sam3 / visualize-detections.py
davanstrien's picture
davanstrien HF Staff
Add dataset card creation and visualization script for object detection results
2063000
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "matplotlib",
# "pillow",
# ]
# ///
"""
Visualize object detection predictions from a HuggingFace dataset.
This script loads a dataset with object detection predictions and visualizes
the bounding boxes on sample images.
Examples:
# Visualize the first sample with detections
uv run visualize-detections.py my-username/detected-objects --first-with-detections
# Visualize a specific sample
uv run visualize-detections.py my-username/detected-objects --index 0
# Visualize multiple random samples
uv run visualize-detections.py my-username/detected-objects --num-samples 5
# Save visualizations to files instead of displaying
uv run visualize-detections.py my-username/detected-objects --num-samples 3 --output-dir ./visualizations
# Visualize specific split
uv run visualize-detections.py my-username/detected-objects --split train --num-samples 5
"""
import argparse
import random
from pathlib import Path
import matplotlib.patches as patches
import matplotlib.pyplot as plt
from datasets import load_dataset
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Visualize object detection predictions",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
parser.add_argument(
"dataset_id", help="HuggingFace dataset ID (e.g., 'username/dataset')"
)
parser.add_argument(
"--index",
type=int,
default=None,
help="Index of sample to visualize (default: random)",
)
parser.add_argument(
"--num-samples",
type=int,
default=1,
help="Number of samples to visualize (default: 1)",
)
parser.add_argument(
"--first-with-detections",
action="store_true",
help="Find and visualize the first sample with detections",
)
parser.add_argument(
"--split", default="train", help="Dataset split to use (default: 'train')"
)
parser.add_argument(
"--image-column",
default="image",
help="Name of the image column (default: 'image')",
)
parser.add_argument(
"--objects-column",
default="objects",
help="Name of the objects column (default: 'objects')",
)
parser.add_argument(
"--output-dir",
type=str,
default=None,
help="Directory to save visualizations (default: show interactively)",
)
parser.add_argument(
"--figsize-width",
type=int,
default=15,
help="Figure width in inches (default: 15)",
)
parser.add_argument(
"--figsize-height",
type=int,
default=20,
help="Figure height in inches (default: 20)",
)
parser.add_argument(
"--bbox-color",
default="red",
help="Color for bounding boxes (default: 'red')",
)
parser.add_argument(
"--show-scores",
action="store_true",
default=True,
help="Show confidence scores on bounding boxes",
)
return parser.parse_args()
def visualize_sample(
sample,
image_column="image",
objects_column="objects",
figsize=(15, 20),
bbox_color="red",
show_scores=True,
title=None,
):
"""Visualize a single sample with bounding boxes."""
image = sample[image_column]
objects = sample[objects_column]
fig, ax = plt.subplots(1, figsize=figsize)
ax.imshow(image, cmap="gray" if image.mode == "L" else None)
# Draw bounding boxes
num_detections = len(objects["bbox"])
for i in range(num_detections):
bbox = objects["bbox"][i]
score = objects["score"][i]
category = objects["category"][i]
x, y, w, h = bbox
rect = patches.Rectangle(
(x, y), w, h, linewidth=2, edgecolor=bbox_color, facecolor="none"
)
ax.add_patch(rect)
if show_scores:
label = f"{score:.2f}"
ax.text(
x,
y - 5,
label,
color=bbox_color,
fontsize=10,
bbox=dict(facecolor="white", alpha=0.7),
)
# Set title
if title:
ax.set_title(title, fontsize=14, pad=20)
else:
ax.set_title(f"Detections: {num_detections}", fontsize=14, pad=20)
ax.axis("off")
plt.tight_layout()
return fig, ax
def main():
args = parse_args()
# Load dataset
print(f"πŸ“‚ Loading dataset: {args.dataset_id} (split: {args.split})")
dataset = load_dataset(args.dataset_id, split=args.split)
print(f"βœ… Loaded {len(dataset)} samples")
# Determine indices to visualize
if args.index is not None:
indices = [args.index]
elif args.first_with_detections:
# Find first sample with detections
print("πŸ” Finding first sample with detections...")
first_idx = None
for idx in range(len(dataset)):
sample = dataset[idx]
if len(sample[args.objects_column]["bbox"]) > 0:
first_idx = idx
break
if first_idx is None:
print("❌ No samples with detections found in dataset")
return
print(f"βœ… Found first sample with detections at index {first_idx}")
indices = [first_idx]
else:
# Select random samples
indices = random.sample(range(len(dataset)), min(args.num_samples, len(dataset)))
# Create output directory if saving
if args.output_dir:
output_path = Path(args.output_dir)
output_path.mkdir(parents=True, exist_ok=True)
print(f"πŸ’Ύ Saving visualizations to: {output_path}")
# Visualize samples
figsize = (args.figsize_width, args.figsize_height)
for idx in indices:
sample = dataset[idx]
num_detections = len(sample[args.objects_column]["bbox"])
print(f"\nπŸ–ΌοΈ Sample {idx}: {num_detections} detections")
# Create visualization
title = f"Sample {idx} - {num_detections} detections"
fig, ax = visualize_sample(
sample,
image_column=args.image_column,
objects_column=args.objects_column,
figsize=figsize,
bbox_color=args.bbox_color,
show_scores=args.show_scores,
title=title,
)
# Save or show
if args.output_dir:
output_file = output_path / f"sample_{idx}.png"
plt.savefig(output_file, dpi=150, bbox_inches="tight")
print(f" Saved: {output_file}")
plt.close(fig)
else:
plt.show()
if args.output_dir:
print(f"\nβœ… Saved {len(indices)} visualizations to {args.output_dir}")
if __name__ == "__main__":
main()