Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """AmbigQA: Answering Ambiguous Open-domain Questions""" | |
| from __future__ import absolute_import, division, print_function | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{ min2020ambigqa, | |
| title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions }, | |
| author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke }, | |
| booktitle={ EMNLP }, | |
| year={2020} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with | |
| 14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity. | |
| We provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs. | |
| """ | |
| _HOMEPAGE = "https://nlp.cs.washington.edu/ambigqa/" | |
| _LICENSE = "CC BY-SA 3.0" | |
| _URL = "https://nlp.cs.washington.edu/ambigqa/data/" | |
| _URLS = { | |
| "light": _URL + "ambignq_light.zip", | |
| "full": _URL + "ambignq.zip", | |
| } | |
| class AmbigQa(datasets.GeneratorBasedBuilder): | |
| """AmbigQA dataset""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="light", | |
| version=VERSION, | |
| description="AmbigNQ light version with only inputs and outputs", | |
| ), | |
| datasets.BuilderConfig( | |
| name="full", | |
| version=VERSION, | |
| description="AmbigNQ full version with all annotation metadata", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "full" | |
| def _info(self): | |
| features_dict = { | |
| "id": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "annotations": datasets.features.Sequence( | |
| { | |
| "type": datasets.Value("string"), # datasets.ClassLabel(names = ["singleAnswer","multipleQAs"]) | |
| "answer": datasets.features.Sequence(datasets.Value("string")), | |
| "qaPairs": datasets.features.Sequence( | |
| { | |
| "question": datasets.Value("string"), | |
| "answer": datasets.features.Sequence(datasets.Value("string")), | |
| } | |
| ), | |
| } | |
| ), | |
| } | |
| if self.config.name == "full": | |
| detail_features = { | |
| "viewed_doc_titles": datasets.features.Sequence(datasets.Value("string")), | |
| "used_queries": datasets.features.Sequence( | |
| { | |
| "query": datasets.Value("string"), | |
| "results": datasets.features.Sequence( | |
| { | |
| "title": datasets.Value("string"), | |
| "snippet": datasets.Value("string"), | |
| } | |
| ), | |
| } | |
| ), | |
| "nq_answer": datasets.features.Sequence(datasets.Value("string")), | |
| "nq_doc_title": datasets.Value("string"), | |
| } | |
| features_dict.update(detail_features) | |
| features = datasets.Features(features_dict) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| # download and extract URLs | |
| urls_to_download = _URLS | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| train_file_name = "train.json" if self.config.name == "full" else "train_light.json" | |
| dev_file_name = "dev.json" if self.config.name == "full" else "dev_light.json" | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], train_file_name)}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], dev_file_name)}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for example in data: | |
| id_ = example["id"] | |
| annotations = example["annotations"] | |
| # Add this because we cannot have None values (all keys in the schema should be present) | |
| for an in annotations: | |
| if "qaPairs" not in an: | |
| an["qaPairs"] = [] | |
| if "answer" not in an: | |
| an["answer"] = [] | |
| yield id_, example | |