Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Delete loading script
Browse files- eurosat.py +0 -58
eurosat.py
DELETED
|
@@ -1,58 +0,0 @@
|
|
| 1 |
-
import datasets
|
| 2 |
-
from datasets.data_files import DataFilesDict
|
| 3 |
-
from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder, ImageFolderConfig
|
| 4 |
-
|
| 5 |
-
logger = datasets.logging.get_logger(__name__)
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class EuroSAT(ImageFolder):
|
| 9 |
-
R"""
|
| 10 |
-
EuroSAT dataset for image classification.
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
-
BUILDER_CONFIG_CLASS = ImageFolderConfig
|
| 14 |
-
BUILDER_CONFIGS = [
|
| 15 |
-
ImageFolderConfig(
|
| 16 |
-
name="default",
|
| 17 |
-
features=("images", "labels"),
|
| 18 |
-
data_files=DataFilesDict(
|
| 19 |
-
{
|
| 20 |
-
split: f"data/{split}.zip"
|
| 21 |
-
for split in ["train", "test"]
|
| 22 |
-
+ ["contrast", "gaussian_noise", "impulse_noise", "jpeg_compression", "motion_blur", "pixelate", "spatter"]
|
| 23 |
-
}
|
| 24 |
-
),
|
| 25 |
-
)
|
| 26 |
-
]
|
| 27 |
-
|
| 28 |
-
classnames = [
|
| 29 |
-
"annual crop land",
|
| 30 |
-
"forest",
|
| 31 |
-
"brushland or shrubland",
|
| 32 |
-
"highway or road",
|
| 33 |
-
"industrial buildings or commercial buildings",
|
| 34 |
-
"pasture land",
|
| 35 |
-
"permanent crop land",
|
| 36 |
-
"residential buildings or homes or apartments",
|
| 37 |
-
"river",
|
| 38 |
-
"lake or sea",
|
| 39 |
-
]
|
| 40 |
-
|
| 41 |
-
clip_templates = [
|
| 42 |
-
lambda c: f"a centered satellite photo of {c}.",
|
| 43 |
-
lambda c: f"a centered satellite photo of a {c}.",
|
| 44 |
-
lambda c: f"a centered satellite photo of the {c}.",
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
def _info(self):
|
| 48 |
-
return datasets.DatasetInfo(
|
| 49 |
-
description="EuroSAT dataset for image classification.",
|
| 50 |
-
features=datasets.Features(
|
| 51 |
-
{
|
| 52 |
-
"image": datasets.Image(),
|
| 53 |
-
"label": datasets.ClassLabel(names=self.classnames),
|
| 54 |
-
}
|
| 55 |
-
),
|
| 56 |
-
supervised_keys=("image", "label"),
|
| 57 |
-
task_templates=[datasets.ImageClassification(image_column="image", label_column="label")],
|
| 58 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|