etnlp / needle_in_haystack_with_mask.py
shaswat123's picture
Add files using upload-large-folder tool
455d2f7 verified
"""
This script is adapted from
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
# GPT-4
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider OpenAI\
--model_name gpt-4-1106-preview
--api_key $OPENAI_API_KEY
) 2>&1 | tee logs/eval_gpt_4_128k.log
# LLaMA 2 32K. Remember to download the model first
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider LLaMA\
--model_path ../../../Llama-2-7B-32K-Instruct
) 2>&1 | tee logs/eval_llama2_32k_instruct.log
# LongChat. Remember to download the model first
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider LLaMA\
--model_path /ML-A800/models/longchat-7b-v1.5-32k
) 2>&1 | tee logs/eval_longchat.log
# Our llama-2-7b-80k, requires 4*80G A100
# require you to download the model first
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider LLaMA\
--model_path ../../../llama-2-7b-80k
) 2>&1 | tee logs/eval_llama-2-7b-80k.log
"""
#import tiktoken
import os
import glob
import json
from transformers import AutoTokenizer, AutoConfig
import sys
import random
sys.path.append("./faiss_attn/")
from source.modeling_llama import LlamaForCausalLM, LlamaConfig
from source.modeling_qwen2 import Qwen2ForCausalLM
from source.modeling_mixtral import MixtralForCausalLM
from source.modeling_mistral import MistralForCausalLM
from source.modeling_phi3 import Phi3ForCausalLM
import numpy as np
import argparse
from rouge_score import rouge_scorer
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
#from openai import OpenAI
from datetime import datetime, timezone
from collections import defaultdict
import time
import torch
def reset_rope(model, model_max_train_len, scaling_factor):
for l in model.model.layers:
l.self_attn.rotary_emb.scaling_factor = scaling_factor
l.self_attn.rotary_emb._set_cos_sin_cache(seq_len=model_max_train_len, device=l.self_attn.rotary_emb.inv_freq.device, dtype=torch.float32)
return
class LLMNeedleHaystackTester:
"""
This class is used to test the LLM Needle Haystack.
"""
def __init__(self,
needle="\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n",
haystack_dir="PaulGrahamEssays",
retrieval_question="What is the best thing to do in San Francisco?",
results_version = 1,
context_lengths_min = 1000,
context_lengths_max = 128000,
context_lengths_num_intervals = 40,
context_lengths = None,
document_depth_percent_min = 0,
document_depth_percent_max = 100,
document_depth_percent_intervals = 10,
document_depth_percents = None,
document_depth_percent_interval_type = "linear",
model_provider = "OpenAI",
mask_topk=0,
anthropic_api_key = None,
model_name='',
model_name_suffix=None,
num_concurrent_requests = 1,
save_results = True,
save_contexts = True,
final_context_length_buffer = 200,
seconds_to_sleep_between_completions = None,
print_ongoing_status = True):
"""
:param needle: The needle to be found in the haystack. Default is None.
:param haystack_dir: The directory of text files to use as background context (or a haystack) in which the needle is to be found. Default is Paul Graham Essays.
:param retrieval_question: The question which with to prompt the model to do the retrieval.
:param results_version: In case you would like to try the same combination of model, context length, and depth % multiple times, change the results version other than 1
:param num_concurrent_requests: Due to volume, this object is set up to run concurrent requests, default = 1. Be careful of rate limits.
:param save_results: Whether or not you would like to save your contexts to file. Warning: These will get long! Default = True
:param save_contexts: Whether or not you would like to save your contexts to file. Warning: These will get long! Default is True.
:param final_context_length_buffer: The amount of cushion you'd like to leave off the input context to allow for the output context. Default 200 tokens
:param context_lengths_min: The minimum length of the context. Default is 1000.
:param context_lengths_max: The maximum length of the context. Default is 200000.
:param context_lengths_num_intervals: The number of intervals for the context length. Default is 35.
:param context_lengths: The lengths of the context. Default is None.
:param document_depth_percent_min: The minimum depth percent of the document. Default is 0.
:param document_depth_percent_max: The maximum depth percent of the document. Default is 100.
:param document_depth_percent_intervals: The number of intervals for the document depth percent. Default is 35.
:param document_depth_percents: The depth percentages of the document. Default is None.
:param document_depth_percent_interval_type: The type of interval for the document depth percent. Must be either 'linear' or 'sigmoid'. Default is 'linear'.
:param model_provider: The provider of the model. Must be either 'OpenAI' or 'Anthropic'. Default is 'OpenAI'.
:param openai_api_key: The API key for OpenAI. Default is None.
:param anthropic_api_key: The API key for Anthropic. Default is None.
:param model_name: The name of the model. Default is 'gpt-4-1106-preview'.
:param seconds_to_sleep_between_completions: The number of seconds to sleep between completions. Default is None.
:param print_ongoing_status: Whether or not to print the ongoing status. Default is True.
"""
if not needle or not haystack_dir or not retrieval_question:
raise ValueError("Needle, haystack, and retrieval_question must be provided.")
self.needle = needle
self.haystack_dir = haystack_dir
self.retrieval_question = retrieval_question
self.results_version = results_version
self.num_concurrent_requests = num_concurrent_requests
self.save_results = save_results
self.final_context_length_buffer = final_context_length_buffer
self.save_contexts = save_contexts
self.seconds_to_sleep_between_completions = seconds_to_sleep_between_completions
self.print_ongoing_status = print_ongoing_status
self.model_provider = model_provider
self.testing_results = []
self.head_counter = defaultdict(list)
self.mask_topk = mask_topk
if "CUDA_VISIBLE_DEVICES" in os.environ:
self.multi_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"])>1
else:
self.multi_gpus = True
if("/" in model_name):
self.model_version = model_name.split("/")[-1]
else: self.model_version = model_name
if(model_name_suffix is not None): self.model_version += "_" + model_name_suffix
if context_lengths is None:
if context_lengths_min is None or context_lengths_max is None or context_lengths_num_intervals is None:
raise ValueError("Either context_lengths_min, context_lengths_max, context_lengths_intervals need to be filled out OR the context_lengths_list needs to be supplied.")
else:
self.context_lengths = np.round(np.linspace(context_lengths_min, context_lengths_max, num=context_lengths_num_intervals, endpoint=True)).astype(int)
else:
self.context_lengths = context_lengths
if document_depth_percents is None:
if document_depth_percent_min is None or document_depth_percent_max is None or document_depth_percent_intervals is None:
raise ValueError("Either document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals need to be filled out OR the document_depth_percents needs to be supplied.")
else:
if document_depth_percent_interval_type == 'linear':
self.document_depth_percents = np.round(np.linspace(document_depth_percent_min, document_depth_percent_max, num=document_depth_percent_intervals, endpoint=True)).astype(int)
elif document_depth_percent_interval_type == 'sigmoid':
self.document_depth_percents = [self.logistic(x) for x in np.linspace(document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals)]
else:
self.document_depth_percents = document_depth_percents
if document_depth_percent_interval_type not in [None, "linear", "sigmoid"]:
raise ValueError("document_depth_percent_interval_type must be either None, 'linear' or 'sigmoid'. If you'd like your own distribution give a list of ints in via document_depth_percent_intervals")
self.model_name = model_name
if(self.model_provider not in ["OpenAI", "Anthropic"]):
self.enc = AutoTokenizer.from_pretrained(model_name)
print("loading from %s" % model_name)
config = AutoConfig.from_pretrained(model_name)
self.layer_num, self.head_num = config.num_hidden_layers, config.num_attention_heads
print(f"layer number: {self.layer_num}, head number {self.head_num}")
if "Qwen" in self.model_version:
self.model_to_test = Qwen2ForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2"
)
elif "Mixtral" in self.model_version:
self.model_to_test = MixtralForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True,
)
elif "Mistral" in self.model_version:
self.model_to_test = MistralForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True,
)
elif "Phi3" in self.model_version:
self.model_to_test = Phi3ForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True,
)
else:
self.model_to_test = LlamaForCausalLM.from_pretrained(model_name,
use_flash_attention_2="flash_attention_2", torch_dtype=torch.bfloat16,device_map='auto').eval()
if 'llama-2-7b-80k' in self.model_version:
scaling_factor = 10
reset_rope(self.model_to_test, model_max_train_len=81920, scaling_factor=scaling_factor)
else:
self.model_to_test = OpenAI(api_key=openai_api_key)
if(self.model_provider == "OpenAI"):
self.enc = tiktoken.encoding_for_model(self.model_name)
elif(self.model_provider == "Anthropic"):
self.enc = Anthropic().get_tokenizer()
self.model_to_test_description = model_name
self.evaluation_model = None
if "CUDA_VISIBLE_DEVICES" in os.environ:
self.multi_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"])>1
else:
self.multi_gpus = True
model_name = model_name.split('/')[-1]
if self.mask_topk!=0:
if model_name=='Mistral-7B-Instruct-v0.2':
model_name = "Mistral-7B-v0.2-hf"
with open(f"head_score/{model_name}.json", "r") as file:
stable_block_list = json.loads(file.readline())
stable_block_list = [(l[0], np.mean(l[1])) for l in stable_block_list.items()]
stable_block_list = sorted(stable_block_list, key=lambda x: x[1], reverse=True)
self.block_list = [[int(ll) for ll in l[0].split("-")] for l in stable_block_list][:100]
if self.mask_topk > 0:
print(f"masking out top {self.mask_topk} retrieval heads")
else:
print(f"masking out random {-self.mask_topk} heads")
else:
self.block_list = []
def logistic(self, x, L=100, x0=50, k=.1):
if x == 0:
return 0
if x == 100:
return 100
return np.round(L / (1 + np.exp(-k * (x - x0))), 3)
def bound_evaluate_and_log(self, *args):
self.evaluate_and_log(*args)
def run_test(self, args):
# Run through each iteration of context_lengths and depths
tasks = []
for context_length in self.context_lengths:
if context_length < args.s_len or context_length > args.e_len: continue
for depth_percent in self.document_depth_percents:
task = self.bound_evaluate_and_log(context_length, depth_percent)
def generate_prompt(self, context):
# Generate the prompt for the Anthropic model
# Replace the following line with the appropriate prompt structure
test_format=f"This is a very long story book: <book> {context} </book>.\n"
if self.model_version in ["Mistral-7B-Instruct-v0.2"]:
prompt = [
{"role": "user", "content": f"<book>{context}</book>\nBased on the content of the book, Question: {self.retrieval_question}\nAnswer:"},]
return prompt
def retrieval_calculate(self, attention_maxtrix,retrieval_score, inp, step_token,topk=1):
for layer_idx in range(32):
for head_idx in range(32):
values, idx = attention_maxtrix[layer_idx][0][head_idx][-1].topk(topk)
for v, i in zip(values, idx):
if self.needle_start <= i < self.needle_end and inp.item()==self.prompt_ids[i].item():
retrieval_score[layer_idx][head_idx][0] += 1/(self.needle_end - self.needle_start)
retrieval_score[layer_idx][head_idx][1] += step_token
break
def retrieval_head_accumulate(self, retrieval_score):
for layer_idx in range(32):
for head_idx in range(32):
self.head_counter[f"{layer_idx}-{head_idx}"].append(retrieval_score[layer_idx][head_idx][0])
def decode(self, q_outputs, inp, decode_len, block_list=None):
output, retrieval_score = [], [[[0, ''] for _ in range(32)] for _ in range(32)]
past_kv = q_outputs.past_key_values
for step_i in range(decode_len):
inp = inp.view(1, 1)
outputs = self.model_to_test(input_ids=inp, past_key_values=past_kv, use_cache=True, \
output_attentions=False, block_list=block_list)
past_kv = outputs.past_key_values
inp = outputs.logits[0, -1].argmax()
step_token = self.enc.convert_ids_to_tokens(inp.item())
output.append(inp.item())
#self.retrieval_calculate(outputs.attentions, retrieval_score, inp, step_token)
if step_token=='<0x0A>' or inp.item()==144: break
return output, retrieval_score
def find_needle_idx(self, needle):
needle_ids = self.enc(needle, add_special_tokens=False)["input_ids"]
#print( self.enc.decode(needle_ids, skip_special_tokens=False))
span_len = len(needle_ids)
for i in range(len(self.prompt_ids)):
token_span = self.prompt_ids[i : i + span_len]
span_ids = set(token_span.tolist())
overlap = float(len(span_ids.intersection(set(needle_ids)))) / len(set(needle_ids))
if(overlap > 0.9):
return i, i + span_len
return -1, -1
def construct_random_head(self, n):
results = []
seed_list = [i for i in range(32)]
random.shuffle(seed_list)
while len(results) < n:
l, h = random.choices(seed_list, k=2)
if (l, h) in results or (l, h) in self.block_list:
continue
else:
results.append((l, h))
return results
def evaluate_and_log(self, context_length, depth_percent):
# Checks to see if you've already checked a length/percent/version.
# This helps if the program stop running and you want to restart later
# Go generate the required length context and place your needle statement in
if self.mask_topk > 0:
block_list = self.block_list[:self.mask_topk]
save_name = f"{self.model_version}_block_top{self.mask_topk}"
elif self.mask_topk == 0:
block_list = None
save_name = self.model_version
else:
block_list = self.construct_random_head(-self.mask_topk)
save_name = f"{self.model_version}_block_random{-self.mask_topk}"
context = self.generate_context(context_length, depth_percent)
question = f"Based on the content of the book, Question: {self.retrieval_question}\nAnswer:"
if self.model_version in ["Mistral-7B-Instruct-v0.2", "Qwen1.5-14B-Chat"]:
prompt = [
{"role": "user", "content": f"<book>{context}</book>\nBased on the content of the book, Question: {self.retrieval_question}\nAnswer:"},
]
input_ids = self.enc.apply_chat_template(conversation=prompt, tokenize=True, add_generation_prompt=True, return_tensors='pt')
else:
input_context = context + question
input_ids = self.enc(input_context , return_tensors="pt")['input_ids']
test_start_time = time.time()
self.real_needle = "eat a sandwich and sit in Dolores Park on a sunny day"
#self.prompt_ids = torch.concat([context_ids, question_ids], dim=1)[0, :]
self.prompt_ids = input_ids[0, :]
if not self.multi_gpus:
input_ids = input_ids.to(self.model_to_test.device)
self.needle_start, self.needle_end = self.find_needle_idx(self.real_needle)
with torch.no_grad():
q_outputs = self.model_to_test(input_ids=input_ids[:,:-1], use_cache=True, return_dict=True)
output, retrieval_score = self.decode(q_outputs, input_ids[:,-1], 50, block_list=block_list)
response = self.enc.decode(output,skip_special_tokens=True).strip()
test_end_time = time.time()
test_elapsed_time = test_end_time - test_start_time
score = scorer.score(self.real_needle, response)['rouge1'].recall*100
results = {
'model' : self.model_to_test_description,
'context_length' : int(context_length),
'depth_percent' : float(depth_percent),
'version' : self.results_version,
'needle' : self.needle,
'model_response' : response,
'score' : score,
'test_duration_seconds' : test_elapsed_time,
'test_timestamp_utc' : datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S%z')
}
self.testing_results.append(results)
if self.print_ongoing_status:
print (f"-- Test Summary -- ")
print (f"Duration: {test_elapsed_time:.1f} seconds")
print (f"Context: {context_length} tokens")
print (f"Depth: {depth_percent}%")
print (f"Score: {score}")
print (f"Response: {response}\n")
context_file_location = f'{self.model_version.replace(".", "_")}_len_{context_length}_depth_{int(depth_percent*100)}'
if self.save_results:
# Save the context to file for retesting
if not os.path.exists(f'results/graph/{save_name}'):
os.makedirs(f'results/graph/{save_name}')
# Save the result to file for retesting
p = f'results/graph/{save_name}/{context_file_location}_results.json'
print("Writing at %s" % p)
with open(p, 'w') as f:
json.dump(results, f)
def result_exists(self, context_length, depth_percent):
"""
Checks to see if a result has already been evaluated or not
"""
results_dir = 'results/' + self.model_version
print("Searching existing results at %s" % results_dir)
if not os.path.exists(results_dir):
return False
for filename in os.listdir(results_dir):
if filename.endswith('.json'):
with open(os.path.join(results_dir, filename), 'r') as f:
result = json.load(f)
context_length_met = result['context_length'] == context_length
depth_percent_met = result['depth_percent'] == depth_percent
version_met = result.get('version', 1) == self.results_version
model_met = result['model'] == self.model_name
# import ipdb; ipdb.set_trace()
if context_length_met and depth_percent_met and version_met and model_met:
return True
return False
def generate_context(self, context_length, depth_percent):
# Load up tiktoken so we navigate tokens more easily
# Get your Paul Graham files loaded into a string
context = self.read_context_files()
# Truncate the Paul Graham essays to the context length you desire
context = self.encode_and_trim(context, context_length)
# Insert your random statement according to your depth percent
context = self.insert_needle(context, depth_percent, context_length)
return context
def encode_text_to_tokens(self, text):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return self.enc.encode(text)
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return self.enc.encode(text).ids
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def insert_needle(self, context, depth_percent, context_length):
tokens_needle = self.encode_text_to_tokens(self.needle)
tokens_context = self.encode_text_to_tokens(context)
# Reducing the context length by 150 buffer. This is to account for system message, the user question, and response.
context_length -= self.final_context_length_buffer
# If your context + needle are longer than the context length (which it will be), then reduce tokens from the context by the needle length
if len(tokens_context) + len(tokens_needle) > context_length:
tokens_context = tokens_context[:context_length - len(tokens_needle)]
if depth_percent == 100:
# If your depth percent is 100 (which means your needle is the last thing in the doc), throw it at the end
tokens_new_context = tokens_context + tokens_needle
else:
# Go get the position (in terms of tokens) to insert your needle
insertion_point = int(len(tokens_context) * (depth_percent / 100))
# import ipdb; ipdb.set_trace()
# tokens_new_context represents the tokens before the needle
tokens_new_context = tokens_context[:insertion_point]
# We want to make sure that we place our needle at a sentence break so we first see what token a '.' is
if(self.model_provider in ["LLaMA", "LongLLaMA"]): period_tokens = [29889, 869]
elif(self.model_provider == "Mistral"): period_tokens = [842, 28723]
elif(self.model_provider == "GLM"): period_tokens = [918, 30930]
else: period_tokens = self.encode_text_to_tokens('.')
# Then we iteration backwards until we find the first period
while tokens_new_context and tokens_new_context[-1] not in period_tokens:
insertion_point -= 1
tokens_new_context = tokens_context[:insertion_point]
print("insertion at %d" % insertion_point)
# Once we get there, then add in your needle, and stick the rest of your context in on the other end.
# Now we have a needle in a haystack
tokens_new_context += tokens_needle + tokens_context[insertion_point:]
# Convert back to a string and return it
new_context = self.decode_tokens(tokens_new_context)
return new_context
def get_context_length_in_tokens(self, context):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return len(self.enc.encode(context))
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
encoded = self.enc.encode(context)
return len(self.enc.encode(context).ids)
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def read_context_files(self):
context = ""
max_context_length = max(self.context_lengths)
while self.get_context_length_in_tokens(context) < max_context_length:
for file in glob.glob(f"{self.haystack_dir}/*.txt"):
with open(file, 'r') as f:
context += f.read()
return context
def get_tokens_from_context(self, context):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return self.enc.encode(context)
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return self.enc.encode(context).ids
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def decode_tokens(self, tokens, context_length=None):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return self.enc.decode(tokens[:context_length])
elif self.model_provider == "Anthropic":
# Assuming you have a different decoder for Anthropic
return self.enc.decode(tokens[:context_length])
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def encode_and_trim(self, context, context_length):
tokens = self.get_tokens_from_context(context)
if len(tokens) > context_length:
context = self.decode_tokens(tokens, context_length)
return context
def get_results(self):
return self.testing_results
def print_start_test_summary(self):
print ("\n")
print ("Starting Needle In A Haystack Testing...")
print (f"- Model: {self.model_name}")
print (f"- Context Lengths: {len(self.context_lengths)}, Min: {min(self.context_lengths)}, Max: {max(self.context_lengths)}")
print (f"- Document Depths: {len(self.document_depth_percents)}, Min: {min(self.document_depth_percents)}%, Max: {max(self.document_depth_percents)}%")
print (f"- Needle: {self.needle.strip()}")
print ("\n\n")
def start_test(self, args):
if self.print_ongoing_status:
self.print_start_test_summary()
#asyncio.run(self.run_test())
self.run_test(args)
if __name__ == "__main__":
# Tons of defaults set, check out the LLMNeedleHaystackTester's init for more info
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--s_len', metavar='N', type=int, help='a number')
parser.add_argument('-e', '--e_len', metavar='N', type=int, help='a number')
parser.add_argument('--model_path', type=str, default=None, help='path to model')
parser.add_argument('--model_name', type=str, default=None, help='name of model')
parser.add_argument('--model_name_suffix', type=str, default=None, help='name of model')
parser.add_argument('--model_provider', type=str, default="LLaMA", help='which model to use')
parser.add_argument('--api_key', type=str, default="", help='OpenAI API Key')
parser.add_argument('--mask_topk', type=int, default=0, help='mask topk heads, input a negative value to mask random heads')
# parser = add_args(parser)
args = parser.parse_args()
if(args.model_path is not None):
assert(args.model_name is None)
model_name = args.model_path
else:
assert(args.model_name is not None)
ht = LLMNeedleHaystackTester(model_name=model_name,
model_name_suffix=args.model_name_suffix,
model_provider=args.model_provider,
save_contexts=True,
save_results=True,
mask_topk=args.mask_topk,
context_lengths_min=args.s_len,
context_lengths_max=args.e_len,
)
ht.start_test(args)