""" This script is adapted from https://github.com/gkamradt/LLMTest_NeedleInAHaystack # GPT-4 ( python -u needle_in_haystack.py --s_len 0 --e_len 128000\ --model_provider OpenAI\ --model_name gpt-4-1106-preview --api_key $OPENAI_API_KEY ) 2>&1 | tee logs/eval_gpt_4_128k.log # LLaMA 2 32K. Remember to download the model first ( python -u needle_in_haystack.py --s_len 0 --e_len 128000\ --model_provider LLaMA\ --model_path ../../../Llama-2-7B-32K-Instruct ) 2>&1 | tee logs/eval_llama2_32k_instruct.log # LongChat. Remember to download the model first ( python -u needle_in_haystack.py --s_len 0 --e_len 128000\ --model_provider LLaMA\ --model_path /ML-A800/models/longchat-7b-v1.5-32k ) 2>&1 | tee logs/eval_longchat.log # Our llama-2-7b-80k, requires 4*80G A100 # require you to download the model first ( python -u needle_in_haystack.py --s_len 0 --e_len 128000\ --model_provider LLaMA\ --model_path ../../../llama-2-7b-80k ) 2>&1 | tee logs/eval_llama-2-7b-80k.log """ #import tiktoken import os import glob import json from transformers import AutoTokenizer, AutoConfig import sys import random sys.path.append("./faiss_attn/") from source.modeling_llama import LlamaForCausalLM, LlamaConfig from source.modeling_qwen2 import Qwen2ForCausalLM from source.modeling_mixtral import MixtralForCausalLM from source.modeling_mistral import MistralForCausalLM from source.modeling_phi3 import Phi3ForCausalLM import numpy as np import argparse from rouge_score import rouge_scorer scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True) #from openai import OpenAI from datetime import datetime, timezone from collections import defaultdict import time import torch def reset_rope(model, model_max_train_len, scaling_factor): for l in model.model.layers: l.self_attn.rotary_emb.scaling_factor = scaling_factor l.self_attn.rotary_emb._set_cos_sin_cache(seq_len=model_max_train_len, device=l.self_attn.rotary_emb.inv_freq.device, dtype=torch.float32) return class LLMNeedleHaystackTester: """ This class is used to test the LLM Needle Haystack. """ def __init__(self, needle="\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n", haystack_dir="PaulGrahamEssays", retrieval_question="What is the best thing to do in San Francisco?", results_version = 1, context_lengths_min = 1000, context_lengths_max = 128000, context_lengths_num_intervals = 40, context_lengths = None, document_depth_percent_min = 0, document_depth_percent_max = 100, document_depth_percent_intervals = 10, document_depth_percents = None, document_depth_percent_interval_type = "linear", model_provider = "OpenAI", mask_topk=0, anthropic_api_key = None, model_name='', model_name_suffix=None, num_concurrent_requests = 1, save_results = True, save_contexts = True, final_context_length_buffer = 200, seconds_to_sleep_between_completions = None, print_ongoing_status = True): """ :param needle: The needle to be found in the haystack. Default is None. :param haystack_dir: The directory of text files to use as background context (or a haystack) in which the needle is to be found. Default is Paul Graham Essays. :param retrieval_question: The question which with to prompt the model to do the retrieval. :param results_version: In case you would like to try the same combination of model, context length, and depth % multiple times, change the results version other than 1 :param num_concurrent_requests: Due to volume, this object is set up to run concurrent requests, default = 1. Be careful of rate limits. :param save_results: Whether or not you would like to save your contexts to file. Warning: These will get long! Default = True :param save_contexts: Whether or not you would like to save your contexts to file. Warning: These will get long! Default is True. :param final_context_length_buffer: The amount of cushion you'd like to leave off the input context to allow for the output context. Default 200 tokens :param context_lengths_min: The minimum length of the context. Default is 1000. :param context_lengths_max: The maximum length of the context. Default is 200000. :param context_lengths_num_intervals: The number of intervals for the context length. Default is 35. :param context_lengths: The lengths of the context. Default is None. :param document_depth_percent_min: The minimum depth percent of the document. Default is 0. :param document_depth_percent_max: The maximum depth percent of the document. Default is 100. :param document_depth_percent_intervals: The number of intervals for the document depth percent. Default is 35. :param document_depth_percents: The depth percentages of the document. Default is None. :param document_depth_percent_interval_type: The type of interval for the document depth percent. Must be either 'linear' or 'sigmoid'. Default is 'linear'. :param model_provider: The provider of the model. Must be either 'OpenAI' or 'Anthropic'. Default is 'OpenAI'. :param openai_api_key: The API key for OpenAI. Default is None. :param anthropic_api_key: The API key for Anthropic. Default is None. :param model_name: The name of the model. Default is 'gpt-4-1106-preview'. :param seconds_to_sleep_between_completions: The number of seconds to sleep between completions. Default is None. :param print_ongoing_status: Whether or not to print the ongoing status. Default is True. """ if not needle or not haystack_dir or not retrieval_question: raise ValueError("Needle, haystack, and retrieval_question must be provided.") self.needle = needle self.haystack_dir = haystack_dir self.retrieval_question = retrieval_question self.results_version = results_version self.num_concurrent_requests = num_concurrent_requests self.save_results = save_results self.final_context_length_buffer = final_context_length_buffer self.save_contexts = save_contexts self.seconds_to_sleep_between_completions = seconds_to_sleep_between_completions self.print_ongoing_status = print_ongoing_status self.model_provider = model_provider self.testing_results = [] self.head_counter = defaultdict(list) self.mask_topk = mask_topk if "CUDA_VISIBLE_DEVICES" in os.environ: self.multi_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"])>1 else: self.multi_gpus = True if("/" in model_name): self.model_version = model_name.split("/")[-1] else: self.model_version = model_name if(model_name_suffix is not None): self.model_version += "_" + model_name_suffix if context_lengths is None: if context_lengths_min is None or context_lengths_max is None or context_lengths_num_intervals is None: raise ValueError("Either context_lengths_min, context_lengths_max, context_lengths_intervals need to be filled out OR the context_lengths_list needs to be supplied.") else: self.context_lengths = np.round(np.linspace(context_lengths_min, context_lengths_max, num=context_lengths_num_intervals, endpoint=True)).astype(int) else: self.context_lengths = context_lengths if document_depth_percents is None: if document_depth_percent_min is None or document_depth_percent_max is None or document_depth_percent_intervals is None: raise ValueError("Either document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals need to be filled out OR the document_depth_percents needs to be supplied.") else: if document_depth_percent_interval_type == 'linear': self.document_depth_percents = np.round(np.linspace(document_depth_percent_min, document_depth_percent_max, num=document_depth_percent_intervals, endpoint=True)).astype(int) elif document_depth_percent_interval_type == 'sigmoid': self.document_depth_percents = [self.logistic(x) for x in np.linspace(document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals)] else: self.document_depth_percents = document_depth_percents if document_depth_percent_interval_type not in [None, "linear", "sigmoid"]: raise ValueError("document_depth_percent_interval_type must be either None, 'linear' or 'sigmoid'. If you'd like your own distribution give a list of ints in via document_depth_percent_intervals") self.model_name = model_name if(self.model_provider not in ["OpenAI", "Anthropic"]): self.enc = AutoTokenizer.from_pretrained(model_name) print("loading from %s" % model_name) config = AutoConfig.from_pretrained(model_name) self.layer_num, self.head_num = config.num_hidden_layers, config.num_attention_heads print(f"layer number: {self.layer_num}, head number {self.head_num}") if "Qwen" in self.model_version: self.model_to_test = Qwen2ForCausalLM.from_pretrained( model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2" ) elif "Mixtral" in self.model_version: self.model_to_test = MixtralForCausalLM.from_pretrained( model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True, ) elif "Mistral" in self.model_version: self.model_to_test = MistralForCausalLM.from_pretrained( model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True, ) elif "Phi3" in self.model_version: self.model_to_test = Phi3ForCausalLM.from_pretrained( model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True, ) else: self.model_to_test = LlamaForCausalLM.from_pretrained(model_name, use_flash_attention_2="flash_attention_2", torch_dtype=torch.bfloat16,device_map='auto').eval() if 'llama-2-7b-80k' in self.model_version: scaling_factor = 10 reset_rope(self.model_to_test, model_max_train_len=81920, scaling_factor=scaling_factor) else: self.model_to_test = OpenAI(api_key=openai_api_key) if(self.model_provider == "OpenAI"): self.enc = tiktoken.encoding_for_model(self.model_name) elif(self.model_provider == "Anthropic"): self.enc = Anthropic().get_tokenizer() self.model_to_test_description = model_name self.evaluation_model = None if "CUDA_VISIBLE_DEVICES" in os.environ: self.multi_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"])>1 else: self.multi_gpus = True model_name = model_name.split('/')[-1] if self.mask_topk!=0: if model_name=='Mistral-7B-Instruct-v0.2': model_name = "Mistral-7B-v0.2-hf" with open(f"head_score/{model_name}.json", "r") as file: stable_block_list = json.loads(file.readline()) stable_block_list = [(l[0], np.mean(l[1])) for l in stable_block_list.items()] stable_block_list = sorted(stable_block_list, key=lambda x: x[1], reverse=True) self.block_list = [[int(ll) for ll in l[0].split("-")] for l in stable_block_list][:100] if self.mask_topk > 0: print(f"masking out top {self.mask_topk} retrieval heads") else: print(f"masking out random {-self.mask_topk} heads") else: self.block_list = [] def logistic(self, x, L=100, x0=50, k=.1): if x == 0: return 0 if x == 100: return 100 return np.round(L / (1 + np.exp(-k * (x - x0))), 3) def bound_evaluate_and_log(self, *args): self.evaluate_and_log(*args) def run_test(self, args): # Run through each iteration of context_lengths and depths tasks = [] for context_length in self.context_lengths: if context_length < args.s_len or context_length > args.e_len: continue for depth_percent in self.document_depth_percents: task = self.bound_evaluate_and_log(context_length, depth_percent) def generate_prompt(self, context): # Generate the prompt for the Anthropic model # Replace the following line with the appropriate prompt structure test_format=f"This is a very long story book: {context} .\n" if self.model_version in ["Mistral-7B-Instruct-v0.2"]: prompt = [ {"role": "user", "content": f"{context}\nBased on the content of the book, Question: {self.retrieval_question}\nAnswer:"},] return prompt def retrieval_calculate(self, attention_maxtrix,retrieval_score, inp, step_token,topk=1): for layer_idx in range(32): for head_idx in range(32): values, idx = attention_maxtrix[layer_idx][0][head_idx][-1].topk(topk) for v, i in zip(values, idx): if self.needle_start <= i < self.needle_end and inp.item()==self.prompt_ids[i].item(): retrieval_score[layer_idx][head_idx][0] += 1/(self.needle_end - self.needle_start) retrieval_score[layer_idx][head_idx][1] += step_token break def retrieval_head_accumulate(self, retrieval_score): for layer_idx in range(32): for head_idx in range(32): self.head_counter[f"{layer_idx}-{head_idx}"].append(retrieval_score[layer_idx][head_idx][0]) def decode(self, q_outputs, inp, decode_len, block_list=None): output, retrieval_score = [], [[[0, ''] for _ in range(32)] for _ in range(32)] past_kv = q_outputs.past_key_values for step_i in range(decode_len): inp = inp.view(1, 1) outputs = self.model_to_test(input_ids=inp, past_key_values=past_kv, use_cache=True, \ output_attentions=False, block_list=block_list) past_kv = outputs.past_key_values inp = outputs.logits[0, -1].argmax() step_token = self.enc.convert_ids_to_tokens(inp.item()) output.append(inp.item()) #self.retrieval_calculate(outputs.attentions, retrieval_score, inp, step_token) if step_token=='<0x0A>' or inp.item()==144: break return output, retrieval_score def find_needle_idx(self, needle): needle_ids = self.enc(needle, add_special_tokens=False)["input_ids"] #print( self.enc.decode(needle_ids, skip_special_tokens=False)) span_len = len(needle_ids) for i in range(len(self.prompt_ids)): token_span = self.prompt_ids[i : i + span_len] span_ids = set(token_span.tolist()) overlap = float(len(span_ids.intersection(set(needle_ids)))) / len(set(needle_ids)) if(overlap > 0.9): return i, i + span_len return -1, -1 def construct_random_head(self, n): results = [] seed_list = [i for i in range(32)] random.shuffle(seed_list) while len(results) < n: l, h = random.choices(seed_list, k=2) if (l, h) in results or (l, h) in self.block_list: continue else: results.append((l, h)) return results def evaluate_and_log(self, context_length, depth_percent): # Checks to see if you've already checked a length/percent/version. # This helps if the program stop running and you want to restart later # Go generate the required length context and place your needle statement in if self.mask_topk > 0: block_list = self.block_list[:self.mask_topk] save_name = f"{self.model_version}_block_top{self.mask_topk}" elif self.mask_topk == 0: block_list = None save_name = self.model_version else: block_list = self.construct_random_head(-self.mask_topk) save_name = f"{self.model_version}_block_random{-self.mask_topk}" context = self.generate_context(context_length, depth_percent) question = f"Based on the content of the book, Question: {self.retrieval_question}\nAnswer:" if self.model_version in ["Mistral-7B-Instruct-v0.2", "Qwen1.5-14B-Chat"]: prompt = [ {"role": "user", "content": f"{context}\nBased on the content of the book, Question: {self.retrieval_question}\nAnswer:"}, ] input_ids = self.enc.apply_chat_template(conversation=prompt, tokenize=True, add_generation_prompt=True, return_tensors='pt') else: input_context = context + question input_ids = self.enc(input_context , return_tensors="pt")['input_ids'] test_start_time = time.time() self.real_needle = "eat a sandwich and sit in Dolores Park on a sunny day" #self.prompt_ids = torch.concat([context_ids, question_ids], dim=1)[0, :] self.prompt_ids = input_ids[0, :] if not self.multi_gpus: input_ids = input_ids.to(self.model_to_test.device) self.needle_start, self.needle_end = self.find_needle_idx(self.real_needle) with torch.no_grad(): q_outputs = self.model_to_test(input_ids=input_ids[:,:-1], use_cache=True, return_dict=True) output, retrieval_score = self.decode(q_outputs, input_ids[:,-1], 50, block_list=block_list) response = self.enc.decode(output,skip_special_tokens=True).strip() test_end_time = time.time() test_elapsed_time = test_end_time - test_start_time score = scorer.score(self.real_needle, response)['rouge1'].recall*100 results = { 'model' : self.model_to_test_description, 'context_length' : int(context_length), 'depth_percent' : float(depth_percent), 'version' : self.results_version, 'needle' : self.needle, 'model_response' : response, 'score' : score, 'test_duration_seconds' : test_elapsed_time, 'test_timestamp_utc' : datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S%z') } self.testing_results.append(results) if self.print_ongoing_status: print (f"-- Test Summary -- ") print (f"Duration: {test_elapsed_time:.1f} seconds") print (f"Context: {context_length} tokens") print (f"Depth: {depth_percent}%") print (f"Score: {score}") print (f"Response: {response}\n") context_file_location = f'{self.model_version.replace(".", "_")}_len_{context_length}_depth_{int(depth_percent*100)}' if self.save_results: # Save the context to file for retesting if not os.path.exists(f'results/graph/{save_name}'): os.makedirs(f'results/graph/{save_name}') # Save the result to file for retesting p = f'results/graph/{save_name}/{context_file_location}_results.json' print("Writing at %s" % p) with open(p, 'w') as f: json.dump(results, f) def result_exists(self, context_length, depth_percent): """ Checks to see if a result has already been evaluated or not """ results_dir = 'results/' + self.model_version print("Searching existing results at %s" % results_dir) if not os.path.exists(results_dir): return False for filename in os.listdir(results_dir): if filename.endswith('.json'): with open(os.path.join(results_dir, filename), 'r') as f: result = json.load(f) context_length_met = result['context_length'] == context_length depth_percent_met = result['depth_percent'] == depth_percent version_met = result.get('version', 1) == self.results_version model_met = result['model'] == self.model_name # import ipdb; ipdb.set_trace() if context_length_met and depth_percent_met and version_met and model_met: return True return False def generate_context(self, context_length, depth_percent): # Load up tiktoken so we navigate tokens more easily # Get your Paul Graham files loaded into a string context = self.read_context_files() # Truncate the Paul Graham essays to the context length you desire context = self.encode_and_trim(context, context_length) # Insert your random statement according to your depth percent context = self.insert_needle(context, depth_percent, context_length) return context def encode_text_to_tokens(self, text): if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]: return self.enc.encode(text) elif self.model_provider == "Anthropic": # Assuming you have a different encoder for Anthropic return self.enc.encode(text).ids else: raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'") def insert_needle(self, context, depth_percent, context_length): tokens_needle = self.encode_text_to_tokens(self.needle) tokens_context = self.encode_text_to_tokens(context) # Reducing the context length by 150 buffer. This is to account for system message, the user question, and response. context_length -= self.final_context_length_buffer # If your context + needle are longer than the context length (which it will be), then reduce tokens from the context by the needle length if len(tokens_context) + len(tokens_needle) > context_length: tokens_context = tokens_context[:context_length - len(tokens_needle)] if depth_percent == 100: # If your depth percent is 100 (which means your needle is the last thing in the doc), throw it at the end tokens_new_context = tokens_context + tokens_needle else: # Go get the position (in terms of tokens) to insert your needle insertion_point = int(len(tokens_context) * (depth_percent / 100)) # import ipdb; ipdb.set_trace() # tokens_new_context represents the tokens before the needle tokens_new_context = tokens_context[:insertion_point] # We want to make sure that we place our needle at a sentence break so we first see what token a '.' is if(self.model_provider in ["LLaMA", "LongLLaMA"]): period_tokens = [29889, 869] elif(self.model_provider == "Mistral"): period_tokens = [842, 28723] elif(self.model_provider == "GLM"): period_tokens = [918, 30930] else: period_tokens = self.encode_text_to_tokens('.') # Then we iteration backwards until we find the first period while tokens_new_context and tokens_new_context[-1] not in period_tokens: insertion_point -= 1 tokens_new_context = tokens_context[:insertion_point] print("insertion at %d" % insertion_point) # Once we get there, then add in your needle, and stick the rest of your context in on the other end. # Now we have a needle in a haystack tokens_new_context += tokens_needle + tokens_context[insertion_point:] # Convert back to a string and return it new_context = self.decode_tokens(tokens_new_context) return new_context def get_context_length_in_tokens(self, context): if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]: return len(self.enc.encode(context)) elif self.model_provider == "Anthropic": # Assuming you have a different encoder for Anthropic encoded = self.enc.encode(context) return len(self.enc.encode(context).ids) else: raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'") def read_context_files(self): context = "" max_context_length = max(self.context_lengths) while self.get_context_length_in_tokens(context) < max_context_length: for file in glob.glob(f"{self.haystack_dir}/*.txt"): with open(file, 'r') as f: context += f.read() return context def get_tokens_from_context(self, context): if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]: return self.enc.encode(context) elif self.model_provider == "Anthropic": # Assuming you have a different encoder for Anthropic return self.enc.encode(context).ids else: raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'") def decode_tokens(self, tokens, context_length=None): if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]: return self.enc.decode(tokens[:context_length]) elif self.model_provider == "Anthropic": # Assuming you have a different decoder for Anthropic return self.enc.decode(tokens[:context_length]) else: raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'") def encode_and_trim(self, context, context_length): tokens = self.get_tokens_from_context(context) if len(tokens) > context_length: context = self.decode_tokens(tokens, context_length) return context def get_results(self): return self.testing_results def print_start_test_summary(self): print ("\n") print ("Starting Needle In A Haystack Testing...") print (f"- Model: {self.model_name}") print (f"- Context Lengths: {len(self.context_lengths)}, Min: {min(self.context_lengths)}, Max: {max(self.context_lengths)}") print (f"- Document Depths: {len(self.document_depth_percents)}, Min: {min(self.document_depth_percents)}%, Max: {max(self.document_depth_percents)}%") print (f"- Needle: {self.needle.strip()}") print ("\n\n") def start_test(self, args): if self.print_ongoing_status: self.print_start_test_summary() #asyncio.run(self.run_test()) self.run_test(args) if __name__ == "__main__": # Tons of defaults set, check out the LLMNeedleHaystackTester's init for more info parser = argparse.ArgumentParser() parser.add_argument('-s', '--s_len', metavar='N', type=int, help='a number') parser.add_argument('-e', '--e_len', metavar='N', type=int, help='a number') parser.add_argument('--model_path', type=str, default=None, help='path to model') parser.add_argument('--model_name', type=str, default=None, help='name of model') parser.add_argument('--model_name_suffix', type=str, default=None, help='name of model') parser.add_argument('--model_provider', type=str, default="LLaMA", help='which model to use') parser.add_argument('--api_key', type=str, default="", help='OpenAI API Key') parser.add_argument('--mask_topk', type=int, default=0, help='mask topk heads, input a negative value to mask random heads') # parser = add_args(parser) args = parser.parse_args() if(args.model_path is not None): assert(args.model_name is None) model_name = args.model_path else: assert(args.model_name is not None) ht = LLMNeedleHaystackTester(model_name=model_name, model_name_suffix=args.model_name_suffix, model_provider=args.model_provider, save_contexts=True, save_results=True, mask_topk=args.mask_topk, context_lengths_min=args.s_len, context_lengths_max=args.e_len, ) ht.start_test(args)