--- license: mit task_categories: - text-classification - document-question-answering language: - en tags: - academic-papers - openreview - research - pdf - machine-learning size_categories: - 1K= 5MB each) ``` ## 🚀 Quick Start ### Installation ```bash pip install datasets pdfplumber ``` ### Basic Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("sumuks/openreview-pdfs") # Access a PDF sample = dataset['train'][0] pdf_obj = sample['pdf'] # Extract text from first page if pdf_obj.pages: text = pdf_obj.pages[0].extract_text() print(text[:500]) # First 500 characters ``` ### Advanced Usage ```python import pandas as pd # Extract metadata from all PDFs pdf_data = [] for i, sample in enumerate(dataset['train']): pdf_obj = sample['pdf'] # Get metadata title = "Unknown" author = "Unknown" if hasattr(pdf_obj, 'metadata') and pdf_obj.metadata: title = pdf_obj.metadata.get('Title', 'Unknown') author = pdf_obj.metadata.get('Author', 'Unknown') # Extract first page text first_page_text = "" if pdf_obj.pages and len(pdf_obj.pages) > 0: first_page_text = pdf_obj.pages[0].extract_text() or "" pdf_data.append({ 'index': i, 'title': title, 'author': author, 'num_pages': len(pdf_obj.pages) if hasattr(pdf_obj, 'pages') else 0, 'first_page_text': first_page_text }) # Progress indicator if i % 100 == 0: print(f"Processed {i} PDFs...") # Create DataFrame for analysis df = pd.DataFrame(pdf_data) print(f"Dataset summary:\n{df.describe()}") ``` ### Filtering by Content Size ```python # Filter papers by number of pages short_papers = [] long_papers = [] for sample in dataset['train']: pdf_obj = sample['pdf'] if hasattr(pdf_obj, 'pages'): num_pages = len(pdf_obj.pages) if num_pages <= 10: short_papers.append(sample) elif num_pages >= 20: long_papers.append(sample) print(f"Short papers (≤10 pages): {len(short_papers)}") print(f"Long papers (≥20 pages): {len(long_papers)}") ``` ## 📊 Dataset Statistics - **Total PDFs**: 7,814 - **Small Papers**: 1,872 files (< 500KB) - **Medium Papers**: 4,605 files (500KB - 5MB) - **Large Papers**: 1,337 files (≥ 5MB) - **Source**: OpenReview platform - **Domain**: Machine Learning, AI, Computer Science ## 🔬 Research Applications ### Document Understanding ```python # Extract paper structure for sample in dataset['train'][:5]: pdf_obj = sample['pdf'] print(f"Pages: {len(pdf_obj.pages)}") # Analyze page structure for i, page in enumerate(pdf_obj.pages[:3]): # First 3 pages text = page.extract_text() if text: lines = text.split('\n') print(f"Page {i+1}: {len(lines)} lines") ``` ### Academic Text Mining ```python # Extract research topics and keywords import re keywords = {} for sample in dataset['train'][:100]: # Sample first 100 papers pdf_obj = sample['pdf'] if pdf_obj.pages: # Extract abstract (usually on first page) first_page = pdf_obj.pages[0].extract_text() # Simple keyword extraction if 'abstract' in first_page.lower(): # Extract common ML terms ml_terms = ['neural', 'learning', 'algorithm', 'model', 'training', 'optimization', 'deep', 'network', 'classification', 'regression'] for term in ml_terms: if term in first_page.lower(): keywords[term] = keywords.get(term, 0) + 1 print("Most common ML terms:") for term, count in sorted(keywords.items(), key=lambda x: x[1], reverse=True): print(f"{term}: {count}") ``` ### Citation Analysis ```python # Extract citation patterns import re citation_patterns = [] for sample in dataset['train'][:50]: pdf_obj = sample['pdf'] if pdf_obj.pages: # Look for references section for page in pdf_obj.pages: text = page.extract_text() if text and 'references' in text.lower(): # Simple citation extraction citations = re.findall(r'\[\d+\]', text) citation_patterns.extend(citations) print(f"Found {len(citation_patterns)} citation references") ``` ## 🛠️ Technical Details ### PDF Processing - **Library**: Uses `pdfplumber` for PDF processing - **Text Extraction**: Full-text extraction with layout preservation - **Metadata Access**: Original document metadata when available - **Image Support**: Can extract images and figures (see pdfplumber docs) ### Performance Tips ```python # For large-scale processing, use streaming dataset_stream = load_dataset("sumuks/openreview-pdfs", streaming=True) # Process in batches batch_size = 10 batch = [] for sample in dataset_stream['train']: batch.append(sample) if len(batch) >= batch_size: # Process batch for item in batch: pdf_obj = item['pdf'] # Your processing here batch = [] # Reset batch ``` ### Memory Management ```python # For memory-efficient processing def process_pdf_efficiently(sample): pdf_obj = sample['pdf'] # Extract only what you need metadata = { 'num_pages': len(pdf_obj.pages) if hasattr(pdf_obj, 'pages') else 0, 'title': pdf_obj.metadata.get('Title', '') if hasattr(pdf_obj, 'metadata') and pdf_obj.metadata else '' } # Extract text page by page to avoid loading entire document first_page_text = "" if pdf_obj.pages: first_page_text = pdf_obj.pages[0].extract_text() or "" return metadata, first_page_text # Use generator for memory efficiency def pdf_generator(): for sample in dataset['train']: yield process_pdf_efficiently(sample) ``` ## 📈 Use Cases 1. **Large Language Model Training**: Academic domain-specific text 2. **Information Retrieval**: Document search and recommendation 3. **Research Analytics**: Trend analysis and impact prediction 4. **Document Classification**: Paper categorization by topic/methodology 5. **Citation Networks**: Academic relationship mapping 6. **Text Summarization**: Abstract and conclusion extraction 7. **Knowledge Extraction**: Methodology and result mining ## 🔍 Quality Notes - All PDFs are verified and accessible - Original filenames and metadata preserved where possible - Organized structure for efficient browsing and filtering - Compatible with standard PDF processing libraries ## 📝 Citation If you use this dataset in your research, please cite: ```bibtex @misc{sanyal2025sparkscientificallycreativeidea, title={Spark: A System for Scientifically Creative Idea Generation}, author={Aishik Sanyal and Samuel Schapiro and Sumuk Shashidhar and Royce Moon and Lav R. Varshney and Dilek Hakkani-Tur}, year={2025}, eprint={2504.20090}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2504.20090}, } ``` ## 📄 License MIT License - Please respect the original licensing and copyright of individual papers. This dataset is provided for research and educational purposes. ## 🙏 Acknowledgments - **OpenReview**: For hosting and providing access to academic research - **Research Community**: For contributing valuable academic content - **HuggingFace**: For providing the datasets infrastructure - **PDF Processing Libraries**: pdfplumber and related tools ## 🐛 Issues & Support If you encounter any issues with the dataset: 1. Check that you have the required dependencies: `pip install datasets pdfplumber` 2. Ensure you're using the latest version of the datasets library 3. For PDF-specific issues, refer to the pdfplumber documentation 4. Report dataset issues on the HuggingFace discussion page ## 🔄 Updates This dataset was created in 2025 and represents a snapshot of OpenReview content. For the most current research, please also check the live OpenReview platform. --- **Happy Researching! 🚀**