add extraction script
Browse files- extract_data.py +91 -0
extract_data.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Script to generate splits for benchmarking text embedding clustering.
|
| 2 |
+
Data and preprocessing based on 10kGNAD dataset (https://github.com/tblock/10kGNAD)."""
|
| 3 |
+
|
| 4 |
+
import random
|
| 5 |
+
import re
|
| 6 |
+
import sqlite3
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
import jsonlines
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from bs4 import BeautifulSoup
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
random.seed(42)
|
| 17 |
+
|
| 18 |
+
# path to corpus file, can be retrieved from here: https://github.com/tblock/10kGNAD/releases/download/v1.0/corpus.sqlite3
|
| 19 |
+
DATA_PATH = sys.argv[1]
|
| 20 |
+
|
| 21 |
+
INCLUDE_BODY = (
|
| 22 |
+
False # True: combine title and article body (p2p), False: only title (s2s)
|
| 23 |
+
)
|
| 24 |
+
ARTICLE_QUERY = f"SELECT Path, Title{', Body' if INCLUDE_BODY else ''} FROM Articles WHERE PATH LIKE 'Newsroom/%' AND PATH NOT LIKE 'Newsroom/User%' ORDER BY Path"
|
| 25 |
+
|
| 26 |
+
NUM_SPLITS = 10
|
| 27 |
+
SPLIT_RANGE = np.array([0.1, 1.0])
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_split(frame, split_range=SPLIT_RANGE):
|
| 31 |
+
samples = random.randint(*(split_range * len(frame)).astype(int))
|
| 32 |
+
return frame.sample(samples).to_dict("list")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def write_sets(name, sets):
|
| 36 |
+
with jsonlines.open(name, "w") as f_out:
|
| 37 |
+
f_out.write_all(sets)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
conn = sqlite3.connect(DATA_PATH)
|
| 41 |
+
cursor = conn.cursor()
|
| 42 |
+
|
| 43 |
+
samples = []
|
| 44 |
+
for row in tqdm(cursor.execute(ARTICLE_QUERY).fetchall(), unit_scale=True):
|
| 45 |
+
path, title = row[0], row[1]
|
| 46 |
+
|
| 47 |
+
text = title
|
| 48 |
+
|
| 49 |
+
if INCLUDE_BODY:
|
| 50 |
+
body = row[-1]
|
| 51 |
+
soup = BeautifulSoup(body, "html.parser")
|
| 52 |
+
|
| 53 |
+
# get description from subheadline
|
| 54 |
+
description_obj = soup.find("h2", {"itemprop": "description"})
|
| 55 |
+
if description_obj is not None:
|
| 56 |
+
text += (
|
| 57 |
+
" " + description_obj.text.replace("\n", " ").replace("\t", " ").strip()
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# get text from paragraphs
|
| 61 |
+
text_container = soup.find("div", {"class": "copytext"})
|
| 62 |
+
if text_container is not None:
|
| 63 |
+
for p in text_container.findAll("p"):
|
| 64 |
+
text += " " + (
|
| 65 |
+
p.text.replace("\n", " ")
|
| 66 |
+
.replace("\t", " ")
|
| 67 |
+
.replace('"', "")
|
| 68 |
+
.replace("'", "")
|
| 69 |
+
+ " "
|
| 70 |
+
)
|
| 71 |
+
text = text.strip()
|
| 72 |
+
|
| 73 |
+
# remove article autors
|
| 74 |
+
for author in re.findall(
|
| 75 |
+
r"\.\ \(.+,.+2[0-9]+\)", text[-50:]
|
| 76 |
+
): # some articles have a year of 21015..
|
| 77 |
+
text = text.replace(author, ".")
|
| 78 |
+
|
| 79 |
+
# get label from path
|
| 80 |
+
label = path.split("/")[1]
|
| 81 |
+
samples.append([text, label])
|
| 82 |
+
|
| 83 |
+
conn.close()
|
| 84 |
+
|
| 85 |
+
samples = pd.DataFrame(samples, columns=["sentences", "labels"])
|
| 86 |
+
|
| 87 |
+
sets = []
|
| 88 |
+
for _ in range(NUM_SPLITS):
|
| 89 |
+
sets.append(get_split(samples))
|
| 90 |
+
|
| 91 |
+
write_sets("test.jsonl", sets)
|