Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
extractive-qa
Languages:
code
Size:
100K - 1M
License:
| # coding=utf-8 | |
| # Copyright 2022 CodeQueries Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """CodeQueries: The CodeQueries benchmark dataset.""" | |
| import json | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CODEQUERIES_CITATION = """\ | |
| @article{codequeries2022, | |
| title={Learning to Answer Semantic Queries over Code}, | |
| author={A, B, C, D, E, F}, | |
| journal={arXiv preprint arXiv:<.>}, | |
| year={2022} | |
| } | |
| """ | |
| _IDEAL_DESCRIPTION = """\ | |
| CodeQueries Ideal setup. | |
| """ | |
| _PREFIX_DESCRIPTION = """\ | |
| CodeQueries Prefix setup.""" | |
| _FILE_IDEAL_DESCRIPTION = """\ | |
| CodeQueries File level Ideal setup.""" | |
| _TWOSTEP_DESCRIPTION = """\ | |
| CodeQueries Twostep setup.""" | |
| class CodequeriesConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Codequeries.""" | |
| def __init__(self, features, citation, data_url, url, **kwargs): | |
| """BuilderConfig for Codequeries. | |
| Args: | |
| features: `list[string]`, list of the features that will appear in the | |
| feature dict. Should not include "label". | |
| citation: `string`, citation for the data set. | |
| data_url: `string`, relative data path in repo | |
| url: `string`, link to dataset info page | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| # Version history: | |
| # 1.0.0: Initial version. | |
| super(CodequeriesConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
| self.features = features | |
| self.citation = citation | |
| self.data_url = data_url | |
| self.url = url | |
| class Codequeries(datasets.GeneratorBasedBuilder): | |
| """The Codequeries benchmark.""" | |
| BUILDER_CONFIGS = [ | |
| CodequeriesConfig( | |
| name="ideal", | |
| description=_IDEAL_DESCRIPTION, | |
| features=["query_name", "code_file_path", "context_blocks", | |
| "answer_spans", "supporting_fact_spans", | |
| "example_type", "single_hop", | |
| "subtokenized_input_sequence", "label_sequence"], | |
| citation=_CODEQUERIES_CITATION, | |
| data_url={ | |
| "train": "ideal_train.json", | |
| "dev": "ideal_val.json", | |
| "test": "ideal_test.json" | |
| }, | |
| url="https://huggingface.co/datasets/thepurpleowl/codequeries", | |
| ), | |
| CodequeriesConfig( | |
| name="prefix", | |
| description=_PREFIX_DESCRIPTION, | |
| features=["query_name", "code_file_path", | |
| "answer_spans", "supporting_fact_spans", | |
| "example_type", "single_hop", | |
| "subtokenized_input_sequence", "label_sequence"], | |
| citation=_CODEQUERIES_CITATION, | |
| data_url={ | |
| "test": "prefix_test.json" | |
| }, | |
| url="https://huggingface.co/datasets/thepurpleowl/codequeries", | |
| ), | |
| CodequeriesConfig( | |
| name="file_ideal", | |
| description=_FILE_IDEAL_DESCRIPTION, | |
| features=["query_name", "code_file_path", "context_blocks", | |
| "answer_spans", "supporting_fact_spans", | |
| "example_type", "single_hop", | |
| "subtokenized_input_sequence", "label_sequence"], | |
| citation=_CODEQUERIES_CITATION, | |
| data_url={ | |
| "test": "file_ideal_test.json" | |
| }, | |
| url="https://huggingface.co/datasets/thepurpleowl/codequeries", | |
| ), | |
| CodequeriesConfig( | |
| name="twostep", | |
| description=_TWOSTEP_DESCRIPTION, | |
| features=["query_name", "code_file_path", "context_block", | |
| "answer_spans", "supporting_fact_spans", | |
| "example_type", "single_hop", | |
| "subtokenized_input_sequence", "label_sequence", | |
| "relevance_label"], | |
| citation=_CODEQUERIES_CITATION, | |
| data_url={ | |
| "train": ["twostep_relevance/" + "twostep_relevance_train_" + str(i) + ".json" for i in range(0, 10)], | |
| "dev": ["twostep_relevance/" + "twostep_relevance_dev_" + str(i) + ".json" for i in range(0, 2)], | |
| "test": ["twostep_relevance/" + "twostep_relevance_test_" + str(i) + ".json" for i in range(0, 10)] | |
| }, | |
| url="https://huggingface.co/datasets/thepurpleowl/codequeries", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "ideal" | |
| def _info(self): | |
| features = {} | |
| features["query_name"] = datasets.Value("string") | |
| features["code_file_path"] = datasets.Value("string") | |
| if self.config.name != "prefix": | |
| if self.config.name == "twostep": | |
| features["context_block"] = { | |
| "content": datasets.Value("string"), | |
| "metadata": datasets.Value("string"), | |
| "header": datasets.Value("string"), | |
| "index": datasets.Value("int32") | |
| } | |
| else: | |
| features["context_blocks"] = [ | |
| { | |
| "content": datasets.Value("string"), | |
| "metadata": datasets.Value("string"), | |
| "header": datasets.Value("string"), | |
| "index": datasets.Value("int32") | |
| } | |
| ] | |
| features["answer_spans"] = [ | |
| { | |
| 'span': datasets.Value("string"), | |
| 'start_line': datasets.Value("int32"), | |
| 'start_column': datasets.Value("int32"), | |
| 'end_line': datasets.Value("int32"), | |
| 'end_column': datasets.Value("int32") | |
| } | |
| ] | |
| features["supporting_fact_spans"] = [ | |
| { | |
| 'span': datasets.Value("string"), | |
| 'start_line': datasets.Value("int32"), | |
| 'start_column': datasets.Value("int32"), | |
| 'end_line': datasets.Value("int32"), | |
| 'end_column': datasets.Value("int32") | |
| } | |
| ] | |
| features["example_type"] = datasets.Value("int8") | |
| features["single_hop"] = datasets.Value("bool") | |
| if self.config.name != "prefix": | |
| features["subtokenized_input_sequence"] = datasets.features.Sequence(datasets.Value("string")) | |
| else: | |
| features["subtokenized_input_sequence"] = datasets.features.Sequence(datasets.Value("int32")) | |
| features["label_sequence"] = datasets.features.Sequence(datasets.Value("int8")) | |
| if self.config.name == "twostep": | |
| features["relevance_label"] = datasets.Value("int8") | |
| return datasets.DatasetInfo( | |
| description=self.config.description, | |
| features=datasets.Features(features), | |
| homepage=self.config.url, | |
| citation=_CODEQUERIES_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| dl_dir = dl_manager.download_and_extract(self.config.data_url) | |
| if self.config.name in ["prefix", "file_ideal"]: | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": dl_dir["test"], | |
| "split": datasets.Split.TEST, | |
| }, | |
| ), | |
| ] | |
| else: | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": dl_dir["train"], | |
| "split": datasets.Split.TRAIN, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": dl_dir["dev"], | |
| "split": datasets.Split.VALIDATION, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": dl_dir["test"], | |
| "split": datasets.Split.TEST, | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| if self.config.name in ["prefix", "file_ideal"]: | |
| assert split == datasets.Split.TEST | |
| logger.info("Generating examples from = %s", filepath) | |
| if self.config.name == "twostep": | |
| key = 0 | |
| for fp in filepath: | |
| with open(fp, encoding="utf-8") as f: | |
| for line in f: | |
| row = json.loads(line) | |
| instance_key = str(key) + "_" + row["query_name"] + "_" + row["code_file_path"] | |
| yield instance_key, { | |
| "query_name": row["query_name"], | |
| "code_file_path": row["code_file_path"], | |
| "context_block": row["context_blocks"], # single context block | |
| "answer_spans": row["answer_spans"], | |
| "supporting_fact_spans": row["supporting_fact_spans"], | |
| "example_type": row["example_type"], | |
| "single_hop": row["single_hop"], | |
| "subtokenized_input_sequence": row["subtokenized_input_sequence"], | |
| "label_sequence": row["label_sequence"], | |
| "relevance_label": row["relevance_label"], | |
| } | |
| key += 1 | |
| elif self.config.name == "prefix": | |
| with open(filepath, encoding="utf-8") as f: | |
| key = 0 | |
| for line in f: | |
| row = json.loads(line) | |
| instance_key = str(key) + "_" + row["query_name"] + "_" + row["code_file_path"] | |
| yield instance_key, { | |
| "query_name": row["query_name"], | |
| "code_file_path": row["code_file_path"], | |
| "answer_spans": row["answer_spans"], | |
| "supporting_fact_spans": row["supporting_fact_spans"], | |
| "example_type": row["example_type"], | |
| "single_hop": row["single_hop"], | |
| "subtokenized_input_sequence": row["subtokenized_input_sequence"], | |
| "label_sequence": row["label_sequence"], | |
| } | |
| key += 1 | |
| else: | |
| with open(filepath, encoding="utf-8") as f: | |
| key = 0 | |
| for line in f: | |
| row = json.loads(line) | |
| instance_key = str(key) + "_" + row["query_name"] + "_" + row["code_file_path"] | |
| yield instance_key, { | |
| "query_name": row["query_name"], | |
| "code_file_path": row["code_file_path"], | |
| "context_blocks": row["context_blocks"], | |
| "answer_spans": row["answer_spans"], | |
| "supporting_fact_spans": row["supporting_fact_spans"], | |
| "example_type": row["example_type"], | |
| "single_hop": row["single_hop"], | |
| "subtokenized_input_sequence": row["subtokenized_input_sequence"], | |
| "label_sequence": row["label_sequence"], | |
| } | |
| key += 1 | |