dkhati56 commited on
Commit
09ea808
·
1 Parent(s): cad776e

Updated readme.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -1,3 +1,48 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ ---
6
+ license: mit
7
+ ---
8
+
9
+ ### Dataset is imported from CodeXGLUE and pre-processed using their script.
10
+
11
+ # Where to find in Semeru:
12
+ The dataset can be found at /nfs/semeru/semeru_datasets/code_xglue/code-to-code/code-refinement/data/small in Semeru
13
+
14
+ ## Task Definition
15
+
16
+ Code refinement aims to automatically fix bugs in the code, which can contribute to reducing the cost of bug-fixes for developers.
17
+ In CodeXGLUE, given a piece of Java code with bugs, the task is to remove the bugs to output the refined code.
18
+ Models are evaluated by BLEU scores, accuracy (exactly match) and [CodeBLEU](https://github.com/microsoft/CodeXGLUE/blob/main/code-to-code-trans/CodeBLEU.MD).
19
+
20
+ ## Dataset
21
+
22
+ We use the dataset released by this paper(https://arxiv.org/pdf/1812.08693.pdf). The source side is a Java function with bugs and the target side is the refined one.
23
+ All the function and variable names are normalized. Their dataset contains two subsets ( i.e.small and medium) based on the function length. This dataset is small.
24
+
25
+
26
+
27
+ ### Data Statistics
28
+
29
+ Data statistics of this dataset are shown in the below table:
30
+
31
+ | | #Examples |
32
+ | ------- | :-------: |
33
+ | | Small |
34
+ | Train | 46,680 |
35
+ | Valid | 5,835 |
36
+ | Test | 5,835 |
37
+
38
+ # Reference
39
+ <pre><code>@article{tufano2019empirical,
40
+ title={An empirical study on learning bug-fixing patches in the wild via neural machine translation},
41
+ author={Tufano, Michele and Watson, Cody and Bavota, Gabriele and Penta, Massimiliano Di and White, Martin and Poshyvanyk, Denys},
42
+ journal={ACM Transactions on Software Engineering and Methodology (TOSEM)},
43
+ volume={28},
44
+ number={4},
45
+ pages={1--29},
46
+ year={2019},
47
+ publisher={ACM New York, NY, USA}
48
+ }</code></pre>