{ "cells": [ { "cell_type": "code", "execution_count": 3, "id": "56c5bf21-53d3-4403-89b3-4cd0a5b0777b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data/ebay/notebooks/haorzhang/examples/pusl_github\n" ] } ], "source": [ "from datasets import load_dataset, concatenate_datasets\n", "import os" ] }, { "cell_type": "code", "execution_count": 11, "id": "b6948f5d-bf4b-4704-8249-0bfe965bcccc", "metadata": {}, "outputs": [], "source": [ "\n", "data_dir = \"data\"\n", "\n", "def load_data_by_name(data_name, split):\n", " postfix = \"csv\"\n", " assert data_name in [\"Eurlex-4.3K\", \"AmazonCat-13K\"]\n", " data_path = os.path.join(data_dir, data_name)\n", " num_data_files = {}\n", " num_path_list = []\n", "\n", " for file_name in os.listdir(data_path):\n", " if file_name.startswith(\"num_\") and (split+\".\") in file_name:\n", " file_path = os.path.join(data_path, file_name)\n", " num_data_files[file_name] = file_path\n", " num_path_list.append(file_path)\n", " print(\"data list\", num_path_list)\n", " \n", " num_dataset_list = [\n", " load_dataset(postfix, data_files=num_data, split=\"train\")\n", " for num_data in num_path_list\n", " ]\n", " concat_dataset = concatenate_datasets(num_dataset_list)\n", " return concat_dataset\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "8f268925-b786-42bf-9192-5148fda9d75a", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 6, "id": "ec8e19a0-8acd-4a8a-8d0e-ae53fad37443", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.26.4\n", " warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n" ] } ], "source": [ "eurlex_train = load_data_by_name(\"Eurlex-4.3K\", split=\"train\")\n", "amazoncat_train = load_data_by_name(\"AmazonCat-13K\", split=\"train\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "310494b0-bdd6-40be-8ff5-30cffa4442ed", "metadata": {}, "outputs": [], "source": [ "# amazoncat_train[:10]" ] }, { "cell_type": "code", "execution_count": 12, "id": "761906b8-6c1d-4d48-adcf-20589d9a0385", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "data list ['data/AmazonCat-13K/num_1_test.csv', 'data/AmazonCat-13K/num_15_test.csv', 'data/AmazonCat-13K/num_3_test.csv', 'data/AmazonCat-13K/num_5_test.csv', 'data/AmazonCat-13K/num_7_test.csv', 'data/AmazonCat-13K/num_8_test.csv', 'data/AmazonCat-13K/num_14_test.csv', 'data/AmazonCat-13K/num_17_test.csv', 'data/AmazonCat-13K/num_18_test.csv', 'data/AmazonCat-13K/num_16_test.csv', 'data/AmazonCat-13K/num_4_test.csv', 'data/AmazonCat-13K/num_11_test.csv', 'data/AmazonCat-13K/num_19_test.csv', 'data/AmazonCat-13K/num_6_test.csv', 'data/AmazonCat-13K/num_9_test.csv', 'data/AmazonCat-13K/num_10_test.csv', 'data/AmazonCat-13K/num_13_test.csv', 'data/AmazonCat-13K/num_2_test.csv', 'data/AmazonCat-13K/num_12_test.csv']\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9b92cd88a7884f1b9d9195b7c93044f3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "be5bb6a3eaa2406eb863fa0db9591f6a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "40d1d323222b438296f6ca20469ad357", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dc27865a734745d092f56404c073e775", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ed08df72911f47d4934d883ca07e7075", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "34df673160704fdea4ba0160b5322813", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9e9612f9473c4aefbfb5aeaa8275068f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3658e985c20e469086a326ab42fb62cb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9d220cdc95cb4b448098a6abbdbf7bf7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "173ec3de957b40aaaf02c70fca267108", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "71eb62f31e4e4f4fab84d5168ac8c36a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "be4d2ec7d3054d75bf80cee8d477f480", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a87c1ab290264b459eb1840b49e671c9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a5ab312c89104d1f94f84ef7d08afcb4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "96394096c6b54b918083eb39ecba76dd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9a25a2da1c30496db4679c422d7c05b3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "83193442191a48f4bd5811863e4cfb7e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e2427fbeb4bc4fd48deb461459d7aaec", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "amazoncat_test = load_data_by_name(\"AmazonCat-13K\", split=\"test\")\n", "df_amazoncat_test = amazoncat_test.to_pandas()\n", "df_amazoncat_test_narrow = df_amazoncat_test[df_amazoncat_test[\"num_keyphrases\"] <= 2*5]\n", "df_amazoncat_test_diverse = df_amazoncat_test[df_amazoncat_test[\"num_keyphrases\"] > 2*5]" ] }, { "cell_type": "code", "execution_count": 19, "id": "49f925bf-8bb3-492e-8fed-dd7cad5649f5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "data list ['data/Eurlex-4.3K/num_1_test.csv', 'data/Eurlex-4.3K/num_15_test.csv', 'data/Eurlex-4.3K/num_21_test.csv', 'data/Eurlex-4.3K/num_23_test.csv', 'data/Eurlex-4.3K/num_28_test.csv', 'data/Eurlex-4.3K/num_30_test.csv', 'data/Eurlex-4.3K/num_35_test.csv', 'data/Eurlex-4.3K/num_3_test.csv', 'data/Eurlex-4.3K/num_5_test.csv', 'data/Eurlex-4.3K/num_7_test.csv', 'data/Eurlex-4.3K/num_8_test.csv', 'data/Eurlex-4.3K/num_14_test.csv', 'data/Eurlex-4.3K/num_17_test.csv', 'data/Eurlex-4.3K/num_18_test.csv', 'data/Eurlex-4.3K/num_20_test.csv', 'data/Eurlex-4.3K/num_26_test.csv', 'data/Eurlex-4.3K/num_16_test.csv', 'data/Eurlex-4.3K/num_37_test.csv', 'data/Eurlex-4.3K/num_40_test.csv', 'data/Eurlex-4.3K/num_42_test.csv', 'data/Eurlex-4.3K/num_4_test.csv', 'data/Eurlex-4.3K/num_11_test.csv', 'data/Eurlex-4.3K/num_19_test.csv', 'data/Eurlex-4.3K/num_22_test.csv', 'data/Eurlex-4.3K/num_27_test.csv', 'data/Eurlex-4.3K/num_34_test.csv', 'data/Eurlex-4.3K/num_39_test.csv', 'data/Eurlex-4.3K/num_6_test.csv', 'data/Eurlex-4.3K/num_9_test.csv', 'data/Eurlex-4.3K/num_10_test.csv', 'data/Eurlex-4.3K/num_13_test.csv', 'data/Eurlex-4.3K/num_32_test.csv', 'data/Eurlex-4.3K/num_33_test.csv', 'data/Eurlex-4.3K/num_41_test.csv', 'data/Eurlex-4.3K/num_2_test.csv', 'data/Eurlex-4.3K/num_12_test.csv', 'data/Eurlex-4.3K/num_24_test.csv', 'data/Eurlex-4.3K/num_25_test.csv', 'data/Eurlex-4.3K/num_29_test.csv', 'data/Eurlex-4.3K/num_31_test.csv', 'data/Eurlex-4.3K/num_36_test.csv', 'data/Eurlex-4.3K/num_38_test.csv']\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ca6d22bba9be4a189429b351ea6ca6f4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8649ffd4855b4f64a9aa1b4e35ec0a9d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "29d94f1990e04a4b999a9342fbe1c04e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ac71e14d40da4e34ab41e9990b4a1f67", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "011ab1cecdcb4641bb21319e20360a17", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "51bf0f8ed4ed4220891a0ac80122f2fe", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "47b1c5223cdd499881cf0968f1226854", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "36eaa65b1e114154b886f3cbae44ba6a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cc06d0aa3a1742e29ecb1ae03719bb28", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "567be222a4914ce0ac899ea3283695a6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "308f4cb1d5974af19c6ed59c51dc11ab", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a2bc8d44ad7e45499ce188b47985f46e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e07b5cb0e12e411bbb4aafc517d48a81", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "11db8dada8544432bc94d0612ff3ff27", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e4397ae0e4e14ebfaab0cc8bc0ee6e51", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fae8cbce454d42a3a31d0d3661d9e4ed", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b32626755caf4a28a21eb5fb9fa72e7f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dadfe9eb07004d85a86223911c05c353", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "16e0b00a6dcd4f748db4ceaba6ce0f61", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f9efa8cef0524848ad40bf91ff819338", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d9a8f0b997ee49fb93d920bdca102c6e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dfc32b7f1b6c43ad87df5cb93d74509e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8032caba97b0401594899337b348dc6f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e4849fd7c62941719928969fa67cfac5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fbae7fbc47724893a3dc85aa4788f529", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8143b83308284ef98de8fdaa13cdbafb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3165953202584c3db9c5b41a8bbc1707", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4823e131bbf4436895a04c577123998c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "89e32dd82687487d9391d7d938378cb3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aa3199550dfd46eb81b610275dc2c077", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3df62eccd0ea4093ab641aafa55ffd89", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "235c176234a6464a8d5a88edf397dde4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3426003bb9fd4631a87f4802435b3ac6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b68e30bbce624b20a1f83c037e9b8681", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4ec3e04a59d94d54b34517a3bd5de1dc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8fc2181ab29e41b8b49e5e527f75b09e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "566f002d194246a082f2216fc4ba53d6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4e283eaffd8d428c860d6264bcbd3cc9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2050cda0af144794a2dc417c648a23bd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6ad38712f3fd44ee9245d5869cf45c0e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e23b74600bf3483da0ee0739f2eb4243", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c08764520d8b46f1a4a253717ab08807", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0 examples [00:00, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "eurlex_test = load_data_by_name(\"Eurlex-4.3K\", split=\"test\")\n", "df_eurlex_test = eurlex_test.to_pandas()\n", "df_eurlex_test_narrow = df_eurlex_test[df_eurlex_test[\"num_keyphrases\"] <= 2*15]\n", "df_eurlex_test_diverse = df_eurlex_test[df_eurlex_test[\"num_keyphrases\"] > 2*15]" ] }, { "cell_type": "code", "execution_count": 17, "id": "16165803-a38b-434b-baf4-ac4b7d5a0eb5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10000" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def return_eval(pred2score, target2score, mean):\n", " mean2 = 2 * mean\n", " pred = [p.lower() for p in pred2score]\n", " target = [p.lower() for p in target2score]\n", " o = len(set(target))\n", "\n", " intersect = len(set(pred[:o]).intersection(set(target)))\n", " budgetaccone = len(set(pred[:mean]).intersection(set(target)))/mean\n", " budgetacctwo = len(set(pred[:mean2]).intersection(set(target)))/mean2\n", " prec = intersect/len(set(pred[:o])) if len(pred) > 0 else 0.0\n", " rec = intersect/len(target)\n", "\n", " \n", " kmean = len(set(pred[:mean]))\n", " k2mean = len(set(pred[:mean2]))\n", "\n", " if prec==0 and rec==0:\n", " f1=0\n", " else:\n", " f1 = 2*prec*rec/(prec+rec)\n", " \n", " return {\"P@O\":100*prec, \"R@O\": 100*rec, \"F1@O\":100*f1, \"B@mean\": budgetaccone, \"B@2mean\": budgetacctwo, \"#k@mean\": kmean, \"#k@2mean\": k2mean}\n", "\n", "def final_metric_results(preds_keyphrases, labels_keyphrases, mean):\n", " avg_scores = defaultdict(list)\n", " for pred, target in zip(preds_keyphrases, labels_keyphrases):\n", "\n", " all_exact_results = return_eval(pred, target, mean)\n", " \n", " for m_name, value in all_exact_results.items():\n", " avg_scores[m_name].append(value)\n", "\n", " avg_scores[\"pred_kpnum\"].append(len(set(pred)))\n", " avg_scores[\"gt_kpnum\"].append(len(set(target)))\n", " \n", " avg_scores = {m_name: round(np.mean(values),2) for m_name, values in avg_scores.items()}\n", "\n", " return avg_scores\n", " \n", "def generate_results(df, mean):\n", " \n", " labels_keyphrases = [p.lower().split(\";\") for p in df[\"target\"]]\n", " preds_keyphrases = []\n", " for i in range(len(df)):\n", " # preds_keyphrases.append(post_process(df.iloc[i][\"keyword\"])[:k])\n", " preds_keyphrases.append(post_process(df.iloc[i][\"keyword\"]))\n", " \n", " print(\"@\",mean) \n", " return final_metric_results(preds_keyphrases, labels_keyphrases, mean)" ] }, { "cell_type": "code", "execution_count": 18, "id": "2a99636a-3950-495a-bf1b-68344e994088", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4313" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "return_eval()" ] }, { "cell_type": "code", "execution_count": null, "id": "2ac7d00a-da2c-4e23-a384-c197c99b11bb", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }