|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """The WebNLG 2023 Challenge.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import xml.etree.ElementTree as ET | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge_2023/" | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | The WebNLG challenge consists in mapping data to text. The training data consists | 
					
						
						|  | of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation | 
					
						
						|  | of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b). | 
					
						
						|  |  | 
					
						
						|  | a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot) | 
					
						
						|  | b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot | 
					
						
						|  |  | 
					
						
						|  | As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation | 
					
						
						|  | (how to chunk the input data into sentences), lexicalisation (of the DBpedia properties), | 
					
						
						|  | aggregation (how to avoid repetitions) and surface realisation | 
					
						
						|  | (how to build a syntactically correct and natural sounding text). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "" | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @inproceedings{web_nlg, | 
					
						
						|  | author    = {Claire Gardent and | 
					
						
						|  | Anastasia Shimorina and | 
					
						
						|  | Shashi Narayan and | 
					
						
						|  | Laura Perez{-}Beltrachini}, | 
					
						
						|  | editor    = {Regina Barzilay and | 
					
						
						|  | Min{-}Yen Kan}, | 
					
						
						|  | title     = {Creating Training Corpora for {NLG} Micro-Planners}, | 
					
						
						|  | booktitle = {Proceedings of the 55th Annual Meeting of the | 
					
						
						|  | Association for Computational Linguistics, | 
					
						
						|  | {ACL} 2017, Vancouver, Canada, July 30 - August 4, | 
					
						
						|  | Volume 1: Long Papers}, | 
					
						
						|  | pages     = {179--188}, | 
					
						
						|  | publisher = {Association for Computational Linguistics}, | 
					
						
						|  | year      = {2017}, | 
					
						
						|  | url       = {https://doi.org/10.18653/v1/P17-1017}, | 
					
						
						|  | doi       = {10.18653/v1/P17-1017} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _URL = "data.zip" | 
					
						
						|  |  | 
					
						
						|  | _LANGUAGES = ["br", "cy", "ga", "mt", "ru"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def et_to_dict(tree): | 
					
						
						|  | dct = {tree.tag: {} if tree.attrib else None} | 
					
						
						|  | children = list(tree) | 
					
						
						|  | if children: | 
					
						
						|  | dd = defaultdict(list) | 
					
						
						|  | for dc in map(et_to_dict, children): | 
					
						
						|  | for k, v in dc.items(): | 
					
						
						|  | dd[k].append(v) | 
					
						
						|  | dct = {tree.tag: dd} | 
					
						
						|  | if tree.attrib: | 
					
						
						|  | dct[tree.tag].update((k, v) for k, v in tree.attrib.items()) | 
					
						
						|  | if tree.text: | 
					
						
						|  | text = tree.text.strip() | 
					
						
						|  | if children or tree.attrib: | 
					
						
						|  | if text: | 
					
						
						|  | dct[tree.tag]["text"] = text | 
					
						
						|  | else: | 
					
						
						|  | dct[tree.tag] = text | 
					
						
						|  | return dct | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_entry(entry): | 
					
						
						|  | res = {} | 
					
						
						|  | otriple_set_list = entry["originaltripleset"] | 
					
						
						|  | res["original_triple_sets"] = [{"otriple_set": otriple_set["otriple"]} for otriple_set in otriple_set_list] | 
					
						
						|  | mtriple_set_list = entry["modifiedtripleset"] | 
					
						
						|  | res["modified_triple_sets"] = [{"mtriple_set": mtriple_set["mtriple"]} for mtriple_set in mtriple_set_list] | 
					
						
						|  | res["category"] = entry["category"] | 
					
						
						|  | res["eid"] = entry["eid"] | 
					
						
						|  | res["size"] = int(entry["size"]) | 
					
						
						|  | res["lex"] = { | 
					
						
						|  | "comment": [ex.get("comment", "") for ex in entry.get("lex", [])], | 
					
						
						|  | "lid": [ex.get("lid", "") for ex in entry.get("lex", [])], | 
					
						
						|  | "text": [ex.get("text", "") for ex in entry.get("lex", [])], | 
					
						
						|  | "lang": [ex.get("lang", "") for ex in entry.get("lex", [])], | 
					
						
						|  | } | 
					
						
						|  | res["shape"] = entry.get("shape", "") | 
					
						
						|  | res["shape_type"] = entry.get("shape_type", "") | 
					
						
						|  | return res | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def xml_file_to_examples(filename): | 
					
						
						|  | tree = ET.parse(filename).getroot() | 
					
						
						|  | examples = et_to_dict(tree)["benchmark"]["entries"][0]["entry"] | 
					
						
						|  | return [parse_entry(entry) for entry in examples] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Challenge2023(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """The WebNLG 2023 Challenge dataset.""" | 
					
						
						|  |  | 
					
						
						|  | VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [datasets.BuilderConfig(name=language) for language in _LANGUAGES] | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "category": datasets.Value("string"), | 
					
						
						|  | "size": datasets.Value("int32"), | 
					
						
						|  | "eid": datasets.Value("string"), | 
					
						
						|  | "original_triple_sets": datasets.Sequence( | 
					
						
						|  | {"otriple_set": datasets.Sequence(datasets.Value("string"))} | 
					
						
						|  | ), | 
					
						
						|  | "modified_triple_sets": datasets.Sequence( | 
					
						
						|  | {"mtriple_set": datasets.Sequence(datasets.Value("string"))} | 
					
						
						|  | ), | 
					
						
						|  | "shape": datasets.Value("string"), | 
					
						
						|  | "shape_type": datasets.Value("string"), | 
					
						
						|  | "lex": datasets.Sequence( | 
					
						
						|  | { | 
					
						
						|  | "comment": datasets.Value("string"), | 
					
						
						|  | "lid": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "lang": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  | data_dir = dl_manager.download_and_extract(_URL) | 
					
						
						|  | splits = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev"} | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=split, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "xml_file": os.path.join(data_dir, "data", f"{self.config.name}_{split_filename}.xml"), | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | for split, split_filename in splits.items() | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, xml_file): | 
					
						
						|  | """Yields examples.""" | 
					
						
						|  | id_ = 0 | 
					
						
						|  | for exple_dict in xml_file_to_examples(xml_file): | 
					
						
						|  | yield id_, exple_dict | 
					
						
						|  | id_ += 1 | 
					
						
						|  |  |