Datasets:

Modalities:
Tabular
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
zhujiem commited on
Commit
481fa0e
·
1 Parent(s): 4f70623

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -13
README.md CHANGED
@@ -1,21 +1,28 @@
1
  # Frappe_x1
2
 
3
- The Frappe dataset contains a context-aware app usage log, which comprises 96203 entries by 957 users for 4082 apps used in various contexts. It has 10 feature fields including user_id, item_id, daytime, weekday, isweekend, homework, cost, weather, country, city. The target value indicates whether the user has used the app under the context. We provide the reusable, processed dataset released by [the BARS benchmark](https://openbenchmark.github.io), which are randomly split into 7:2:1 as the training set, validation set, and test set, respectively.
4
 
5
- ### Dataset Details
6
 
7
- + **Repository:** https://github.com/reczoo/BARS/tree/main/datasets/Frappe#frappe_x1
 
 
 
 
 
 
 
 
8
 
9
  + **Used by papers:**
10
- - Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
11
- - Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
12
- - Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
13
 
14
  + **Check the md5sum for data integrity:**
15
-
16
- ```bash
17
- $ md5sum train.csv valid.csv test.csv
18
- ba7306e6c4fc19dd2cd84f2f0596d158 train.csv
19
- 88d51bf2173505436d3a8f78f2a59da8 valid.csv
20
- 3470f6d32713dc5f7715f198ca7c612a test.csv
21
- ```
 
1
  # Frappe_x1
2
 
3
+ + **Dataset description:**
4
 
5
+ The Frappe dataset contains a context-aware app usage log, which comprises 96203 entries by 957 users for 4082 apps used in various contexts. It has 10 feature fields including user_id, item_id, daytime, weekday, isweekend, homework, cost, weather, country, city. The target value indicates whether the user has used the app under the context. Following the [AFN](https://ojs.aaai.org/index.php/AAAI/article/view/5768) work, we randomly split the data into 7:2:1 as the training set, validation set, and test set, respectively.
6
 
7
+ The dataset statistics are summarized as follows:
8
+
9
+ | Dataset Split | Total | #Train | #Validation | #Test |
10
+ | :--------: | :-----: |:-----: | :----------: | :----: |
11
+ | Frappe_x1 | 288,609 | 202,027 | 57,722 | 28,860 |
12
+
13
+ + **Source:** https://www.baltrunas.info/context-aware
14
+ + **Download:** https://huggingface.co/datasets/reczoo/Frappe_x1/tree/main
15
+ + **Repository:** https://github.com/reczoo/Datasets
16
 
17
  + **Used by papers:**
18
+ - Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
19
+ - Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
20
+ - Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
21
 
22
  + **Check the md5sum for data integrity:**
23
+ ```bash
24
+ $ md5sum train.csv valid.csv test.csv
25
+ ba7306e6c4fc19dd2cd84f2f0596d158 train.csv
26
+ 88d51bf2173505436d3a8f78f2a59da8 valid.csv
27
+ 3470f6d32713dc5f7715f198ca7c612a test.csv
28
+ ```