# Retrieval Head This is the open-source code for paper: *[Retrieval Head Mechanistically Explains Long-Context Factuality](https://arxiv.org/abs/2404.15574)*. This code is implemented based on *[Needle In a HayStack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main)*. 【Update】 Support Phi3 now, thanks to the contribution made by @Wangmerlyn. ## Retrieval Head Detection An algorithm that statistically calculate the retrieval score of attention heads in a transformer model. Because FlashAttention can not return attention matrix, this algorithm is implemented by first caching with FlashAttention and apply normal attention for decoding. ### Environment **Core**: pytorch=2.0.1, transformers=4.37.2, flash-attn=2.5.6 (my environment) **Other**: rouge_score A Single 80G GPU is enough to detect up to 50K length. ### Usage : ```python python retrieval_head_detection.py --model_path $path_to_model --s 0 --e 50000 ``` We find that only few samples can stablely detect some of the strongest retrieval heads. I if you are in a hurry or no fancy large GPUs avalible, you can just set '--e' to a lower value, e.g. ```python python retrieval_head_detection.py --model_path $path_to_model --s 0 --e 5000 ``` Results of retrieval score will be write in './head_score/$model_name.json' **Currently Implemented Model Families**: LLama([Llama-2-7B-80K](https://huggingface.co/yaofu/llama-2-7b-80k)), Yi, Qwen, Mistrial ### Results: All detection results are saved in "./head_score/*.json", where each head is saved in the format of ```python {layer-head_id: [list of retrieval scores across detections]} ``` **Directly load a results for Analysis** ```python ## load head score file, llama-2-7b-80k for example import json import numpy as np with open('./head_score/llama-2-7b-80k.json') as file: head_list = json.loads(file.readline()) ## use the average retrieval score and ranking head_score_list = [([int(ll) for ll in l[0].split("-")],np.mean(l[1])) for l in head_list.items()] head_score_list = sorted(head_score_list, key=lambda x: x[1], reverse=True) top_retrieval_heads = [[l[0], round(np.mean(l[1]), 2)] for l in head_score_list][:10] print(top_retrieval_heads) ''' Head:[16, 19], Retrieval Score: 0.94 Head:[11, 15], Retrieval Score: 0.92 Head:[8, 26], Retrieval Score: 0.8 Head:[6, 9], Retrieval Score: 0.62 Head:[7, 12], Retrieval Score: 0.61 Head:[17, 22], Retrieval Score: 0.56 Head:[11, 2], Retrieval Score: 0.46 Head:[6, 16], Retrieval Score: 0.44 Head:[19, 15], Retrieval Score: 0.42 Head:[21, 30], Retrieval Score: 0.4 ''' ``` ## Influence on Needle-in-a-Haystack This code is implemented by masking the given head in the attention matrix or masking the query in FalshAttention. ### Usage: Setting --mask_top to K > 0 to mask out top K retrieval heads, K < 0 to mask out K random heads, K = 0 for no masking. A Single 80G GPU can test up to ~70K length, 2*80G GPU can test up to 100K length Masking top 30 retrieval heads vs 30 random heads: ```python python needle_in_haystack_with_mask.py --mask_top 30 --s 1000 --e 100000 --model_path $path_to_model #Results of will be written in './results/graph/llama-2-7b-80k_block_top30' python needle_in_haystack_with_mask.py --mask_top -30 --s 1000 --e 100000 --model_path $path_to_model #Results of will be written in './results/graph/llama-2-7b-80k_block_random30' ``` ### Reulsts and Visualization: Replace 'model_name' in './viz/CreateVizFromLLMTesting.ipynb' by the folder name of Needle-in-a-Haystack results. **Mask top 30 Retrieval Head for Llama-2-7b-80K**: ![alt text](viz/top30.png) **Mask random 30 non-Retrieval Head for Llama-2-7b-80K**: ![alt text](viz/random.png)