Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
< 1K
ArXiv:
License:
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (c5bcd15c6149bbcf7b9463abd90e784ba0903b75)
- Delete loading script (bb5ca8e258c4159c674463b75b6632fe99e8b4b5)
- README.md +8 -3
- data/train-00000-of-00001.parquet +3 -0
- snips_built_in_intents.py +0 -125
README.md
CHANGED
|
@@ -39,10 +39,15 @@ dataset_info:
|
|
| 39 |
'9': ShareETA
|
| 40 |
splits:
|
| 41 |
- name: train
|
| 42 |
-
num_bytes:
|
| 43 |
num_examples: 328
|
| 44 |
-
download_size:
|
| 45 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
train-eval-index:
|
| 47 |
- config: default
|
| 48 |
task: text-classification
|
|
|
|
| 39 |
'9': ShareETA
|
| 40 |
splits:
|
| 41 |
- name: train
|
| 42 |
+
num_bytes: 19427
|
| 43 |
num_examples: 328
|
| 44 |
+
download_size: 11158
|
| 45 |
+
dataset_size: 19427
|
| 46 |
+
configs:
|
| 47 |
+
- config_name: default
|
| 48 |
+
data_files:
|
| 49 |
+
- split: train
|
| 50 |
+
path: data/train-*
|
| 51 |
train-eval-index:
|
| 52 |
- config: default
|
| 53 |
task: text-classification
|
data/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37779fd5d527fb351c4b4d7adbc2596476d38c0239a34d0313dae0c16e618f9b
|
| 3 |
+
size 11158
|
snips_built_in_intents.py
DELETED
|
@@ -1,125 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""Snips built in intents (2016-12-built-in-intents) dataset."""
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
import json
|
| 21 |
-
|
| 22 |
-
import datasets
|
| 23 |
-
from datasets.tasks import TextClassification
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
_DESCRIPTION = """\
|
| 27 |
-
Snips' built in intents dataset was initially used to compare different voice assistants and released as a public dataset hosted at
|
| 28 |
-
https://github.com/sonos/nlu-benchmark 2016-12-built-in-intents. The dataset contains 328 utterances over 10 intent classes. The
|
| 29 |
-
related paper mentioned on the github page is https://arxiv.org/abs/1805.10190 and a related Medium post is
|
| 30 |
-
https://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-d35be6ce568d .
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
_CITATION = """\
|
| 34 |
-
@article{DBLP:journals/corr/abs-1805-10190,
|
| 35 |
-
author = {Alice Coucke and
|
| 36 |
-
Alaa Saade and
|
| 37 |
-
Adrien Ball and
|
| 38 |
-
Th{\'{e}}odore Bluche and
|
| 39 |
-
Alexandre Caulier and
|
| 40 |
-
David Leroy and
|
| 41 |
-
Cl{\'{e}}ment Doumouro and
|
| 42 |
-
Thibault Gisselbrecht and
|
| 43 |
-
Francesco Caltagirone and
|
| 44 |
-
Thibaut Lavril and
|
| 45 |
-
Ma{\"{e}}l Primet and
|
| 46 |
-
Joseph Dureau},
|
| 47 |
-
title = {Snips Voice Platform: an embedded Spoken Language Understanding system
|
| 48 |
-
for private-by-design voice interfaces},
|
| 49 |
-
journal = {CoRR},
|
| 50 |
-
volume = {abs/1805.10190},
|
| 51 |
-
year = {2018},
|
| 52 |
-
url = {http://arxiv.org/abs/1805.10190},
|
| 53 |
-
archivePrefix = {arXiv},
|
| 54 |
-
eprint = {1805.10190},
|
| 55 |
-
timestamp = {Mon, 13 Aug 2018 16:46:59 +0200},
|
| 56 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-1805-10190.bib},
|
| 57 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 58 |
-
}
|
| 59 |
-
"""
|
| 60 |
-
|
| 61 |
-
_DOWNLOAD_URL = (
|
| 62 |
-
"https://raw.githubusercontent.com/sonos/nlu-benchmark/master/2016-12-built-in-intents/benchmark_data.json"
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
class SnipsBuiltInIntents(datasets.GeneratorBasedBuilder):
|
| 67 |
-
"""Snips built in intents (2016-12-built-in-intents) dataset."""
|
| 68 |
-
|
| 69 |
-
def _info(self):
|
| 70 |
-
# ToDo: Consider adding an alternate configuration for the entity slots. The default is to only return the intent labels.
|
| 71 |
-
|
| 72 |
-
return datasets.DatasetInfo(
|
| 73 |
-
description=_DESCRIPTION,
|
| 74 |
-
features=datasets.Features(
|
| 75 |
-
{
|
| 76 |
-
"text": datasets.Value("string"),
|
| 77 |
-
"label": datasets.features.ClassLabel(
|
| 78 |
-
names=[
|
| 79 |
-
"ComparePlaces",
|
| 80 |
-
"RequestRide",
|
| 81 |
-
"GetWeather",
|
| 82 |
-
"SearchPlace",
|
| 83 |
-
"GetPlaceDetails",
|
| 84 |
-
"ShareCurrentLocation",
|
| 85 |
-
"GetTrafficInformation",
|
| 86 |
-
"BookRestaurant",
|
| 87 |
-
"GetDirections",
|
| 88 |
-
"ShareETA",
|
| 89 |
-
]
|
| 90 |
-
),
|
| 91 |
-
}
|
| 92 |
-
),
|
| 93 |
-
homepage="https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents",
|
| 94 |
-
citation=_CITATION,
|
| 95 |
-
task_templates=[TextClassification(text_column="text", label_column="label")],
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
def _split_generators(self, dl_manager):
|
| 99 |
-
# Note: The source dataset doesn't have a train-test split.
|
| 100 |
-
# ToDo: Consider splitting the data into train-test sets and re-hosting.
|
| 101 |
-
samples_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
| 102 |
-
return [
|
| 103 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": samples_path}),
|
| 104 |
-
]
|
| 105 |
-
|
| 106 |
-
def _generate_examples(self, filepath):
|
| 107 |
-
"""Snips built in intent examples."""
|
| 108 |
-
num_examples = 0
|
| 109 |
-
|
| 110 |
-
with open(filepath, encoding="utf-8") as file_obj:
|
| 111 |
-
snips_dict = json.load(file_obj)
|
| 112 |
-
domains = snips_dict["domains"]
|
| 113 |
-
|
| 114 |
-
for domain_dict in domains:
|
| 115 |
-
intents = domain_dict["intents"]
|
| 116 |
-
|
| 117 |
-
for intent_dict in intents:
|
| 118 |
-
label = intent_dict["benchmark"]["Snips"]["original_intent_name"]
|
| 119 |
-
queries = intent_dict["queries"]
|
| 120 |
-
|
| 121 |
-
for query_dict in queries:
|
| 122 |
-
query_text = query_dict["text"]
|
| 123 |
-
|
| 124 |
-
yield num_examples, {"text": query_text, "label": label}
|
| 125 |
-
num_examples += 1 # Explicitly keep track of the number of examples.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|