{ "cells": [ { "cell_type": "code", "execution_count": 6, "id": "b6948f5d-bf4b-4704-8249-0bfe965bcccc", "metadata": {}, "outputs": [], "source": [ "def return_eval(pred2score, target2score, mean):\n", " mean2 = 2 * mean\n", " pred = [p.lower() for p in pred2score]\n", " target = [p.lower() for p in target2score]\n", " o = len(set(target))\n", "\n", " intersect = len(set(pred[:o]).intersection(set(target)))\n", " budgetaccone = len(set(pred[:mean]).intersection(set(target)))/mean\n", " budgetacctwo = len(set(pred[:mean2]).intersection(set(target)))/mean2\n", " prec = intersect/len(set(pred[:o])) if len(pred) > 0 else 0.0\n", " rec = intersect/len(target)\n", "\n", " \n", " kmean = len(set(pred[:mean]))\n", " k2mean = len(set(pred[:mean2]))\n", "\n", " if prec==0 and rec==0:\n", " f1=0\n", " else:\n", " f1 = 2*prec*rec/(prec+rec)\n", " \n", " return {\"P@O\":100*prec, \"R@O\": 100*rec, \"F1@O\":100*f1, \"B@mean\": budgetaccone, \"B@2mean\": budgetacctwo, \"#k@mean\": kmean, \"#k@2mean\": k2mean}\n", "\n", "def final_metric_results(preds_keyphrases, labels_keyphrases, mean):\n", " avg_scores = defaultdict(list)\n", " for pred, target in zip(preds_keyphrases, labels_keyphrases):\n", "\n", " all_exact_results = return_eval(pred, target, mean)\n", " \n", " for m_name, value in all_exact_results.items():\n", " avg_scores[m_name].append(value)\n", "\n", " avg_scores[\"pred_kpnum\"].append(len(set(pred)))\n", " avg_scores[\"gt_kpnum\"].append(len(set(target)))\n", " \n", " avg_scores = {m_name: round(np.mean(values),2) for m_name, values in avg_scores.items()}\n", "\n", " return avg_scores\n", " \n", "def generate_results(df, mean):\n", " \n", " labels_keyphrases = [p.lower().split(\";\") for p in df[\"target\"]]\n", " preds_keyphrases = []\n", " for i in range(len(df)):\n", " # preds_keyphrases.append(post_process(df.iloc[i][\"keyword\"])[:k])\n", " preds_keyphrases.append(post_process(df.iloc[i][\"keyword\"]))\n", " \n", " print(\"@\",mean) \n", " return final_metric_results(preds_keyphrases, labels_keyphrases, mean)" ] }, { "cell_type": "code", "execution_count": null, "id": "761906b8-6c1d-4d48-adcf-20589d9a0385", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }