_dict else: raise Exception(f"Uncrecognized input layers type: {type(input_layers)}") def add_connection( self, start_mobject_or_name, end_mobject_or_name, connection_style="default", connection_position="bottom", arc_direction="down" ): """Add connection from start layer to end layer""" assert connection_style in ["default"] if connection_style == "default": # Make arrow connection from start layer to end layer # Add the connection if isinstance(start_mobject_or_name, Mobject): input_mobject = start_mobject_or_name else: input_mobject = self.input_layers_dict[start_mobject_or_name] if isinstance(end_mobject_or_name, Mobject): output_mobject = end_mobject_or_name else: output_mobject = self.input_layers_dict[end_mobject_or_name] connection = NetworkConnection( input_mobject, output_mobject, arc_direction=arc_direction, buffer=0.05 ) self.connections.append(connection) self.add(connection) def _construct_input_layers(self): """Constructs each of the input layers in context of their adjacent layers""" prev_layer = None next_layer = None # Go through all the input layers and run their construct method print("Constructing layers") for layer_index in range(len(self.input_layers)): current_layer = self.input_layers[layer_index] print(f"Current layer: {current_layer}") if layer_index < len(self.input_layers) - 1: next_layer = self.input_layers[layer_index + 1] if layer_index > 0: prev_layer = self.input_layers[layer_index - 1] # Run the construct layer method for each current_layer.construct_layer( prev_layer, next_layer, debug_mode=self.debug_mode ) def _place_layers( self, layout="linear", layout_direction="top_to_bottom" ): """Creates the neural network""" # TODO implement more sophisticated custom layouts # Default: Linear layout for layer_index in range(1, len(self.input_layers)): previous_layer = self.input_layers[layer_index - 1] current_layer = self.input_layers[layer_index] current_layer.move_to(previous_layer.get_center()) if layout_direction == "left_to_right": x_shift = ( previous_layer.get_width() / 2 + current_layer.get_width() / 2 + self.layer_spacing ) shift_vector = np.array([x_shift, 0, 0]) elif layout_direction == "top_to_bottom": y_shift = -( (previous_layer.get_width() / 2 + current_layer.get_width() / 2) + self.layer_spacing ) shift_vector = np.array([0, y_shift, 0]) else: raise Exception(f"Unrecognized layout direction: {layout_direction}") current_layer.shift(shift_vector) # After all layers have been placed place their activation functions layer_max_height = max([layer.get_height() for layer in self.input_layers]) for current_layer in self.input_layers: # Place activation function if hasattr(current_layer, "activation_function"): if not current_layer.activation_function is None: # Get max height of layer up_movement = np.array([ 0, layer_max_height / 2 + current_layer.activation_function.get_height() / 2 + 0.5 * self.layer_spacing, 0, ]) current_layer.activation_function.move_to( current_layer, ) current_layer.activation_function.match_y( self.input_layers[0] ) current_layer.activation_function.shift( up_movement ) self.add( current_layer.activation_function ) def _construct_connective_layers(self): """Draws connecting lines between layers""" connective_layers = ListGroup() all_layers = ListGroup() for layer_index in range(len(self.input_layers) - 1): current_layer = self.input_layers[layer_index] # Add the layer to the list of layers all_layers.add(current_layer) next_layer = self.input_layers[layer_index + 1] # Check if layer is actually a nested NeuralNetwork if isinstance(current_layer, NeuralNetwork): # Last layer of the current layer current_layer = current_layer.all_layers[-1] if isinstance(next_layer, NeuralNetwork): # First layer of the next layer next_layer = next_layer.all_layers[0] # Find connective layer with correct layer pair connective_layer = get_connective_layer(current_layer, next_layer) connective_layers.add(connective_layer) # Construct the connective layer connective_layer.construct_layer(current_layer, next_layer) # Add the layer to the list of layers all_layers.add(connective_layer) # Add final layer all_layers.add(self.input_layers[-1]) # Handle layering return connective_layers, all_layers def _place_connective_layers(self): """Places the connective layers """ # Place each of the connective layers halfway between the adjacent layers for connective_layer in self.connective_layers: layer_midpoint = ( connective_layer.input_layer.get_center() + connective_layer.output_layer.get_center() ) / 2 connective_layer.move_to(layer_midpoint) def insert_layer(self, layer, insert_index): """Inserts a layer at the given index""" neural_network = self insert_animation = InsertLayer(layer, insert_index, neural_network) return insert_animation def remove_layer(self, layer): """Removes layer object if it exists""" neural_network = self return RemoveLayer(layer, neural_network, layer_spacing=self.layer_spacing) def replace_layer(self, old_layer, new_layer): """Replaces given layer object""" raise NotImplementedError() remove_animation = self.remove_layer(insert_index) insert_animation = self.insert_layer(layer, insert_index) # Make the animation animation_group = AnimationGroup( FadeOut(self.all_layers[insert_index]), FadeIn(layer), lag_ratio=1.0 ) return animation_group def make_forward_pass_animation( self, run_time=None, passing_flash=True, layer_args={}, per_layer_animations=False, **kwargs ): """Generates an animation for feed forward propagation""" all_animations = [] per_layer_animation_map = {} per_layer_runtime = ( run_time / len(self.all_layers) if not run_time is None else None ) for layer_index, layer in enumerate(self.all_layers): # Get the layer args if isinstance(layer, ConnectiveLayer): """ NOTE: By default a connective layer will get the combined layer_args of the layers it is connecting and itself. """ before_layer_args = {} current_layer_args = {} after_layer_args = {} if layer.input_layer in layer_args: before_layer_args = layer_args[layer.input_layer] if layer in layer_args: current_layer_args = layer_args[layer] if layer.output_layer in layer_args: after_layer_args = layer_args[layer.output_layer] # Merge the two dicts current_layer_args = { **before_layer_args, **current_layer_args, **after_layer_args, } else: current_layer_args = {} if layer in layer_args: current_layer_args = layer_args[layer] # Perform the forward pass of the current layer layer_forward_pass = layer.make_forward_pass_animation( layer_args=current_layer_args, run_time=per_layer_runtime, **kwargs ) # Animate a forward pass for incoming connections connection_input_pass = AnimationGroup() for connection in self.connections: if isinstance(layer, ConnectiveLayer): output_layer = layer.output_layer if connection.end_mobject == output_layer: connection_input_pass = ShowPassingFlash( connection, run_time=layer_forward_pass.run_time, time_width=0.2, ) break layer_forward_pass = AnimationGroup( layer_forward_pass, connection_input_pass, lag_ratio=0.0 ) all_animations.append(layer_forward_pass) # Add the animation to per layer animation per_layer_animation_map[layer] = layer_forward_pass # Make the animation group animation_group = Succession(*all_animations, lag_ratio=1.0) if per_layer_animations: return per_layer_animation_map else: return animation_group @override_animation(Create) def _create_override(self, **kwargs): """Overrides Create animation""" # Stop the neural network from being created twice if self.created: return AnimationGroup() self.created = True animations = [] # Create the overhead title animations.append(Create(self.title)) # Create each layer one by one for layer in self.all_layers: layer_animation = Create(layer) # Make titles create_title = Create(layer.title) # Create layer animation group animation_group = AnimationGroup(layer_animation, create_title) animations.append(animation_group) animation_group = AnimationGroup(*animations, lag_ratio=1.0) return animation_group def set_z_index(self, z_index_value: float, family=False): """Overriden set_z_index""" # Setting family=False stops sub-neural networks from inheriting parent z_index for layer in self.all_layers: if not isinstance(NeuralNetwork): layer.set_z_index(z_index_value) def scale(self, scale_factor, **kwargs): """Overriden scale""" prior_center = self.get_center() for layer in self.all_layers: layer.scale(scale_factor, **kwargs) # Place layers with scaled spacing self.layer_spacing *= scale_factor # self.connective_layers, self.all_layers = self._construct_connective_layers() self._place_layers(layout=self.layout, layout_direction=self.layout_direction) self._place_connective_layers() # Scale the title self.remove(self.title) self.title.scale(scale_factor, **kwargs) self.title.next_to(self, UP, buff=0.25 * scale_factor) self.add(self.title) self.move_to(prior_center) def filter_layers(self, function): """Filters layers of the network given function""" layers_to_return = [] for layer in self.all_layers: func_out = function(layer) assert isinstance( func_out, bool ), "Filter layers function returned a non-boolean type." if func_out: layers_to_return.append(layer) return layers_to_return def __repr__(self, metadata=["z_index", "title_text"]): """Print string representation of layers""" inner_string = "" for layer in self.all_layers: inner_string += f"{repr(layer)}(" for key in metadata: value = getattr(layer, key) if not value is "": inner_string += f"{key}={value}, " inner_string += "),\n" inner_string = textwrap.indent(inner_string, " ") string_repr = "NeuralNetwork([\n" + inner_string + "])" return string_repr
ManimML_helblazer811/manim_ml/neural_network/__init__.py
from manim_ml.neural_network.neural_network import NeuralNetwork from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.convolutional_2d_to_convolutional_2d import ( Convolutional2DToConvolutional2D, ) from manim_ml.neural_network.layers.convolutional_2d_to_feed_forward import ( Convolutional2DToFeedForward, ) from manim_ml.neural_network.layers.convolutional_2d_to_max_pooling_2d import ( Convolutional2DToMaxPooling2D, ) from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer from manim_ml.neural_network.layers.embedding_to_feed_forward import ( EmbeddingToFeedForward, ) from manim_ml.neural_network.layers.embedding import EmbeddingLayer from manim_ml.neural_network.layers.feed_forward_to_embedding import ( FeedForwardToEmbedding, ) from manim_ml.neural_network.layers.feed_forward_to_feed_forward import ( FeedForwardToFeedForward, ) from manim_ml.neural_network.layers.feed_forward_to_image import FeedForwardToImage from manim_ml.neural_network.layers.feed_forward_to_vector import FeedForwardToVector from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.image_to_convolutional_2d import ( ImageToConvolutional2DLayer, ) from manim_ml.neural_network.layers.image_to_feed_forward import ImageToFeedForward from manim_ml.neural_network.layers.image import ImageLayer from manim_ml.neural_network.layers.max_pooling_2d_to_convolutional_2d import ( MaxPooling2DToConvolutional2D, ) from manim_ml.neural_network.layers.max_pooling_2d import MaxPooling2DLayer from manim_ml.neural_network.layers.paired_query_to_feed_forward import ( PairedQueryToFeedForward, ) from manim_ml.neural_network.layers.paired_query import PairedQueryLayer from manim_ml.neural_network.layers.triplet_to_feed_forward import TripletToFeedForward from manim_ml.neural_network.layers.triplet import TripletLayer from manim_ml.neural_network.layers.vector import VectorLayer from manim_ml.neural_network.layers.math_operation_layer import MathOperationLayer
ManimML_helblazer811/manim_ml/neural_network/layers/math_operation_layer.py
from manim import * from manim_ml.neural_network.activation_functions import get_activation_function_by_name from manim_ml.neural_network.activation_functions.activation_function import ( ActivationFunction, ) from manim_ml.neural_network.layers.parent_layers import VGroupNeuralNetworkLayer class MathOperationLayer(VGroupNeuralNetworkLayer): """Handles rendering a layer for a neural network""" valid_operations = ["+", "-", "*", "/"] def __init__( self, operation_type: str, node_radius=0.5, node_color=BLUE, node_stroke_width=2.0, active_color=ORANGE, activation_function=None, font_size=20, **kwargs ): super(VGroupNeuralNetworkLayer, self).__init__(**kwargs) # Ensure operation type is valid assert operation_type in MathOperationLayer.valid_operations self.operation_type = operation_type self.node_radius = node_radius self.node_color = node_color self.node_stroke_width = node_stroke_width self.active_color = active_color self.font_size = font_size self.activation_function = activation_function def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): """Creates the neural network layer""" # Draw the operation self.operation_text = Text( self.operation_type, font_size=self.font_size ) self.add(self.operation_text) # Make the surrounding circle self.surrounding_circle = Circle( color=self.node_color, stroke_width=self.node_stroke_width ).surround(self.operation_text) self.add(self.surrounding_circle) # Make the activation function self.construct_activation_function() super().construct_layer(input_layer, output_layer, **kwargs) def construct_activation_function(self): """Construct the activation function""" # Add the activation function if not self.activation_function is None: # Check if it is a string if isinstance(self.activation_function, str): activation_function = get_activation_function_by_name( self.activation_function )() else: assert isinstance(self.activation_function, ActivationFunction) activation_function = self.activation_function # Plot the function above the rest of the layer self.activation_function = activation_function self.add(self.activation_function) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Makes the forward pass animation Parameters ---------- layer_args : dict, optional layer specific arguments, by default {} Returns ------- AnimationGroup Forward pass animation """ # Make highlight animation succession = Succession( ApplyMethod( self.surrounding_circle.set_color, self.active_color, run_time=0.25 ), Wait(1.0), ApplyMethod( self.surrounding_circle.set_color, self.node_color, run_time=0.25 ), ) # Animate the activation function if not self.activation_function is None: animation_group = AnimationGroup( succession, self.activation_function.make_evaluate_animation(), lag_ratio=0.0, ) return animation_group else: return succession def get_center(self): return self.surrounding_circle.get_center() def get_left(self): return self.surrounding_circle.get_left() def get_right(self): return self.surrounding_circle.get_right() def move_to(self, mobject_or_point): """Moves the center of the layer to the given mobject or point""" layer_center = self.surrounding_circle.get_center() if isinstance(mobject_or_point, Mobject): target_center = mobject_or_point.get_center() else: target_center = mobject_or_point self.shift(target_center - layer_center)
ManimML_helblazer811/manim_ml/neural_network/layers/embedding.py
from manim import * from manim_ml.utils.mobjects.probability import GaussianDistribution from manim_ml.neural_network.layers.parent_layers import VGroupNeuralNetworkLayer class EmbeddingLayer(VGroupNeuralNetworkLayer): """NeuralNetwork embedding object that can show probability distributions""" def __init__( self, point_radius=0.02, mean=np.array([0, 0]), covariance=np.array([[1.0, 0], [0, 1.0]]), dist_theme="gaussian", paired_query_mode=False, **kwargs ): super(VGroupNeuralNetworkLayer, self).__init__(**kwargs) self.mean = mean self.covariance = covariance self.gaussian_distributions = VGroup() self.add(self.gaussian_distributions) self.point_radius = point_radius self.dist_theme = dist_theme self.paired_query_mode = paired_query_mode def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): self.axes = Axes( tips=False, x_length=0.8, y_length=0.8, x_range=(-1.4, 1.4), y_range=(-1.8, 1.8), x_axis_config={"include_ticks": False, "stroke_width": 0.0}, y_axis_config={"include_ticks": False, "stroke_width": 0.0}, ) self.add(self.axes) self.axes.move_to(self.get_center()) # Make point cloud self.point_cloud = self.construct_gaussian_point_cloud( self.mean, self.covariance ) self.add(self.point_cloud) # Make latent distribution self.latent_distribution = GaussianDistribution( self.axes, mean=self.mean, cov=self.covariance ) # Use defaults super().construct_layer(input_layer, output_layer, **kwargs) def add_gaussian_distribution(self, gaussian_distribution): """Adds given GaussianDistribution to the list""" self.gaussian_distributions.add(gaussian_distribution) return Create(gaussian_distribution) def remove_gaussian_distribution(self, gaussian_distribution): """Removes the given gaussian distribution from the embedding""" for gaussian in self.gaussian_distributions: if gaussian == gaussian_distribution: self.gaussian_distributions.remove(gaussian_distribution) return FadeOut(gaussian) def sample_point_location_from_distribution(self): """Samples from the current latent distribution""" mean = self.latent_distribution.mean cov = self.latent_distribution.cov point = np.random.multivariate_normal(mean, cov) # Make dot at correct location location = self.axes.coords_to_point(point[0], point[1]) return location def get_distribution_location(self): """Returns mean of latent distribution in axes frame""" return self.axes.coords_to_point(self.latent_distribution.mean) def construct_gaussian_point_cloud( self, mean, covariance, point_color=WHITE, num_points=400 ): """Plots points sampled from a Gaussian with the given mean and covariance""" # Sample points from a Gaussian np.random.seed(5) points = np.random.multivariate_normal(mean, covariance, num_points) # Add each point to the axes point_dots = VGroup() for point in points: point_location = self.axes.coords_to_point(*point) dot = Dot(point_location, color=point_color, radius=self.point_radius / 2) dot.set_z_index(-1) point_dots.add(dot) return point_dots def make_forward_pass_animation(self, layer_args={}, **kwargs): """Forward pass animation""" animations = [] if "triplet_args" in layer_args: triplet_args = layer_args["triplet_args"] positive_dist_args = triplet_args["positive_dist"] negative_dist_args = triplet_args["negative_dist"] anchor_dist_args = triplet_args["anchor_dist"] # Create each dist anchor_dist = GaussianDistribution(self.axes, **anchor_dist_args) animations.append(Create(anchor_dist)) positive_dist = GaussianDistribution(self.axes, **positive_dist_args) animations.append(Create(positive_dist)) negative_dist = GaussianDistribution(self.axes, **negative_dist_args) animations.append(Create(negative_dist)) # Draw edges in between anchor and positive, anchor and negative anchor_positive = Line( anchor_dist.get_center(), positive_dist.get_center(), color=GOLD, stroke_width=DEFAULT_STROKE_WIDTH / 2, ) anchor_positive.set_z_index(3) animations.append(Create(anchor_positive)) anchor_negative = Line( anchor_dist.get_center(), negative_dist.get_center(), color=GOLD, stroke_width=DEFAULT_STROKE_WIDTH / 2, ) anchor_negative.set_z_index(3) animations.append(Create(anchor_negative)) elif not self.paired_query_mode: # Normal embedding mode if "dist_args" in layer_args: scale_factor = 1.0 if "scale_factor" in layer_args: scale_factor = layer_args["scale_factor"] self.latent_distribution = GaussianDistribution( self.axes, **layer_args["dist_args"] ).scale(scale_factor) else: # Make ellipse object corresponding to the latent distribution # self.latent_distribution = GaussianDistribution( # self.axes, # dist_theme=self.dist_theme, # cov=np.array([[0.8, 0], [0.0, 0.8]]) # ) pass # Create animation create_distribution = Create(self.latent_distribution) animations.append(create_distribution) else: # Paired Query Mode assert "positive_dist_args" in layer_args assert "negative_dist_args" in layer_args positive_dist_args = layer_args["positive_dist_args"] negative_dist_args = layer_args["negative_dist_args"] # Handle logic for embedding a paired query into the embedding layer positive_dist = GaussianDistribution(self.axes, **positive_dist_args) self.gaussian_distributions.add(positive_dist) negative_dist = GaussianDistribution(self.axes, **negative_dist_args) self.gaussian_distributions.add(negative_dist) animations.append(Create(positive_dist)) animations.append(Create(negative_dist)) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Create) def _create_override(self, **kwargs): # Plot each point at once point_animations = [] for point in self.point_cloud: point_animations.append(GrowFromCenter(point)) point_animation = AnimationGroup(*point_animations, lag_ratio=1.0, run_time=2.5) return point_animation class NeuralNetworkEmbeddingTestScene(Scene): def construct(self): nne = EmbeddingLayer() mean = np.array([0, 0]) cov = np.array([[5.0, 1.0], [0.0, 1.0]]) point_cloud = nne.construct_gaussian_point_cloud(mean, cov) nne.add(point_cloud) gaussian = nne.construct_gaussian_distribution(mean, cov) nne.add(gaussian) self.add(nne)
ManimML_helblazer811/manim_ml/neural_network/layers/paired_query.py
from manim import * from manim_ml.neural_network.layers.parent_layers import NeuralNetworkLayer from manim_ml.utils.mobjects.image import GrayscaleImageMobject, LabeledColorImage import numpy as np class PairedQueryLayer(NeuralNetworkLayer): """Paired Query Layer""" def __init__( self, positive, negative, stroke_width=5, font_size=18, spacing=0.5, **kwargs ): super().__init__(**kwargs) self.positive = positive self.negative = negative self.font_size = font_size self.spacing = spacing self.stroke_width = stroke_width # Make the assets self.assets = self.make_assets() self.add(self.assets) self.add(self.title) def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): return super().construct_layer(input_layer, output_layer, **kwargs) @classmethod def from_paths(cls, positive_path, negative_path, grayscale=True, **kwargs): """Creates a query using the paths""" # Load images from path if grayscale: positive = GrayscaleImageMobject.from_path(positive_path) negative = GrayscaleImageMobject.from_path(negative_path) else: positive = ImageMobject(positive_path) negative = ImageMobject(negative_path) # Make the layer query_layer = cls(positive, negative, **kwargs) return query_layer def make_assets(self): """ Constructs the assets needed for a query layer """ # Handle positive positive_group = LabeledColorImage( self.positive, color=BLUE, label="Positive", font_size=self.font_size, stroke_width=self.stroke_width, ) # Handle negative negative_group = LabeledColorImage( self.negative, color=RED, label="Negative", font_size=self.font_size, stroke_width=self.stroke_width, ) # Distribute the groups uniformly vertically assets = Group(positive_group, negative_group) assets.arrange(DOWN, buff=self.spacing) return assets @override_animation(Create) def _create_override(self): # TODO make Create animation that is custom return FadeIn(self.assets) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Forward pass for query""" return AnimationGroup()
ManimML_helblazer811/manim_ml/neural_network/layers/feed_forward_to_math_operation.py
from manim import * from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer from manim_ml.neural_network.layers.math_operation_layer import MathOperationLayer from manim_ml.utils.mobjects.connections import NetworkConnection class FeedForwardToMathOperation(ConnectiveLayer): """Image Layer to FeedForward layer""" input_class = FeedForwardLayer output_class = MathOperationLayer def __init__( self, input_layer, output_layer, active_color=ORANGE, **kwargs ): self.active_color = active_color super().__init__(input_layer, output_layer, **kwargs) def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): # Draw an arrow from the output of the feed forward layer to the # input of the math operation layer self.connection = NetworkConnection( self.input_layer, self.output_layer, arc_direction="straight", buffer=0.05 ) self.add(self.connection) return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Makes dots diverge from the given location and move to the feed forward nodes decoder""" # Make flashing pass animation on arrow passing_flash = ShowPassingFlash( self.connection.copy().set_color(self.active_color) ) return passing_flash
ManimML_helblazer811/manim_ml/neural_network/layers/image_to_feed_forward.py
from manim import * from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.image import ImageLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer class ImageToFeedForward(ConnectiveLayer): """Image Layer to FeedForward layer""" input_class = ImageLayer output_class = FeedForwardLayer def __init__( self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.05, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) self.animation_dot_color = animation_dot_color self.dot_radius = dot_radius self.feed_forward_layer = output_layer self.image_layer = input_layer def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Makes dots diverge from the given location and move to the feed forward nodes decoder""" animations = [] dots = [] image_mobject = self.image_layer.image_mobject # Move the dots to the centers of each of the nodes in the FeedForwardLayer image_location = image_mobject.get_center() for node in self.feed_forward_layer.node_group: new_dot = Dot( image_location, radius=self.dot_radius, color=self.animation_dot_color ) per_node_succession = Succession( Create(new_dot), new_dot.animate.move_to(node.get_center()), ) animations.append(per_node_succession) dots.append(new_dot) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Create) def _create_override(self): return AnimationGroup()
ManimML_helblazer811/manim_ml/neural_network/layers/vector.py
from manim import * import random from manim_ml.neural_network.layers.parent_layers import VGroupNeuralNetworkLayer class VectorLayer(VGroupNeuralNetworkLayer): """Shows a vector""" def __init__(self, num_values, value_func=lambda: random.uniform(0, 1), **kwargs): super().__init__(**kwargs) self.num_values = num_values self.value_func = value_func def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs, ): super().construct_layer(input_layer, output_layer, **kwargs) # Make the vector self.vector_label = self.make_vector() self.add(self.vector_label) def make_vector(self): """Makes the vector""" if False: # TODO install Latex values = np.array([self.value_func() for i in range(self.num_values)]) values = values[None, :].T vector = Matrix(values) vector_label = Text(f"[{self.value_func():.2f}]") vector_label.scale(0.3) return vector_label def make_forward_pass_animation(self, layer_args={}, **kwargs): return AnimationGroup() @override_animation(Create) def _create_override(self): """Create animation""" return Write(self.vector_label)
ManimML_helblazer811/manim_ml/neural_network/layers/__init__.py
from manim_ml.neural_network.layers.convolutional_2d_to_feed_forward import ( Convolutional2DToFeedForward, ) from manim_ml.neural_network.layers.convolutional_2d_to_max_pooling_2d import ( Convolutional2DToMaxPooling2D, ) from manim_ml.neural_network.layers.image_to_convolutional_2d import ( ImageToConvolutional2DLayer, ) from manim_ml.neural_network.layers.max_pooling_2d_to_convolutional_2d import ( MaxPooling2DToConvolutional2D, ) from manim_ml.neural_network.layers.max_pooling_2d_to_feed_forward import ( MaxPooling2DToFeedForward, ) from .convolutional_2d_to_convolutional_2d import Convolutional2DToConvolutional2D from .convolutional_2d import Convolutional2DLayer from .feed_forward_to_vector import FeedForwardToVector from .paired_query_to_feed_forward import PairedQueryToFeedForward from .embedding_to_feed_forward import EmbeddingToFeedForward from .embedding import EmbeddingLayer from .feed_forward_to_embedding import FeedForwardToEmbedding from .feed_forward_to_feed_forward import FeedForwardToFeedForward from .feed_forward_to_image import FeedForwardToImage from .feed_forward import FeedForwardLayer from .image_to_feed_forward import ImageToFeedForward from .image import ImageLayer from .parent_layers import ConnectiveLayer, NeuralNetworkLayer from .triplet import TripletLayer from .triplet_to_feed_forward import TripletToFeedForward from .paired_query import PairedQueryLayer from .paired_query_to_feed_forward import PairedQueryToFeedForward from .max_pooling_2d import MaxPooling2DLayer from .feed_forward_to_math_operation import FeedForwardToMathOperation connective_layers_list = ( EmbeddingToFeedForward, FeedForwardToEmbedding, FeedForwardToFeedForward, FeedForwardToImage, ImageToFeedForward, PairedQueryToFeedForward, TripletToFeedForward, PairedQueryToFeedForward, FeedForwardToVector, Convolutional2DToConvolutional2D, ImageToConvolutional2DLayer, Convolutional2DToFeedForward, Convolutional2DToMaxPooling2D, MaxPooling2DToConvolutional2D, MaxPooling2DToFeedForward, FeedForwardToMathOperation )
ManimML_helblazer811/manim_ml/neural_network/layers/util.py
import warnings from manim import * from manim_ml.neural_network.layers.parent_layers import BlankConnective, ThreeDLayer from manim_ml.neural_network.layers import connective_layers_list def get_connective_layer(input_layer, output_layer): """ Deduces the relevant connective layer """ connective_layer_class = None for candidate_class in connective_layers_list: input_class = candidate_class.input_class output_class = candidate_class.output_class if isinstance(input_layer, input_class) and isinstance( output_layer, output_class ): connective_layer_class = candidate_class break if connective_layer_class is None: connective_layer_class = BlankConnective warnings.warn( f"Unrecognized input/output class pair: {input_layer} and {output_layer}" ) # Make the instance now connective_layer = connective_layer_class(input_layer, output_layer) return connective_layer
ManimML_helblazer811/manim_ml/neural_network/layers/max_pooling_2d_to_feed_forward.py
from manim import * from manim_ml.neural_network.layers.convolutional_2d_to_feed_forward import ( Convolutional2DToFeedForward, ) from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.max_pooling_2d import MaxPooling2DLayer class MaxPooling2DToFeedForward(Convolutional2DToFeedForward): """Feed Forward to Embedding Layer""" input_class = MaxPooling2DLayer output_class = FeedForwardLayer def __init__( self, input_layer: MaxPooling2DLayer, output_layer: FeedForwardLayer, passing_flash_color=ORANGE, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): return super().construct_layer(input_layer, output_layer, **kwargs)
ManimML_helblazer811/manim_ml/neural_network/layers/feed_forward_to_image.py
from manim import * from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.image import ImageLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer class FeedForwardToImage(ConnectiveLayer): """Image Layer to FeedForward layer""" input_class = FeedForwardLayer output_class = ImageLayer def __init__( self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.05, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) self.animation_dot_color = animation_dot_color self.dot_radius = dot_radius self.feed_forward_layer = input_layer self.image_layer = output_layer def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Makes dots diverge from the given location and move to the feed forward nodes decoder""" animations = [] image_mobject = self.image_layer.image_mobject # Move the dots to the centers of each of the nodes in the FeedForwardLayer image_location = image_mobject.get_center() for node in self.feed_forward_layer.node_group: new_dot = Dot( node.get_center(), radius=self.dot_radius, color=self.animation_dot_color, ) per_node_succession = Succession( Create(new_dot), new_dot.animate.move_to(image_location), ) animations.append(per_node_succession) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Create) def _create_override(self): return AnimationGroup()
ManimML_helblazer811/manim_ml/neural_network/layers/feed_forward.py
from manim import * from manim_ml.neural_network.activation_functions import get_activation_function_by_name from manim_ml.neural_network.activation_functions.activation_function import ( ActivationFunction, ) from manim_ml.neural_network.layers.parent_layers import VGroupNeuralNetworkLayer import manim_ml class FeedForwardLayer(VGroupNeuralNetworkLayer): """Handles rendering a layer for a neural network""" def __init__( self, num_nodes, layer_buffer=SMALL_BUFF / 2, node_radius=0.08, node_color=manim_ml.config.color_scheme.primary_color, node_outline_color=manim_ml.config.color_scheme.secondary_color, rectangle_color=manim_ml.config.color_scheme.secondary_color, node_spacing=0.3, rectangle_fill_color=manim_ml.config.color_scheme.background_color, node_stroke_width=2.0, rectangle_stroke_width=2.0, animation_dot_color=manim_ml.config.color_scheme.active_color, activation_function=None, **kwargs ): super(VGroupNeuralNetworkLayer, self).__init__(**kwargs) self.num_nodes = num_nodes self.layer_buffer = layer_buffer self.node_radius = node_radius self.node_color = node_color self.node_stroke_width = node_stroke_width self.node_outline_color = node_outline_color self.rectangle_stroke_width = rectangle_stroke_width self.rectangle_color = rectangle_color self.node_spacing = node_spacing self.rectangle_fill_color = rectangle_fill_color self.animation_dot_color = animation_dot_color self.activation_function = activation_function self.node_group = VGroup() def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): """Creates the neural network layer""" # Add Nodes for node_number in range(self.num_nodes): node_object = Circle( radius=self.node_radius, color=self.node_color, stroke_width=self.node_stroke_width, ) self.node_group.add(node_object) # Space the nodes # Assumes Vertical orientation for node_index, node_object in enumerate(self.node_group): location = node_index * self.node_spacing node_object.move_to([0, location, 0]) # Create Surrounding Rectangle self.surrounding_rectangle = SurroundingRectangle( self.node_group, color=self.rectangle_color, fill_color=self.rectangle_fill_color, fill_opacity=1.0, buff=self.layer_buffer, stroke_width=self.rectangle_stroke_width, ) self.surrounding_rectangle.set_z_index(1) # Add the objects to the class self.add(self.surrounding_rectangle, self.node_group) self.construct_activation_function() super().construct_layer(input_layer, output_layer, **kwargs) def construct_activation_function(self): """Construct the activation function""" # Add the activation function if not self.activation_function is None: # Check if it is a string if isinstance(self.activation_function, str): activation_function = get_activation_function_by_name( self.activation_function )() else: assert isinstance(self.activation_function, ActivationFunction) activation_function = self.activation_function # Plot the function above the rest of the layer self.activation_function = activation_function self.add(self.activation_function) def make_dropout_forward_pass_animation(self, layer_args, **kwargs): """Makes a forward pass animation with dropout""" # Make sure proper dropout information was passed assert "dropout_node_indices" in layer_args dropout_node_indices = layer_args["dropout_node_indices"] # Only highlight nodes that were note dropped out nodes_to_highlight = [] for index, node in enumerate(self.node_group): if not index in dropout_node_indices: nodes_to_highlight.append(node) nodes_to_highlight = VGroup(*nodes_to_highlight) # Make highlight animation succession = Succession( ApplyMethod( nodes_to_highlight.set_color, self.animation_dot_color, run_time=0.25 ), Wait(1.0), ApplyMethod(nodes_to_highlight.set_color, self.node_color, run_time=0.25), ) return succession def make_forward_pass_animation(self, layer_args={}, **kwargs): # Check if dropout is a thing if "dropout_node_indices" in layer_args: # Drop out certain nodes return self.make_dropout_forward_pass_animation( layer_args=layer_args, **kwargs ) else: # Make highlight animation succession = Succession( ApplyMethod( self.node_group.set_color, self.animation_dot_color, run_time=0.25 ), Wait(1.0), ApplyMethod(self.node_group.set_color, self.node_color, run_time=0.25), ) if not self.activation_function is None: animation_group = AnimationGroup( succession, self.activation_function.make_evaluate_animation(), lag_ratio=0.0, ) return animation_group else: return succession @override_animation(Create) def _create_override(self, **kwargs): animations = [] animations.append(Create(self.surrounding_rectangle)) for node in self.node_group: animations.append(Create(node)) animation_group = AnimationGroup(*animations, lag_ratio=0.0) return animation_group def get_height(self): return self.surrounding_rectangle.get_height() def get_center(self): return self.surrounding_rectangle.get_center() def get_left(self): return self.surrounding_rectangle.get_left() def get_right(self): return self.surrounding_rectangle.get_right() def move_to(self, mobject_or_point): """Moves the center of the layer to the given mobject or point""" layer_center = self.surrounding_rectangle.get_center() if isinstance(mobject_or_point, Mobject): target_center = mobject_or_point.get_center() else: target_center = mobject_or_point self.shift(target_center - layer_center)
ManimML_helblazer811/manim_ml/neural_network/layers/parent_layers.py
from manim import * from abc import ABC, abstractmethod class NeuralNetworkLayer(ABC, Group): """Abstract Neural Network Layer class""" def __init__(self, text=None, *args, **kwargs): super(Group, self).__init__() self.title_text = kwargs["title"] if "title" in kwargs else " " if "title" in kwargs: self.title = Text(self.title_text, font_size=DEFAULT_FONT_SIZE // 3).scale(0.6) self.title.next_to(self, UP, 1.2) else: self.title = Group() # self.add(self.title) @abstractmethod def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs, ): """Constructs the layer at network construction time Parameters ---------- input_layer : NeuralNetworkLayer preceding layer output_layer : NeuralNetworkLayer following layer """ if "debug_mode" in kwargs and kwargs["debug_mode"]: self.add(SurroundingRectangle(self)) @abstractmethod def make_forward_pass_animation(self, layer_args={}, **kwargs): pass @override_animation(Create) def _create_override(self): return Succession() def __repr__(self): return f"{type(self).__name__}" class VGroupNeuralNetworkLayer(NeuralNetworkLayer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # self.camera = camera @abstractmethod def make_forward_pass_animation(self, **kwargs): pass @override_animation(Create) def _create_override(self): return super()._create_override() class ThreeDLayer(ABC): """Abstract class for 3D layers""" pass # Angle of ThreeD layers is static context class ConnectiveLayer(VGroupNeuralNetworkLayer): """Forward pass animation for a given pair of layers""" @abstractmethod def __init__(self, input_layer, output_layer, **kwargs): super(VGroupNeuralNetworkLayer, self).__init__(**kwargs) self.input_layer = input_layer self.output_layer = output_layer # Handle input and output class # assert isinstance(input_layer, self.input_class), f"{input_layer}, {self.input_class}" # assert isinstance(output_layer, self.output_class), f"{output_layer}, {self.output_class}" @abstractmethod def make_forward_pass_animation(self, run_time=2.0, layer_args={}, **kwargs): pass @override_animation(Create) def _create_override(self): return super()._create_override() def __repr__(self): return ( f"{self.__class__.__name__}(" + f"input_layer={self.input_layer.__class__.__name__}," + f"output_layer={self.output_layer.__class__.__name__}," + ")" ) class BlankConnective(ConnectiveLayer): """Connective layer to be used when the given pair of layers is undefined""" def __init__(self, input_layer, output_layer, **kwargs): super().__init__(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, run_time=1.5, layer_args={}, **kwargs): return AnimationGroup(run_time=run_time) @override_animation(Create) def _create_override(self): return super()._create_override()
ManimML_helblazer811/manim_ml/neural_network/layers/triplet_to_feed_forward.py
from manim import * from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer from manim_ml.neural_network.layers.triplet import TripletLayer class TripletToFeedForward(ConnectiveLayer): """TripletLayer to FeedForward layer""" input_class = TripletLayer output_class = FeedForwardLayer def __init__( self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.02, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) self.animation_dot_color = animation_dot_color self.dot_radius = dot_radius self.feed_forward_layer = output_layer self.triplet_layer = input_layer def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Makes dots diverge from the given location and move to the feed forward nodes decoder""" animations = [] # Loop through each image images = [ self.triplet_layer.anchor, self.triplet_layer.positive, self.triplet_layer.negative, ] for image_mobject in images: image_animations = [] dots = [] # Move dots from each image to the centers of each of the nodes in the FeedForwardLayer image_location = image_mobject.get_center() for node in self.feed_forward_layer.node_group: new_dot = Dot( image_location, radius=self.dot_radius, color=self.animation_dot_color, ) per_node_succession = Succession( Create(new_dot), new_dot.animate.move_to(node.get_center()), ) image_animations.append(per_node_succession) dots.append(new_dot) animations.append(AnimationGroup(*image_animations)) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Create) def _create_override(self): return AnimationGroup()
ManimML_helblazer811/manim_ml/neural_network/layers/image.py
from manim import * import numpy as np from PIL import Image from manim_ml.utils.mobjects.image import GrayscaleImageMobject from manim_ml.neural_network.layers.parent_layers import NeuralNetworkLayer class ImageLayer(NeuralNetworkLayer): """Single Image Layer for Neural Network""" def __init__( self, numpy_image, height=1.5, show_image_on_create=True, **kwargs ): super().__init__(**kwargs) self.image_height = height self.numpy_image = numpy_image self.show_image_on_create = show_image_on_create def construct_layer(self, input_layer, output_layer, **kwargs): """Construct layer method Parameters ---------- input_layer : Input layer output_layer : Output layer """ if len(np.shape(self.numpy_image)) == 2: # Assumed Grayscale self.num_channels = 1 self.image_mobject = GrayscaleImageMobject( self.numpy_image, height=self.image_height ) elif len(np.shape(self.numpy_image)) == 3: # Assumed RGB self.num_channels = 3 self.image_mobject = ImageMobject(self.numpy_image).scale_to_fit_height( self.image_height ) self.add(self.image_mobject) super().construct_layer(input_layer, output_layer, **kwargs) @classmethod def from_path(cls, image_path, grayscale=True, **kwargs): """Creates a query using the paths""" # Load images from path image = Image.open(image_path) numpy_image = np.asarray(image) # Make the layer image_layer = cls(numpy_image, **kwargs) return image_layer @override_animation(Create) def _create_override(self, **kwargs): debug_mode = False if debug_mode: return FadeIn(SurroundingRectangle(self.image_mobject)) if self.show_image_on_create: return FadeIn(self.image_mobject) else: return AnimationGroup() def make_forward_pass_animation(self, layer_args={}, **kwargs): return AnimationGroup() def get_right(self): """Override get right""" return self.image_mobject.get_right() def scale(self, scale_factor, **kwargs): """Scales the image mobject""" self.image_mobject.scale(scale_factor) @property def width(self): return self.image_mobject.width @property def height(self): return self.image_mobject.height
ManimML_helblazer811/manim_ml/neural_network/layers/convolutional_2d_to_max_pooling_2d.py
import random from manim import * from manim_ml.utils.mobjects.gridded_rectangle import GriddedRectangle from manim_ml.neural_network.layers.convolutional_2d_to_convolutional_2d import ( get_rotated_shift_vectors, ) from manim_ml.neural_network.layers.max_pooling_2d import MaxPooling2DLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer, ThreeDLayer from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer import manim_ml class Uncreate(Create): def __init__( self, mobject, reverse_rate_function: bool = True, introducer: bool = True, remover: bool = True, **kwargs, ) -> None: super().__init__( mobject, reverse_rate_function=reverse_rate_function, introducer=introducer, remover=remover, **kwargs, ) class Convolutional2DToMaxPooling2D(ConnectiveLayer, ThreeDLayer): """Feed Forward to Embedding Layer""" input_class = Convolutional2DLayer output_class = MaxPooling2DLayer def __init__( self, input_layer: Convolutional2DLayer, output_layer: MaxPooling2DLayer, active_color=ORANGE, **kwargs, ): super().__init__(input_layer, output_layer, **kwargs) self.active_color = active_color def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs, ): return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, layer_args={}, run_time=1.5, **kwargs): """Forward pass animation from conv2d to max pooling""" cell_width = self.input_layer.cell_width feature_map_size = self.input_layer.feature_map_size kernel_size = self.output_layer.kernel_size feature_maps = self.input_layer.feature_maps grid_stroke_width = 1.0 # Make all of the kernel gridded rectangles create_gridded_rectangle_animations = [] create_and_remove_cell_animations = [] transform_gridded_rectangle_animations = [] remove_gridded_rectangle_animations = [] for feature_map_index, feature_map in enumerate(feature_maps): # 1. Draw gridded rectangle with kernel_size x kernel_size # box regions over the input feature maps. gridded_rectangle = GriddedRectangle( color=self.active_color, height=cell_width * feature_map_size[1], width=cell_width * feature_map_size[0], grid_xstep=cell_width * kernel_size, grid_ystep=cell_width * kernel_size, grid_stroke_width=grid_stroke_width, grid_stroke_color=self.active_color, show_grid_lines=True, ) gridded_rectangle.set_z_index(10) # 2. Randomly highlight one of the cells in the kernel. highlighted_cells = [] num_cells_in_kernel = kernel_size * kernel_size num_x_kernels = int(feature_map_size[0] / kernel_size) num_y_kernels = int(feature_map_size[1] / kernel_size) for kernel_x in range(0, num_x_kernels): for kernel_y in range(0, num_y_kernels): # Choose a random cell index cell_index = random.randint(0, num_cells_in_kernel - 1) # Make a rectangle in that cell cell_rectangle = GriddedRectangle( color=self.active_color, height=cell_width, width=cell_width, fill_opacity=0.7, stroke_width=0.0, z_index=10, ) # Move to the correct location kernel_shift_vector = [ kernel_size * cell_width * kernel_x, -1 * kernel_size * cell_width * kernel_y, 0, ] cell_shift_vector = [ (cell_index % kernel_size) * cell_width, -1 * int(cell_index / kernel_size) * cell_width, 0, ] cell_rectangle.next_to( gridded_rectangle.get_corners_dict()["top_left"], submobject_to_align=cell_rectangle.get_corners_dict()[ "top_left" ], buff=0.0, ) cell_rectangle.shift(kernel_shift_vector) cell_rectangle.shift(cell_shift_vector) highlighted_cells.append(cell_rectangle) # Rotate the gridded rectangles so they match the angle # of the conv maps gridded_rectangle_group = VGroup(gridded_rectangle, *highlighted_cells) gridded_rectangle_group.rotate( manim_ml.config.three_d_config.rotation_angle, about_point=gridded_rectangle.get_center(), axis=manim_ml.config.three_d_config.rotation_axis, ) gridded_rectangle_group.next_to( feature_map.get_corners_dict()["top_left"], submobject_to_align=gridded_rectangle.get_corners_dict()["top_left"], buff=0.0, ) # 3. Make a create gridded rectangle create_rectangle = Create( gridded_rectangle, ) create_gridded_rectangle_animations.append(create_rectangle) # 4. Create and fade out highlighted cells create_group = AnimationGroup( *[Create(highlighted_cell) for highlighted_cell in highlighted_cells], lag_ratio=1.0, ) uncreate_group = AnimationGroup( *[Uncreate(highlighted_cell) for highlighted_cell in highlighted_cells], lag_ratio=0.0, ) create_and_remove_cell_animation = Succession( create_group, Wait(1.0), uncreate_group ) create_and_remove_cell_animations.append(create_and_remove_cell_animation) # 5. Move and resize the gridded rectangle to the output # feature maps. output_gridded_rectangle = GriddedRectangle( color=self.active_color, height=cell_width * feature_map_size[1] / 2, width=cell_width * feature_map_size[0] / 2, grid_xstep=cell_width, grid_ystep=cell_width, grid_stroke_width=grid_stroke_width, grid_stroke_color=self.active_color, show_grid_lines=True, ) output_gridded_rectangle.rotate( manim_ml.config.three_d_config.rotation_angle, about_point=output_gridded_rectangle.get_center(), axis=manim_ml.three_d_config.rotation_axis, ) output_gridded_rectangle.move_to( self.output_layer.feature_maps[feature_map_index].copy() ) transform_rectangle = ReplacementTransform( gridded_rectangle, output_gridded_rectangle, introducer=True, ) transform_gridded_rectangle_animations.append( transform_rectangle, ) """ Succession( Uncreate(gridded_rectangle), transform_rectangle, lag_ratio=1.0 ) """ # 6. Make the gridded feature map(s) disappear. remove_gridded_rectangle_animations.append( Uncreate(gridded_rectangle_group) ) create_gridded_rectangle_animation = AnimationGroup( *create_gridded_rectangle_animations ) create_and_remove_cell_animation = AnimationGroup( *create_and_remove_cell_animations ) transform_gridded_rectangle_animation = AnimationGroup( *transform_gridded_rectangle_animations ) remove_gridded_rectangle_animation = AnimationGroup( *remove_gridded_rectangle_animations ) return Succession( create_gridded_rectangle_animation, Wait(1), create_and_remove_cell_animation, transform_gridded_rectangle_animation, Wait(1), remove_gridded_rectangle_animation, lag_ratio=1.0, )
ManimML_helblazer811/manim_ml/neural_network/layers/feed_forward_to_vector.py
from manim import * from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer from manim_ml.neural_network.layers.vector import VectorLayer class FeedForwardToVector(ConnectiveLayer): """Image Layer to FeedForward layer""" input_class = FeedForwardLayer output_class = VectorLayer def __init__( self, input_layer, output_layer, animation_dot_color=RED, dot_radius=0.05, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) self.animation_dot_color = animation_dot_color self.dot_radius = dot_radius self.feed_forward_layer = input_layer self.vector_layer = output_layer def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, layer_args={}, **kwargs): """Makes dots diverge from the given location and move to the feed forward nodes decoder""" animations = [] # Move the dots to the centers of each of the nodes in the FeedForwardLayer destination = self.vector_layer.get_center() for node in self.feed_forward_layer.node_group: new_dot = Dot( node.get_center(), radius=self.dot_radius, color=self.animation_dot_color, ) per_node_succession = Succession( Create(new_dot), new_dot.animate.move_to(destination), ) animations.append(per_node_succession) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Create) def _create_override(self): return AnimationGroup()
ManimML_helblazer811/manim_ml/neural_network/layers/feed_forward_to_feed_forward.py
from typing import List, Union import numpy as np from manim import * from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer import manim_ml class FeedForwardToFeedForward(ConnectiveLayer): """Layer for connecting FeedForward layer to FeedForwardLayer""" input_class = FeedForwardLayer output_class = FeedForwardLayer def __init__( self, input_layer, output_layer, passing_flash=True, dot_radius=0.05, animation_dot_color=manim_ml.config.color_scheme.active_color, edge_color=manim_ml.config.color_scheme.secondary_color, edge_width=1.5, camera=None, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) self.passing_flash = passing_flash self.edge_color = edge_color self.dot_radius = dot_radius self.animation_dot_color = animation_dot_color self.edge_width = edge_width def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): self.edges = self.construct_edges() self.add(self.edges) super().construct_layer(input_layer, output_layer, **kwargs) def construct_edges(self): # Go through each node in the two layers and make a connecting line edges = [] for node_i in self.input_layer.node_group: for node_j in self.output_layer.node_group: line = Line( node_i.get_center(), node_j.get_center(), color=self.edge_color, stroke_width=self.edge_width, ) edges.append(line) edges = VGroup(*edges) return edges @override_animation(FadeOut) def _fadeout_animation(self): animations = [] for edge in self.edges: animations.append(FadeOut(edge)) animation_group = AnimationGroup(*animations) return animation_group def make_forward_pass_animation( self, layer_args={}, run_time=1, feed_forward_dropout=0.0, **kwargs ): """Animation for passing information from one FeedForwardLayer to the next""" path_animations = [] dots = [] for edge_index, edge in enumerate(self.edges): if ( not "edge_indices_to_dropout" in layer_args or not edge_index in layer_args["edge_indices_to_dropout"] ): dot = Dot( color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius, ) # Add to dots group dots.append(dot) # Make the animation if self.passing_flash: copy_edge = edge.copy() anim = ShowPassingFlash( copy_edge.set_color(self.animation_dot_color), time_width=0.3 ) else: anim = MoveAlongPath( dot, edge, run_time=run_time, rate_function=sigmoid ) path_animations.append(anim) if not self.passing_flash: dots = VGroup(*dots) self.add(dots) path_animations = AnimationGroup(*path_animations) return path_animations def modify_edge_colors(self, colors=None, magnitudes=None, color_scheme="inferno"): """Changes the colors of edges""" # TODO implement pass def modify_edge_stroke_widths(self, widths): """Changes the widths of the edges""" assert len(widths) > 0 # Note: 1d-arrays are assumed to be in row major order widths = np.array(widths) widths = np.flatten(widths) # Check thickness size assert np.shape(widths)[0] == len(self.edges) # Make animation animations = [] for index, edge in enumerate(self.edges): width = widths[index] change_width = edge.animate.set_stroke_width(width) animations.append(change_width) animation_group = AnimationGroup(*animations) return animation_group @override_animation(Create) def _create_override(self, **kwargs): animations = [] for edge in self.edges: animations.append(Create(edge)) animation_group = AnimationGroup(*animations, lag_ratio=0.0) return animation_group
ManimML_helblazer811/manim_ml/neural_network/layers/image_to_convolutional_2d.py
import numpy as np from manim import * from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer from manim_ml.neural_network.layers.image import ImageLayer from manim_ml.neural_network.layers.parent_layers import ( ThreeDLayer, VGroupNeuralNetworkLayer, ) from manim_ml.utils.mobjects.gridded_rectangle import GriddedRectangle import manim_ml class ImageToConvolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer): """Handles rendering a convolutional layer for a nn""" input_class = ImageLayer output_class = Convolutional2DLayer def __init__( self, input_layer: ImageLayer, output_layer: Convolutional2DLayer, **kwargs ): super().__init__(input_layer, output_layer, **kwargs) self.input_layer = input_layer self.output_layer = output_layer def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs, ): return super().construct_layer(input_layer, output_layer, **kwargs) def make_forward_pass_animation(self, run_time=5, layer_args={}, **kwargs): """Maps image to convolutional layer""" # Transform the image from the input layer to the num_image_channels = self.input_layer.num_channels if num_image_channels == 1 or num_image_channels == 3: # TODO fix this later return self.grayscale_image_forward_pass_animation() elif num_image_channels == 3: return self.rbg_image_forward_pass_animation() else: raise Exception( f"Unrecognized number of image channels: {num_image_channels}" ) def rbg_image_forward_pass_animation(self): """Handles forward pass animation for 3 channel image""" image_mobject = self.input_layer.image_mobject # TODO get each color channel and turn it into an image # TODO create image mobjects for each channel and transform # it to the feature maps of the output_layer raise NotImplementedError() def grayscale_image_forward_pass_animation(self): """Handles forward pass animation for 1 channel image""" animations = [] image_mobject = self.input_layer.image_mobject target_feature_map = self.output_layer.feature_maps[0] # Map image mobject to feature map # Make rotation of image rotation = ApplyMethod( image_mobject.rotate, manim_ml.config.three_d_config.rotation_angle, manim_ml.config.three_d_config.rotation_axis, image_mobject.get_center(), run_time=0.5, ) """ x_rotation = ApplyMethod( image_mobject.rotate, ThreeDLayer.three_d_x_rotation, [1, 0, 0], image_mobject.get_center(), run_time=0.5 ) y_rotation = ApplyMethod( image_mobject.rotate, ThreeDLayer.three_d_y_rotation, [0, 1, 0], image_mobject.get_center(), run_time=0.5 ) """ # Set opacity set_opacity = ApplyMethod(image_mobject.set_opacity, 0.2, run_time=0.5) # Scale the max of width or height to the # width of the feature_map def scale_image_func(image_mobject): max_width_height = max(image_mobject.width, image_mobject.height) scale_factor = target_feature_map.untransformed_width / max_width_height image_mobject.scale(scale_factor) return image_mobject scale_image = ApplyFunction(scale_image_func, image_mobject) # scale_image = ApplyMethod(image_mobject.scale, scale_factor, run_time=0.5) # Move the image move_image = ApplyMethod(image_mobject.move_to, target_feature_map) # Compose the animations animation = Succession( rotation, scale_image, set_opacity, move_image, ) return animation def scale(self, scale_factor, **kwargs): super().scale(scale_factor, **kwargs) @override_animation(Create) def _create_override(self, **kwargs): return AnimationGroup()
ManimML_helblazer811/manim_ml/neural_network/layers/max_pooling_2d_to_convolutional_2d.py
import numpy as np from manim import * from manim_ml.neural_network.layers.convolutional_2d_to_convolutional_2d import ( Convolutional2DToConvolutional2D, Filters, ) from manim_ml.neural_network.layers.max_pooling_2d import MaxPooling2DLayer from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer, ThreeDLayer from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer from manim.utils.space_ops import rotation_matrix class MaxPooling2DToConvolutional2D(Convolutional2DToConvolutional2D): """Feed Forward to Embedding Layer""" input_class = MaxPooling2DLayer output_class = Convolutional2DLayer def __init__( self, input_layer: MaxPooling2DLayer, output_layer: Convolutional2DLayer, passing_flash_color=ORANGE, cell_width=1.0, stroke_width=2.0, show_grid_lines=False, **kwargs ): input_layer.num_feature_maps = output_layer.num_feature_maps super().__init__(input_layer, output_layer, **kwargs) self.passing_flash_color = passing_flash_color self.cell_width = cell_width self.stroke_width = stroke_width self.show_grid_lines = show_grid_lines def construct_layer( self, input_layer: "NeuralNetworkLayer", output_layer: "NeuralNetworkLayer", **kwargs ): """Constructs the MaxPooling to Convolution3D layer Parameters ---------- input_layer : NeuralNetworkLayer input layer output_layer : NeuralNetworkLayer output layer """ super().construct_layer(input_layer, output_layer, **kwargs)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
16