theory_file
stringclasses
970 values
lemma_name
stringlengths
6
108
lemma_command
stringlengths
15
14.6k
lemma_object
stringlengths
6
17.2k
template
stringlengths
7
16.1k
symbols
listlengths
0
101
types
listlengths
0
101
defs
listlengths
0
83
output_key
stringclasses
1 value
input
stringlengths
37
79.6k
output
stringlengths
24
16.1k
Auth/Event
Event.knows_subset_knows_Says
lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)"
knows ?A ?evs \<subseteq> knows ?A (Says ?A' ?B ?X # ?evs)
?H1 (?H2 x_1 x_2) (?H2 x_1 (?H3 (?H4 x_3 x_4 x_5) x_2))
[ "Event.event.Says", "List.list.Cons", "Event.knows", "Set.subset_eq" ]
[ "agent \\<Rightarrow> agent \\<Rightarrow> msg \\<Rightarrow> event", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "datatype\n event = Says agent agent msg\n | Gets agent msg\n | Notes agent msg", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec knows :: \"agent \\<Rightarrow> event list \\<Rightarrow> msg set\"\nwhere\n knows_Nil: \"knows A [] = initState A\"\n| knows_Cons:\n \"knows A (ev # evs) =\n (if A = Spy then \n (case ev of\n Says A' B X \\<Rightarrow> insert X (knows Spy evs)\n | Gets A' X \\<Rightarrow> knows Spy evs\n | Notes A' X \\<Rightarrow> \n if A' \\<in> bad then insert X (knows Spy evs) else knows Spy evs)\n else\n (case ev of\n Says A' B X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Gets A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Notes A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs))\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma knows ?A ?evs \<subseteq> knows ?A (Says ?A' ?B ?X # ?evs) ###symbols Event.event.Says :::: agent \<Rightarrow> agent \<Rightarrow> msg \<Rightarrow> event List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Event.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs datatype event = Says agent agent msg | Gets agent msg | Notes agent msg datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec knows :: "agent \<Rightarrow> event list \<Rightarrow> msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X \<Rightarrow> insert X (knows Spy evs) | Gets A' X \<Rightarrow> knows Spy evs | Notes A' X \<Rightarrow> if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Gets A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Notes A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs))" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?H1 (?H2 x_1 x_2) (?H2 x_1 (?H3 (?H4 x_3 x_4 x_5) x_2))###end
Library/Tree
Tree.preorder_map
lemma preorder_map: "preorder (map_tree f t) = map f (preorder t)"
preorder (map_tree ?f ?t) = map ?f (preorder ?t)
?H1 (?H2 x_1 x_2) = ?H3 x_1 (?H1 x_2)
[ "List.list.map", "Tree.tree.map_tree", "Tree.preorder" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a list \\<Rightarrow> 'b list", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a tree \\<Rightarrow> 'b tree", "'a tree \\<Rightarrow> 'a list" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype 'a tree =\n Leaf (\"\\<langle>\\<rangle>\") |\n Node \"'a tree\" (\"value\": 'a) \"'a tree\" (\"(1\\<langle>_,/ _,/ _\\<rangle>)\")", "fun preorder :: \"'a tree \\<Rightarrow> 'a list\" where\n\"preorder \\<langle>\\<rangle> = []\" |\n\"preorder \\<langle>l, x, r\\<rangle> = x # preorder l @ preorder r\"" ]
template
###lemma preorder (map_tree ?f ?t) = map ?f (preorder ?t) ###symbols List.list.map :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list Tree.tree.map_tree :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a tree \<Rightarrow> 'b tree Tree.preorder :::: 'a tree \<Rightarrow> 'a list ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype 'a tree = Leaf ("\<langle>\<rangle>") | Node "'a tree" ("value": 'a) "'a tree" ("(1\<langle>_,/ _,/ _\<rangle>)") fun preorder :: "'a tree \<Rightarrow> 'a list" where "preorder \<langle>\<rangle> = []" | "preorder \<langle>l, x, r\<rangle> = x # preorder l @ preorder r"
###output ?H1 (?H2 x_1 x_2) = ?H3 x_1 (?H1 x_2)###end
Topological_Spaces
Topological_Spaces.continuous_on_min
lemma continuous_on_min [continuous_intros]: fixes f g :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. min (f x) (g x))"
continuous_on ?A ?f \<Longrightarrow> continuous_on ?A ?g \<Longrightarrow> continuous_on ?A (\<lambda>x. min (?f x) (?g x))
\<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 (\<lambda>y_0. ?H2 (x_2 y_0) (x_3 y_0))
[ "Orderings.ord_class.min", "Topological_Spaces.continuous_on" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "class ord =\n fixes less_eq :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\n and less :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\nbegin", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"" ]
template
###lemma continuous_on ?A ?f \<Longrightarrow> continuous_on ?A ?g \<Longrightarrow> continuous_on ?A (\<lambda>x. min (?f x) (?g x)) ###symbols Orderings.ord_class.min :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))"
###output \<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 (\<lambda>y_0. ?H2 (x_2 y_0) (x_3 y_0))###end
Analysis/Henstock_Kurzweil_Integration
Henstock_Kurzweil_Integration.fundamental_theorem_of_calculus_interior_strong
lemma fundamental_theorem_of_calculus_interior_strong: fixes f :: "real \<Rightarrow> 'a::banach" assumes "finite S" and "a \<le> b" "\<And>x. x \<in> {a <..< b} - S \<Longrightarrow> (f has_vector_derivative f'(x)) (at x)" and "continuous_on {a .. b} f" shows "(f' has_integral (f b - f a)) {a .. b}"
finite ?S \<Longrightarrow> ?a \<le> ?b \<Longrightarrow> (\<And>x. x \<in> { ?a<..< ?b} - ?S \<Longrightarrow> (?f has_vector_derivative ?f' x) (at x)) \<Longrightarrow> continuous_on { ?a.. ?b} ?f \<Longrightarrow> (?f' has_integral ?f ?b - ?f ?a) { ?a.. ?b}
\<lbrakk> ?H1 x_1; x_2 \<le> x_3; \<And>y_0. y_0 \<in> ?H2 (?H3 x_2 x_3) x_1 \<Longrightarrow> ?H4 x_4 (x_5 y_0) (?H5 y_0); ?H6 (?H7 x_2 x_3) x_4\<rbrakk> \<Longrightarrow> ?H8 x_5 (?H2 (x_4 x_3) (x_4 x_2)) (?H7 x_2 x_3)
[ "Henstock_Kurzweil_Integration.has_integral", "Set_Interval.ord_class.atLeastAtMost", "Topological_Spaces.continuous_on", "Topological_Spaces.topological_space_class.at", "Deriv.has_vector_derivative", "Set_Interval.ord_class.greaterThanLessThan", "Groups.minus_class.minus", "Finite_Set.finite" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a \\<Rightarrow> 'a filter", "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> real filter \\<Rightarrow> bool", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a set \\<Rightarrow> bool" ]
[ "definition has_integral :: \"('n::euclidean_space \\<Rightarrow> 'b::real_normed_vector) \\<Rightarrow> 'b \\<Rightarrow> 'n set \\<Rightarrow> bool\"\n (infixr \"has'_integral\" 46)\n where \"(f has_integral I) s \\<longleftrightarrow>\n (if \\<exists>a b. s = cbox a b\n then ((\\<lambda>p. \\<Sum>(x,k)\\<in>p. content k *\\<^sub>R f x) \\<longlongrightarrow> I) (division_filter s)\n else (\\<forall>e>0. \\<exists>B>0. \\<forall>a b. ball 0 B \\<subseteq> cbox a b \\<longrightarrow>\n (\\<exists>z. ((\\<lambda>p. \\<Sum>(x,k)\\<in>p. content k *\\<^sub>R (if x \\<in> s then f x else 0)) \\<longlongrightarrow> z) (division_filter (cbox a b)) \\<and>\n norm (z - I) < e)))\"", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_vector_derivative :: \"(real \\<Rightarrow> 'b::real_normed_vector) \\<Rightarrow> 'b \\<Rightarrow> real filter \\<Rightarrow> bool\"\n (infix \"has'_vector'_derivative\" 50)\n where \"(f has_vector_derivative f') net \\<longleftrightarrow> (f has_derivative (\\<lambda>x. x *\\<^sub>R f')) net\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma finite ?S \<Longrightarrow> ?a \<le> ?b \<Longrightarrow> (\<And>x. x \<in> { ?a<..< ?b} - ?S \<Longrightarrow> (?f has_vector_derivative ?f' x) (at x)) \<Longrightarrow> continuous_on { ?a.. ?b} ?f \<Longrightarrow> (?f' has_integral ?f ?b - ?f ?a) { ?a.. ?b} ###symbols Henstock_Kurzweil_Integration.has_integral :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> bool Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Topological_Spaces.topological_space_class.at :::: 'a \<Rightarrow> 'a filter Deriv.has_vector_derivative :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> real filter \<Rightarrow> bool Set_Interval.ord_class.greaterThanLessThan :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs definition has_integral :: "('n::euclidean_space \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> 'n set \<Rightarrow> bool" (infixr "has'_integral" 46) where "(f has_integral I) s \<longleftrightarrow> (if \<exists>a b. s = cbox a b then ((\<lambda>p. \<Sum>(x,k)\<in>p. content k *\<^sub>R f x) \<longlongrightarrow> I) (division_filter s) else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. ((\<lambda>p. \<Sum>(x,k)\<in>p. content k *\<^sub>R (if x \<in> s then f x else 0)) \<longlongrightarrow> z) (division_filter (cbox a b)) \<and> norm (z - I) < e)))" definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool" (infix "has'_vector'_derivative" 50) where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output \<lbrakk> ?H1 x_1; x_2 \<le> x_3; \<And>y_0. y_0 \<in> ?H2 (?H3 x_2 x_3) x_1 \<Longrightarrow> ?H4 x_4 (x_5 y_0) (?H5 y_0); ?H6 (?H7 x_2 x_3) x_4\<rbrakk> \<Longrightarrow> ?H8 x_5 (?H2 (x_4 x_3) (x_4 x_2)) (?H7 x_2 x_3)###end
Auth/CertifiedEmail
CertifiedEmail.Spy_know_RPwd_iff
lemma Spy_know_RPwd_iff [simp]: "evs \<in> certified_mail \<Longrightarrow> (Key (RPwd A) \<in> parts(spies evs)) = (A\<in>bad)"
?evs \<in> certified_mail \<Longrightarrow> (Key (RPwd ?A) \<in> parts (knows Spy ?evs)) = (?A \<in> bad)
x_1 \<in> ?H1 \<Longrightarrow> (?H2 (?H3 x_2) \<in> ?H4 (?H5 ?H6 x_1)) = (x_2 \<in> ?H7)
[ "Event.bad", "Message.agent.Spy", "Event.knows", "Message.parts", "CertifiedEmail.RPwd", "Message.msg.Key", "CertifiedEmail.certified_mail" ]
[ "agent set", "agent", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "msg set \\<Rightarrow> msg set", "agent \\<Rightarrow> nat", "nat \\<Rightarrow> msg", "event list set" ]
[ "consts \n bad :: \"agent set\" \\<comment> \\<open>compromised agents\\<close>", "primrec knows :: \"agent \\<Rightarrow> event list \\<Rightarrow> msg set\"\nwhere\n knows_Nil: \"knows A [] = initState A\"\n| knows_Cons:\n \"knows A (ev # evs) =\n (if A = Spy then \n (case ev of\n Says A' B X \\<Rightarrow> insert X (knows Spy evs)\n | Gets A' X \\<Rightarrow> knows Spy evs\n | Notes A' X \\<Rightarrow> \n if A' \\<in> bad then insert X (knows Spy evs) else knows Spy evs)\n else\n (case ev of\n Says A' B X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Gets A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Notes A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs))\"", "inductive_set\n parts :: \"msg set \\<Rightarrow> msg set\"\n for H :: \"msg set\"\n where\n Inj [intro]: \"X \\<in> H \\<Longrightarrow> X \\<in> parts H\"\n | Fst: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"\n | Snd: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> Y \\<in> parts H\"\n | Body: \"Crypt K X \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"", "abbreviation\n RPwd :: \"agent \\<Rightarrow> key\" where\n \"RPwd == shrK\"", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "inductive_set certified_mail :: \"event list set\"\n where\n\n Nil: \\<comment> \\<open>The empty trace\\<close>\n \"[] \\<in> certified_mail\"\n\n| Fake: \\<comment> \\<open>The Spy may say anything he can say. The sender field is correct,\n but agents don't use that information.\\<close>\n \"\\<lbrakk>evsf \\<in> certified_mail; X \\<in> synth(analz(spies evsf))\\<rbrakk> \n \\<Longrightarrow> Says Spy B X # evsf \\<in> certified_mail\"\n\n| FakeSSL: \\<comment> \\<open>The Spy may open SSL sessions with TTP, who is the only agent\n equipped with the necessary credentials to serve as an SSL server.\\<close>\n \"\\<lbrakk>evsfssl \\<in> certified_mail; X \\<in> synth(analz(spies evsfssl))\\<rbrakk>\n \\<Longrightarrow> Notes TTP \\<lbrace>Agent Spy, Agent TTP, X\\<rbrace> # evsfssl \\<in> certified_mail\"\n\n| CM1: \\<comment> \\<open>The sender approaches the recipient. The message is a number.\\<close>\n \"\\<lbrakk>evs1 \\<in> certified_mail;\n Key K \\<notin> used evs1;\n K \\<in> symKeys;\n Nonce q \\<notin> used evs1;\n hs = Hash\\<lbrace>Number cleartext, Nonce q, response S R q, Crypt K (Number m)\\<rbrace>;\n S2TTP = Crypt(pubEK TTP) \\<lbrace>Agent S, Number BothAuth, Key K, Agent R, hs\\<rbrace>\\<rbrakk>\n \\<Longrightarrow> Says S R \\<lbrace>Agent S, Agent TTP, Crypt K (Number m), Number BothAuth, \n Number cleartext, Nonce q, S2TTP\\<rbrace> # evs1 \n \\<in> certified_mail\"\n\n| CM2: \\<comment> \\<open>The recipient records \\<^term>\\<open>S2TTP\\<close> while transmitting it and her\n password to \\<^term>\\<open>TTP\\<close> over an SSL channel.\\<close>\n \"\\<lbrakk>evs2 \\<in> certified_mail;\n Gets R \\<lbrace>Agent S, Agent TTP, em, Number BothAuth, Number cleartext, \n Nonce q, S2TTP\\<rbrace> \\<in> set evs2;\n TTP \\<noteq> R; \n hr = Hash \\<lbrace>Number cleartext, Nonce q, response S R q, em\\<rbrace>\\<rbrakk>\n \\<Longrightarrow> \n Notes TTP \\<lbrace>Agent R, Agent TTP, S2TTP, Key(RPwd R), hr\\<rbrace> # evs2\n \\<in> certified_mail\"\n\n| CM3: \\<comment> \\<open>\\<^term>\\<open>TTP\\<close> simultaneously reveals the key to the recipient and gives\n a receipt to the sender. The SSL channel does not authenticate \n the client (\\<^term>\\<open>R\\<close>), but \\<^term>\\<open>TTP\\<close> accepts the message only \n if the given password is that of the claimed sender, \\<^term>\\<open>R\\<close>.\n He replies over the established SSL channel.\\<close>\n \"\\<lbrakk>evs3 \\<in> certified_mail;\n Notes TTP \\<lbrace>Agent R, Agent TTP, S2TTP, Key(RPwd R), hr\\<rbrace> \\<in> set evs3;\n S2TTP = Crypt (pubEK TTP) \n \\<lbrace>Agent S, Number BothAuth, Key k, Agent R, hs\\<rbrace>;\n TTP \\<noteq> R; hs = hr; k \\<in> symKeys\\<rbrakk>\n \\<Longrightarrow> \n Notes R \\<lbrace>Agent TTP, Agent R, Key k, hr\\<rbrace> # \n Gets S (Crypt (priSK TTP) S2TTP) # \n Says TTP S (Crypt (priSK TTP) S2TTP) # evs3 \\<in> certified_mail\"\n\n| Reception:\n \"\\<lbrakk>evsr \\<in> certified_mail; Says A B X \\<in> set evsr\\<rbrakk>\n \\<Longrightarrow> Gets B X#evsr \\<in> certified_mail\"" ]
template
###lemma ?evs \<in> certified_mail \<Longrightarrow> (Key (RPwd ?A) \<in> parts (knows Spy ?evs)) = (?A \<in> bad) ###symbols Event.bad :::: agent set Message.agent.Spy :::: agent Event.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Message.parts :::: msg set \<Rightarrow> msg set CertifiedEmail.RPwd :::: agent \<Rightarrow> nat Message.msg.Key :::: nat \<Rightarrow> msg CertifiedEmail.certified_mail :::: event list set ###defs consts bad :: "agent set" \<comment> \<open>compromised agents\<close> primrec knows :: "agent \<Rightarrow> event list \<Rightarrow> msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X \<Rightarrow> insert X (knows Spy evs) | Gets A' X \<Rightarrow> knows Spy evs | Notes A' X \<Rightarrow> if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Gets A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Notes A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs))" inductive_set parts :: "msg set \<Rightarrow> msg set" for H :: "msg set" where Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" | Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" | Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" | Body: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H" abbreviation RPwd :: "agent \<Rightarrow> key" where "RPwd == shrK" datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> inductive_set certified_mail :: "event list set" where Nil: \<comment> \<open>The empty trace\<close> "[] \<in> certified_mail" | Fake: \<comment> \<open>The Spy may say anything he can say. The sender field is correct, but agents don't use that information.\<close> "\<lbrakk>evsf \<in> certified_mail; X \<in> synth(analz(spies evsf))\<rbrakk> \<Longrightarrow> Says Spy B X # evsf \<in> certified_mail" | FakeSSL: \<comment> \<open>The Spy may open SSL sessions with TTP, who is the only agent equipped with the necessary credentials to serve as an SSL server.\<close> "\<lbrakk>evsfssl \<in> certified_mail; X \<in> synth(analz(spies evsfssl))\<rbrakk> \<Longrightarrow> Notes TTP \<lbrace>Agent Spy, Agent TTP, X\<rbrace> # evsfssl \<in> certified_mail" | CM1: \<comment> \<open>The sender approaches the recipient. The message is a number.\<close> "\<lbrakk>evs1 \<in> certified_mail; Key K \<notin> used evs1; K \<in> symKeys; Nonce q \<notin> used evs1; hs = Hash\<lbrace>Number cleartext, Nonce q, response S R q, Crypt K (Number m)\<rbrace>; S2TTP = Crypt(pubEK TTP) \<lbrace>Agent S, Number BothAuth, Key K, Agent R, hs\<rbrace>\<rbrakk> \<Longrightarrow> Says S R \<lbrace>Agent S, Agent TTP, Crypt K (Number m), Number BothAuth, Number cleartext, Nonce q, S2TTP\<rbrace> # evs1 \<in> certified_mail" | CM2: \<comment> \<open>The recipient records \<^term>\<open>S2TTP\<close> while transmitting it and her password to \<^term>\<open>TTP\<close> over an SSL channel.\<close> "\<lbrakk>evs2 \<in> certified_mail; Gets R \<lbrace>Agent S, Agent TTP, em, Number BothAuth, Number cleartext, Nonce q, S2TTP\<rbrace> \<in> set evs2; TTP \<noteq> R; hr = Hash \<lbrace>Number cleartext, Nonce q, response S R q, em\<rbrace>\<rbrakk> \<Longrightarrow> Notes TTP \<lbrace>Agent R, Agent TTP, S2TTP, Key(RPwd R), hr\<rbrace> # evs2 \<in> certified_mail" | CM3: \<comment> \<open>\<^term>\<open>TTP\<close> simultaneously reveals the key to the recipient and gives a receipt to the sender. The SSL channel does not authenticate the client (\<^term>\<open>R\<close>), but \<^term>\<open>TTP\<close> accepts the message only if the given password is that of the claimed sender, \<^term>\<open>R\<close>. He replies over the established SSL channel.\<close> "\<lbrakk>evs3 \<in> certified_mail; Notes TTP \<lbrace>Agent R, Agent TTP, S2TTP, Key(RPwd R), hr\<rbrace> \<in> set evs3; S2TTP = Crypt (pubEK TTP) \<lbrace>Agent S, Number BothAuth, Key k, Agent R, hs\<rbrace>; TTP \<noteq> R; hs = hr; k \<in> symKeys\<rbrakk> \<Longrightarrow> Notes R \<lbrace>Agent TTP, Agent R, Key k, hr\<rbrace> # Gets S (Crypt (priSK TTP) S2TTP) # Says TTP S (Crypt (priSK TTP) S2TTP) # evs3 \<in> certified_mail" | Reception: "\<lbrakk>evsr \<in> certified_mail; Says A B X \<in> set evsr\<rbrakk> \<Longrightarrow> Gets B X#evsr \<in> certified_mail"
###output x_1 \<in> ?H1 \<Longrightarrow> (?H2 (?H3 x_2) \<in> ?H4 (?H5 ?H6 x_1)) = (x_2 \<in> ?H7)###end
Set
Set.conj_mono
lemma conj_mono: "P1 \<longrightarrow> Q1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<and> P2) \<longrightarrow> (Q1 \<and> Q2)"
?P1.0 \<longrightarrow> ?Q1.0 \<Longrightarrow> ?P2.0 \<longrightarrow> ?Q2.0 \<Longrightarrow> ?P1.0 \<and> ?P2.0 \<longrightarrow> ?Q1.0 \<and> ?Q2.0
\<lbrakk>x_1 \<longrightarrow> x_2; x_3 \<longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_1 \<and> x_3 \<longrightarrow> x_2 \<and> x_4
[]
[]
[]
template
###lemma ?P1.0 \<longrightarrow> ?Q1.0 \<Longrightarrow> ?P2.0 \<longrightarrow> ?Q2.0 \<Longrightarrow> ?P1.0 \<and> ?P2.0 \<longrightarrow> ?Q1.0 \<and> ?Q2.0 ###symbols ###defs
###output \<lbrakk>x_1 \<longrightarrow> x_2; x_3 \<longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_1 \<and> x_3 \<longrightarrow> x_2 \<and> x_4###end
Analysis/Path_Connected
Path_Connected.path_component_of
lemma path_component_of: "path_component_of X x y \<longleftrightarrow> (\<exists>T. path_connectedin X T \<and> x \<in> T \<and> y \<in> T)" (is "?lhs = ?rhs")
path_component_of ?X ?x ?y = (\<exists>T. path_connectedin ?X T \<and> ?x \<in> T \<and> ?y \<in> T)
?H1 x_1 x_2 x_3 = (\<exists>y_0. ?H2 x_1 y_0 \<and> x_2 \<in> y_0 \<and> x_3 \<in> y_0)
[ "Abstract_Topology_2.path_connectedin", "Path_Connected.path_component_of" ]
[ "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[ "definition path_connectedin :: \"'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"path_connectedin X S \\<equiv> S \\<subseteq> topspace X \\<and> path_connected_space(subtopology X S)\"", "definition path_component_of\n where \"path_component_of X x y \\<equiv> \\<exists>g. pathin X g \\<and> g 0 = x \\<and> g 1 = y\"" ]
template
###lemma path_component_of ?X ?x ?y = (\<exists>T. path_connectedin ?X T \<and> ?x \<in> T \<and> ?y \<in> T) ###symbols Abstract_Topology_2.path_connectedin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Path_Connected.path_component_of :::: 'a topology \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool ###defs definition path_connectedin :: "'a topology \<Rightarrow> 'a set \<Rightarrow> bool" where "path_connectedin X S \<equiv> S \<subseteq> topspace X \<and> path_connected_space(subtopology X S)" definition path_component_of where "path_component_of X x y \<equiv> \<exists>g. pathin X g \<and> g 0 = x \<and> g 1 = y"
###output ?H1 x_1 x_2 x_3 = (\<exists>y_0. ?H2 x_1 y_0 \<and> x_2 \<in> y_0 \<and> x_3 \<in> y_0)###end
Analysis/Infinite_Set_Sum
Infinite_Set_Sum.abs_summable_on_reindex_iff
lemma abs_summable_on_reindex_iff: "inj_on g A \<Longrightarrow> (\<lambda>x. f (g x)) abs_summable_on A \<longleftrightarrow> f abs_summable_on (g ` A)"
inj_on ?g ?A \<Longrightarrow> ((\<lambda>x. ?f (?g x)) abs_summable_on ?A) = (?f abs_summable_on ?g ` ?A)
?H1 x_1 x_2 \<Longrightarrow> ?H2 (\<lambda>y_0. x_3 (x_1 y_0)) x_2 = ?H2 x_3 (?H3 x_1 x_2)
[ "Set.image", "Infinite_Set_Sum.abs_summable_on", "Fun.inj_on" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "definition inj_on :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool\" \\<comment> \\<open>injective\\<close>\n where \"inj_on f A \\<longleftrightarrow> (\\<forall>x\\<in>A. \\<forall>y\\<in>A. f x = f y \\<longrightarrow> x = y)\"" ]
template
###lemma inj_on ?g ?A \<Longrightarrow> ((\<lambda>x. ?f (?g x)) abs_summable_on ?A) = (?f abs_summable_on ?g ` ?A) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Infinite_Set_Sum.abs_summable_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool Fun.inj_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> \<open>injective\<close> where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 (\<lambda>y_0. x_3 (x_1 y_0)) x_2 = ?H2 x_3 (?H3 x_1 x_2)###end
Analysis/Infinite_Set_Sum
Infinite_Set_Sum.abs_summable_on_Sigma_project1
lemma abs_summable_on_Sigma_project1: assumes "(\<lambda>(x,y). f x y) abs_summable_on Sigma A B" assumes [simp]: "countable A" and "\<And>x. x \<in> A \<Longrightarrow> countable (B x)" shows "(\<lambda>x. infsetsum (\<lambda>y. norm (f x y)) (B x)) abs_summable_on A"
(\<lambda>(x, y). ?f x y) abs_summable_on Sigma ?A ?B \<Longrightarrow> countable ?A \<Longrightarrow> (\<And>x. x \<in> ?A \<Longrightarrow> countable (?B x)) \<Longrightarrow> (\<lambda>x. \<Sum>\<^sub>ay\<in> ?B x. norm (?f x y)) abs_summable_on ?A
\<lbrakk> ?H1 (?H2 x_1) (?H3 x_2 x_3); ?H4 x_2; \<And>y_2. y_2 \<in> x_2 \<Longrightarrow> ?H4 (x_3 y_2)\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_3. ?H5 (\<lambda>y_4. ?H6 (x_1 y_3 y_4)) (x_3 y_3)) x_2
[ "Real_Vector_Spaces.norm_class.norm", "Infinite_Set_Sum.infsetsum", "Countable_Set.countable", "Product_Type.Sigma", "Product_Type.prod.case_prod", "Infinite_Set_Sum.abs_summable_on" ]
[ "'a \\<Rightarrow> real", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b set) \\<Rightarrow> ('a \\<times> 'b) set", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"", "definition countable :: \"'a set \\<Rightarrow> bool\" where\n \"countable S \\<longleftrightarrow> (\\<exists>f::'a \\<Rightarrow> nat. inj_on f S)\"", "definition Sigma :: \"'a set \\<Rightarrow> ('a \\<Rightarrow> 'b set) \\<Rightarrow> ('a \\<times> 'b) set\"\n where \"Sigma A B \\<equiv> \\<Union>x\\<in>A. \\<Union>y\\<in>B x. {Pair x y}\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"" ]
template
###lemma (\<lambda>(x, y). ?f x y) abs_summable_on Sigma ?A ?B \<Longrightarrow> countable ?A \<Longrightarrow> (\<And>x. x \<in> ?A \<Longrightarrow> countable (?B x)) \<Longrightarrow> (\<lambda>x. \<Sum>\<^sub>ay\<in> ?B x. norm (?f x y)) abs_summable_on ?A ###symbols Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real Infinite_Set_Sum.infsetsum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Countable_Set.countable :::: 'a set \<Rightarrow> bool Product_Type.Sigma :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c Infinite_Set_Sum.abs_summable_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool ###defs class norm = fixes norm :: "'a \<Rightarrow> real" definition countable :: "'a set \<Rightarrow> bool" where "countable S \<longleftrightarrow> (\<exists>f::'a \<Rightarrow> nat. inj_on f S)" definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set" where "Sigma A B \<equiv> \<Union>x\<in>A. \<Union>y\<in>B x. {Pair x y}" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}"
###output \<lbrakk> ?H1 (?H2 x_1) (?H3 x_2 x_3); ?H4 x_2; \<And>y_2. y_2 \<in> x_2 \<Longrightarrow> ?H4 (x_3 y_2)\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_3. ?H5 (\<lambda>y_4. ?H6 (x_1 y_3 y_4)) (x_3 y_3)) x_2###end
Decision_Procs/Parametric_Ferrante_Rackoff
Parametric_Ferrante_Rackoff.tmneg_nb
lemma tmneg_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n (tmneg t)"
tmbound ?n ?t \<Longrightarrow> tmbound ?n (tmneg ?t)
?H1 x_1 x_2 \<Longrightarrow> ?H1 x_1 (?H2 x_2)
[ "Parametric_Ferrante_Rackoff.tmneg", "Parametric_Ferrante_Rackoff.tmbound" ]
[ "tm \\<Rightarrow> tm", "nat \\<Rightarrow> tm \\<Rightarrow> bool" ]
[ "definition tmneg :: \"tm \\<Rightarrow> tm\"\n where \"tmneg t \\<equiv> tmmul t (C (- 1,1))\"", "primrec tmbound :: \"nat \\<Rightarrow> tm \\<Rightarrow> bool\" \\<comment> \\<open>a \\<open>tm\\<close> is \\<^emph>\\<open>independent\\<close> of Bound n\\<close>\n where\n \"tmbound n (CP c) = True\"\n | \"tmbound n (Bound m) = (n \\<noteq> m)\"\n | \"tmbound n (CNP m c a) = (n\\<noteq>m \\<and> tmbound n a)\"\n | \"tmbound n (Neg a) = tmbound n a\"\n | \"tmbound n (Add a b) = (tmbound n a \\<and> tmbound n b)\"\n | \"tmbound n (Sub a b) = (tmbound n a \\<and> tmbound n b)\"\n | \"tmbound n (Mul i a) = tmbound n a\"" ]
template
###lemma tmbound ?n ?t \<Longrightarrow> tmbound ?n (tmneg ?t) ###symbols Parametric_Ferrante_Rackoff.tmneg :::: tm \<Rightarrow> tm Parametric_Ferrante_Rackoff.tmbound :::: nat \<Rightarrow> tm \<Rightarrow> bool ###defs definition tmneg :: "tm \<Rightarrow> tm" where "tmneg t \<equiv> tmmul t (C (- 1,1))" primrec tmbound :: "nat \<Rightarrow> tm \<Rightarrow> bool" \<comment> \<open>a \<open>tm\<close> is \<^emph>\<open>independent\<close> of Bound n\<close> where "tmbound n (CP c) = True" | "tmbound n (Bound m) = (n \<noteq> m)" | "tmbound n (CNP m c a) = (n\<noteq>m \<and> tmbound n a)" | "tmbound n (Neg a) = tmbound n a" | "tmbound n (Add a b) = (tmbound n a \<and> tmbound n b)" | "tmbound n (Sub a b) = (tmbound n a \<and> tmbound n b)" | "tmbound n (Mul i a) = tmbound n a"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H1 x_1 (?H2 x_2)###end
HOLCF/Tr
Transitive_Closure.converse_tranclE
null
(?x, ?z) \<in> ?r\<^sup>+ \<Longrightarrow> ((?x, ?z) \<in> ?r \<Longrightarrow> ?P) \<Longrightarrow> (\<And>y. (?x, y) \<in> ?r \<Longrightarrow> (y, ?z) \<in> ?r\<^sup>+ \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk>(x_1, x_2) \<in> ?H1 x_3; (x_1, x_2) \<in> x_3 \<Longrightarrow> x_4; \<And>y_0. \<lbrakk>(x_1, y_0) \<in> x_3; (y_0, x_2) \<in> ?H1 x_3\<rbrakk> \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4
[ "Transitive_Closure.trancl" ]
[ "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set" ]
[ "inductive_set trancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>+)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n r_into_trancl [intro, Pure.intro]: \"(a, b) \\<in> r \\<Longrightarrow> (a, b) \\<in> r\\<^sup>+\"\n | trancl_into_trancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>+ \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>+\"" ]
template
###lemma (?x, ?z) \<in> ?r\<^sup>+ \<Longrightarrow> ((?x, ?z) \<in> ?r \<Longrightarrow> ?P) \<Longrightarrow> (\<And>y. (?x, y) \<in> ?r \<Longrightarrow> (y, ?z) \<in> ?r\<^sup>+ \<Longrightarrow> ?P) \<Longrightarrow> ?P ###symbols Transitive_Closure.trancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set ###defs inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>+)" [1000] 999) for r :: "('a \<times> 'a) set" where r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+"
###output \<lbrakk>(x_1, x_2) \<in> ?H1 x_3; (x_1, x_2) \<in> x_3 \<Longrightarrow> x_4; \<And>y_0. \<lbrakk>(x_1, y_0) \<in> x_3; (y_0, x_2) \<in> ?H1 x_3\<rbrakk> \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4###end
Hoare_Parallel/Mul_Gar_Coll
Mul_Gar_Coll.Mul_interfree_Redirect_Edge_Propagate_Black
lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))"
0 \<le> ?j \<Longrightarrow> ?j < ?n \<Longrightarrow> interfree_aux (Some (Mul_Redirect_Edge ?j ?n), {}, Some (Mul_Propagate_Black ?n))
\<lbrakk> ?H1 \<le> x_1; x_1 < x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 (?H4 x_1 x_2), ?H5, ?H3 (?H6 x_2))
[ "Mul_Gar_Coll.Mul_Propagate_Black", "Set.empty", "Mul_Gar_Coll.Mul_Redirect_Edge", "Option.option.Some", "OG_Hoare.interfree_aux", "Groups.zero_class.zero" ]
[ "nat \\<Rightarrow> mul_gar_coll_state ann_com", "'a set", "nat \\<Rightarrow> nat \\<Rightarrow> mul_gar_coll_state ann_com", "'a \\<Rightarrow> 'a option", "'a ann_com option \\<times> 'a set \\<times> 'a ann_com option \\<Rightarrow> bool", "'a" ]
[ "definition Mul_Propagate_Black :: \"nat \\<Rightarrow> mul_gar_coll_state ann_com\" where\n \"Mul_Propagate_Black n \\<equiv>\n \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> (\\<acute>Safe \\<or> \\<acute>l\\<le>\\<acute>Queue \\<or> \\<acute>obc\\<subset>Blacks \\<acute>M)\\<rbrace>\n \\<acute>ind:=0;;\n \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> Blacks \\<acute>M\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> (\\<acute>Safe \\<or> \\<acute>l\\<le>\\<acute>Queue \\<or> \\<acute>obc\\<subset>Blacks \\<acute>M) \\<and> \\<acute>ind=0\\<rbrace>\n WHILE \\<acute>ind<length \\<acute>E\n INV \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>Mul_PBInv \\<and> \\<acute>ind\\<le>length \\<acute>E\\<rbrace>\n DO \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>Mul_PBInv \\<and> \\<acute>ind<length \\<acute>E\\<rbrace>\n IF \\<acute>M!(fst (\\<acute>E!\\<acute>ind))=Black THEN\n \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>Mul_PBInv \\<and> (\\<acute>M!fst(\\<acute>E!\\<acute>ind))=Black \\<and> \\<acute>ind<length \\<acute>E\\<rbrace>\n \\<acute>k:=snd(\\<acute>E!\\<acute>ind);;\n \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> (\\<acute>Safe \\<or> \\<acute>obc\\<subset>Blacks \\<acute>M \\<or> \\<acute>l<\\<acute>Queue \\<or> (\\<forall>i<\\<acute>ind. \\<not>BtoW(\\<acute>E!i,\\<acute>M))\n \\<and> \\<acute>l\\<le>\\<acute>Queue \\<and> \\<acute>Mul_Auxk ) \\<and> \\<acute>k<length \\<acute>M \\<and> \\<acute>M!fst(\\<acute>E!\\<acute>ind)=Black\n \\<and> \\<acute>ind<length \\<acute>E\\<rbrace>\n \\<langle>\\<acute>M:=\\<acute>M[\\<acute>k:=Black],,\\<acute>ind:=\\<acute>ind+1\\<rangle>\n ELSE \\<lbrace>\\<acute>Mul_Proper n \\<and> Roots\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>obc\\<subseteq>Blacks \\<acute>M \\<and> \\<acute>bc\\<subseteq>Blacks \\<acute>M\n \\<and> \\<acute>Mul_PBInv \\<and> \\<acute>ind<length \\<acute>E\\<rbrace>\n \\<langle>IF \\<acute>M!(fst (\\<acute>E!\\<acute>ind))\\<noteq>Black THEN \\<acute>ind:=\\<acute>ind+1 FI\\<rangle> FI\n OD\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition Mul_Redirect_Edge :: \"nat \\<Rightarrow> nat \\<Rightarrow> mul_gar_coll_state ann_com\" where\n \"Mul_Redirect_Edge j n \\<equiv>\n \\<lbrace>\\<acute>Mul_mut_init n \\<and> Z (\\<acute>Muts!j)\\<rbrace>\n \\<langle>IF T(\\<acute>Muts!j) \\<in> Reach \\<acute>E THEN\n \\<acute>E:= \\<acute>E[R (\\<acute>Muts!j):= (fst (\\<acute>E!R(\\<acute>Muts!j)), T (\\<acute>Muts!j))] FI,,\n \\<acute>Muts:= \\<acute>Muts[j:= (\\<acute>Muts!j) \\<lparr>Z:=False\\<rparr>]\\<rangle>\"", "datatype 'a option =\n None\n | Some (the: 'a)", "definition interfree_aux :: \"('a ann_com_op \\<times> 'a assn \\<times> 'a ann_com_op) \\<Rightarrow> bool\" where\n \"interfree_aux \\<equiv> \\<lambda>(co, q, co'). co'= None \\<or>\n (\\<forall>(r,a) \\<in> atomics (the co'). \\<parallel>= (q \\<inter> r) a q \\<and>\n (co = None \\<or> (\\<forall>p \\<in> assertions (the co). \\<parallel>= (p \\<inter> r) a p)))\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma 0 \<le> ?j \<Longrightarrow> ?j < ?n \<Longrightarrow> interfree_aux (Some (Mul_Redirect_Edge ?j ?n), {}, Some (Mul_Propagate_Black ?n)) ###symbols Mul_Gar_Coll.Mul_Propagate_Black :::: nat \<Rightarrow> mul_gar_coll_state ann_com Set.empty :::: 'a set Mul_Gar_Coll.Mul_Redirect_Edge :::: nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com Option.option.Some :::: 'a \<Rightarrow> 'a option OG_Hoare.interfree_aux :::: 'a ann_com option \<times> 'a set \<times> 'a ann_com option \<Rightarrow> bool Groups.zero_class.zero :::: 'a ###defs definition Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where "Mul_Propagate_Black n \<equiv> \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)\<rbrace> \<acute>ind:=0;; \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0\<rbrace> WHILE \<acute>ind<length \<acute>E INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E\<rbrace> DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace> IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E\<rbrace> \<acute>k:=snd(\<acute>E!\<acute>ind);; \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black \<and> \<acute>ind<length \<acute>E\<rbrace> \<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle> ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace> \<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI OD" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where "Mul_Redirect_Edge j n \<equiv> \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace> \<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN \<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,, \<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>" datatype 'a option = None | Some (the: 'a) definition interfree_aux :: "('a ann_com_op \<times> 'a assn \<times> 'a ann_com_op) \<Rightarrow> bool" where "interfree_aux \<equiv> \<lambda>(co, q, co'). co'= None \<or> (\<forall>(r,a) \<in> atomics (the co'). \<parallel>= (q \<inter> r) a q \<and> (co = None \<or> (\<forall>p \<in> assertions (the co). \<parallel>= (p \<inter> r) a p)))" class zero = fixes zero :: 'a ("0")
###output \<lbrakk> ?H1 \<le> x_1; x_1 < x_2\<rbrakk> \<Longrightarrow> ?H2 (?H3 (?H4 x_1 x_2), ?H5, ?H3 (?H6 x_2))###end
Analysis/Infinite_Set_Sum
Infinite_Set_Sum.count_space_PiM_finite
lemma count_space_PiM_finite: fixes B :: "'a \<Rightarrow> 'b set" assumes "finite A" "\<And>i. countable (B i)" shows "PiM A (\<lambda>i. count_space (B i)) = count_space (PiE A B)"
finite ?A \<Longrightarrow> (\<And>i. countable (?B i)) \<Longrightarrow> Pi\<^sub>M ?A (\<lambda>i. count_space (?B i)) = count_space (Pi\<^sub>E ?A ?B)
\<lbrakk> ?H1 x_1; \<And>y_0. ?H2 (x_2 y_0)\<rbrakk> \<Longrightarrow> ?H3 x_1 (\<lambda>y_1. ?H4 (x_2 y_1)) = ?H4 (?H5 x_1 x_2)
[ "FuncSet.Pi\\<^sub>E", "Sigma_Algebra.count_space", "Finite_Product_Measure.Pi\\<^sub>M", "Countable_Set.countable", "Finite_Set.finite" ]
[ "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b set) \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a set \\<Rightarrow> 'a measure", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b measure) \\<Rightarrow> ('a \\<Rightarrow> 'b) measure", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "abbreviation \"Pi\\<^sub>E A B \\<equiv> PiE A B\"", "abbreviation\n \"Pi\\<^sub>M I M \\<equiv> PiM I M\"", "definition countable :: \"'a set \\<Rightarrow> bool\" where\n \"countable S \\<longleftrightarrow> (\\<exists>f::'a \\<Rightarrow> nat. inj_on f S)\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma finite ?A \<Longrightarrow> (\<And>i. countable (?B i)) \<Longrightarrow> Pi\<^sub>M ?A (\<lambda>i. count_space (?B i)) = count_space (Pi\<^sub>E ?A ?B) ###symbols FuncSet.Pi\<^sub>E :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set Sigma_Algebra.count_space :::: 'a set \<Rightarrow> 'a measure Finite_Product_Measure.Pi\<^sub>M :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b measure) \<Rightarrow> ('a \<Rightarrow> 'b) measure Countable_Set.countable :::: 'a set \<Rightarrow> bool Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" abbreviation "Pi\<^sub>M I M \<equiv> PiM I M" definition countable :: "'a set \<Rightarrow> bool" where "countable S \<longleftrightarrow> (\<exists>f::'a \<Rightarrow> nat. inj_on f S)" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output \<lbrakk> ?H1 x_1; \<And>y_0. ?H2 (x_2 y_0)\<rbrakk> \<Longrightarrow> ?H3 x_1 (\<lambda>y_1. ?H4 (x_2 y_1)) = ?H4 (?H5 x_1 x_2)###end
SPARK/Examples/RIPEMD-160/F
Finite_Set.card_eq_UNIV_imp_eq_UNIV
null
finite UNIV \<Longrightarrow> card ?A = CARD(?'a) \<Longrightarrow> ?A = UNIV
\<lbrakk> ?H1 ?H2; ?H3 x_1 = ?H3 ?H2\<rbrakk> \<Longrightarrow> x_1 = ?H2
[ "Finite_Set.card", "Set.UNIV", "Finite_Set.finite" ]
[ "'a set \\<Rightarrow> nat", "'a set", "'a set \\<Rightarrow> bool" ]
[ "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
template
###lemma finite UNIV \<Longrightarrow> card ?A = CARD(?'a) \<Longrightarrow> ?A = UNIV ###symbols Finite_Set.card :::: 'a set \<Rightarrow> nat Set.UNIV :::: 'a set Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs abbreviation UNIV :: "'a set" where "UNIV \<equiv> top" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output \<lbrakk> ?H1 ?H2; ?H3 x_1 = ?H3 ?H2\<rbrakk> \<Longrightarrow> x_1 = ?H2###end
UNITY/Comp
Complete_Lattices.Union_SetCompr_eq
null
\<Union> { ?f x |x. ?P x} = {a. \<exists>x. ?P x \<and> a \<in> ?f x}
?H1 (?H2 (\<lambda>y_0. \<exists>y_1. y_0 = x_1 y_1 \<and> x_2 y_1)) = ?H2 (\<lambda>y_2. \<exists>y_3. x_2 y_3 \<and> y_2 \<in> x_1 y_3)
[ "Set.Collect", "Complete_Lattices.Union" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set set \\<Rightarrow> 'a set" ]
[ "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"" ]
template
###lemma \<Union> { ?f x |x. ?P x} = {a. \<exists>x. ?P x \<and> a \<in> ?f x} ###symbols Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set ###defs abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S"
###output ?H1 (?H2 (\<lambda>y_0. \<exists>y_1. y_0 = x_1 y_1 \<and> x_2 y_1)) = ?H2 (\<lambda>y_2. \<exists>y_3. x_2 y_3 \<and> y_2 \<in> x_1 y_3)###end
Analysis/Path_Connected
Path_Connected.path_connected_space_iff_components_subset_singleton
lemma path_connected_space_iff_components_subset_singleton: "path_connected_space X \<longleftrightarrow> (\<exists>a. path_components_of X \<subseteq> {a})"
path_connected_space ?X = (\<exists>a. path_components_of ?X \<subseteq> {a})
?H1 x_1 = (\<exists>y_0. ?H2 (?H3 x_1) (?H4 y_0 ?H5))
[ "Set.empty", "Set.insert", "Path_Connected.path_components_of", "Set.subset_eq", "Abstract_Topology_2.path_connected_space" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a topology \\<Rightarrow> 'a set set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition path_components_of :: \"'a topology \\<Rightarrow> 'a set set\"\n where \"path_components_of X \\<equiv> path_component_of_set X ` topspace X\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "definition path_connected_space :: \"'a topology \\<Rightarrow> bool\"\n where \"path_connected_space X \\<equiv> \\<forall>x \\<in> topspace X. \\<forall> y \\<in> topspace X. \\<exists>g. pathin X g \\<and> g 0 = x \\<and> g 1 = y\"" ]
template
###lemma path_connected_space ?X = (\<exists>a. path_components_of ?X \<subseteq> {a}) ###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Path_Connected.path_components_of :::: 'a topology \<Rightarrow> 'a set set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Abstract_Topology_2.path_connected_space :::: 'a topology \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition path_components_of :: "'a topology \<Rightarrow> 'a set set" where "path_components_of X \<equiv> path_component_of_set X ` topspace X" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" definition path_connected_space :: "'a topology \<Rightarrow> bool" where "path_connected_space X \<equiv> \<forall>x \<in> topspace X. \<forall> y \<in> topspace X. \<exists>g. pathin X g \<and> g 0 = x \<and> g 1 = y"
###output ?H1 x_1 = (\<exists>y_0. ?H2 (?H3 x_1) (?H4 y_0 ?H5))###end
Metis_Examples/Message
Message.Friend_image_eq
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x\<in>A)"
(Friend ?x \<in> Friend ` ?A) = (?x \<in> ?A)
(?H1 x_1 \<in> ?H2 ?H1 x_2) = (x_1 \<in> x_2)
[ "Set.image", "Message.agent.Friend" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "nat \\<Rightarrow> agent" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"" ]
template
###lemma (Friend ?x \<in> Friend ` ?A) = (?x \<in> ?A) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Message.agent.Friend :::: nat \<Rightarrow> agent ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}"
###output (?H1 x_1 \<in> ?H2 ?H1 x_2) = (x_1 \<in> x_2)###end
Nat
Nat.mono_iff_le_Suc
lemma mono_iff_le_Suc: "mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
mono ?f = (\<forall>n. ?f n \<le> ?f (Suc n))
?H1 x_1 = (\<forall>y_0. x_1 y_0 \<le> x_1 (?H2 y_0))
[ "Nat.Suc", "Fun.order_class.mono" ]
[ "nat \\<Rightarrow> nat", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"" ]
template
###lemma mono ?f = (\<forall>n. ?f n \<le> ?f (Suc n)) ###symbols Nat.Suc :::: nat \<Rightarrow> nat Fun.order_class.mono :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
###output ?H1 x_1 = (\<forall>y_0. x_1 y_0 \<le> x_1 (?H2 y_0))###end
Analysis/Borel_Space
Borel_Space.borel_measurable_restrict_space_iff_ennreal
lemma borel_measurable_restrict_space_iff_ennreal: fixes f :: "'a \<Rightarrow> ennreal" assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M" shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow> (\<lambda>x. f x * indicator \<Omega> x) \<in> borel_measurable M"
?\<Omega> \<inter> space ?M \<in> sets ?M \<Longrightarrow> (?f \<in> borel_measurable (restrict_space ?M ?\<Omega>)) = ((\<lambda>x. ?f x * indicator ?\<Omega> x) \<in> borel_measurable ?M)
?H1 x_1 (?H2 x_2) \<in> ?H3 x_2 \<Longrightarrow> (x_3 \<in> ?H4 (?H5 x_2 x_1)) = ((\<lambda>y_0. ?H6 (x_3 y_0) (?H7 x_1 y_0)) \<in> ?H4 x_2)
[ "Indicator_Function.indicator", "Groups.times_class.times", "Sigma_Algebra.restrict_space", "Borel_Space.borel_measurable", "Sigma_Algebra.sets", "Sigma_Algebra.space", "Set.inter" ]
[ "'a set \\<Rightarrow> 'a \\<Rightarrow> 'b", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> 'a measure", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a measure \\<Rightarrow> 'a set set", "'a measure \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "definition \"indicator S x = of_bool (x \\<in> S)\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition restrict_space :: \"'a measure \\<Rightarrow> 'a set \\<Rightarrow> 'a measure\" where\n \"restrict_space M \\<Omega> = measure_of (\\<Omega> \\<inter> space M) (((\\<inter>) \\<Omega>) ` sets M) (emeasure M)\"", "abbreviation \"borel_measurable M \\<equiv> measurable M borel\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"" ]
template
###lemma ?\<Omega> \<inter> space ?M \<in> sets ?M \<Longrightarrow> (?f \<in> borel_measurable (restrict_space ?M ?\<Omega>)) = ((\<lambda>x. ?f x * indicator ?\<Omega> x) \<in> borel_measurable ?M) ###symbols Indicator_Function.indicator :::: 'a set \<Rightarrow> 'a \<Rightarrow> 'b Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Sigma_Algebra.restrict_space :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> 'a measure Borel_Space.borel_measurable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) set Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set Sigma_Algebra.space :::: 'a measure \<Rightarrow> 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs definition "indicator S x = of_bool (x \<in> S)" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition restrict_space :: "'a measure \<Rightarrow> 'a set \<Rightarrow> 'a measure" where "restrict_space M \<Omega> = measure_of (\<Omega> \<inter> space M) (((\<inter>) \<Omega>) ` sets M) (emeasure M)" abbreviation "borel_measurable M \<equiv> measurable M borel" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf"
###output ?H1 x_1 (?H2 x_2) \<in> ?H3 x_2 \<Longrightarrow> (x_3 \<in> ?H4 (?H5 x_2 x_1)) = ((\<lambda>y_0. ?H6 (x_3 y_0) (?H7 x_1 y_0)) \<in> ?H4 x_2)###end
Set_Interval
Set_Interval.atMost_eq_iff
lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::order))"
({.. ?x} = {.. ?y}) = (?x = ?y)
(?H1 x_1 = ?H1 x_2) = (x_1 = x_2)
[ "Set_Interval.ord_class.atMost" ]
[ "'a \\<Rightarrow> 'a set" ]
[]
template
###lemma ({.. ?x} = {.. ?y}) = (?x = ?y) ###symbols Set_Interval.ord_class.atMost :::: 'a \<Rightarrow> 'a set ###defs
###output (?H1 x_1 = ?H1 x_2) = (x_1 = x_2)###end
Homology/Homology_Groups
Homology_Groups.trivial_homology_group_empty
lemma trivial_homology_group_empty: "topspace X = {} \<Longrightarrow> trivial_group(homology_group p X)"
topspace ?X = {} \<Longrightarrow> trivial_group (homology_group ?p ?X)
?H1 x_1 = ?H2 \<Longrightarrow> ?H3 (?H4 x_2 x_1)
[ "Homology_Groups.homology_group", "Elementary_Groups.trivial_group", "Set.empty", "Abstract_Topology.topspace" ]
[ "int \\<Rightarrow> 'a topology \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a) \\<Rightarrow>\\<^sub>0 int) set monoid", "('a, 'b) monoid_scheme \\<Rightarrow> bool", "'a set", "'a topology \\<Rightarrow> 'a set" ]
[ "abbreviation homology_group\n where \"homology_group p X \\<equiv> relative_homology_group p X {}\"", "definition trivial_group :: \"('a, 'b) monoid_scheme \\<Rightarrow> bool\"\n where \"trivial_group G \\<equiv> group G \\<and> carrier G = {one G}\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition \"topspace T = \\<Union>{S. openin T S}\"" ]
template
###lemma topspace ?X = {} \<Longrightarrow> trivial_group (homology_group ?p ?X) ###symbols Homology_Groups.homology_group :::: int \<Rightarrow> 'a topology \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow>\<^sub>0 int) set monoid Elementary_Groups.trivial_group :::: ('a, 'b) monoid_scheme \<Rightarrow> bool Set.empty :::: 'a set Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set ###defs abbreviation homology_group where "homology_group p X \<equiv> relative_homology_group p X {}" definition trivial_group :: "('a, 'b) monoid_scheme \<Rightarrow> bool" where "trivial_group G \<equiv> group G \<and> carrier G = {one G}" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition "topspace T = \<Union>{S. openin T S}"
###output ?H1 x_1 = ?H2 \<Longrightarrow> ?H3 (?H4 x_2 x_1)###end
Auth/Kerberos_BAN_Gets
Kerberos_BAN_Gets.used_evs_rev
lemma used_evs_rev: "used evs = used (rev evs)"
used ?evs = used (rev ?evs)
?H1 x_1 = ?H1 (?H2 x_1)
[ "List.rev", "Event.used" ]
[ "'a list \\<Rightarrow> 'a list", "event list \\<Rightarrow> msg set" ]
[ "primrec rev :: \"'a list \\<Rightarrow> 'a list\" where\n\"rev [] = []\" |\n\"rev (x # xs) = rev xs @ [x]\"", "primrec used :: \"event list \\<Rightarrow> msg set\"\nwhere\n used_Nil: \"used [] = (UN B. parts (initState B))\"\n| used_Cons: \"used (ev # evs) =\n (case ev of\n Says A B X \\<Rightarrow> parts {X} \\<union> used evs\n | Gets A X \\<Rightarrow> used evs\n | Notes A X \\<Rightarrow> parts {X} \\<union> used evs)\"\n \\<comment> \\<open>The case for \\<^term>\\<open>Gets\\<close> seems anomalous, but \\<^term>\\<open>Gets\\<close> always\n follows \\<^term>\\<open>Says\\<close> in real protocols. Seems difficult to change.\n See \\<open>Gets_correct\\<close> in theory \\<open>Guard/Extensions.thy\\<close>.\\<close>" ]
template
###lemma used ?evs = used (rev ?evs) ###symbols List.rev :::: 'a list \<Rightarrow> 'a list Event.used :::: event list \<Rightarrow> msg set ###defs primrec rev :: "'a list \<Rightarrow> 'a list" where "rev [] = []" | "rev (x # xs) = rev xs @ [x]" primrec used :: "event list \<Rightarrow> msg set" where used_Nil: "used [] = (UN B. parts (initState B))" | used_Cons: "used (ev # evs) = (case ev of Says A B X \<Rightarrow> parts {X} \<union> used evs | Gets A X \<Rightarrow> used evs | Notes A X \<Rightarrow> parts {X} \<union> used evs)" \<comment> \<open>The case for \<^term>\<open>Gets\<close> seems anomalous, but \<^term>\<open>Gets\<close> always follows \<^term>\<open>Says\<close> in real protocols. Seems difficult to change. See \<open>Gets_correct\<close> in theory \<open>Guard/Extensions.thy\<close>.\<close>
###output ?H1 x_1 = ?H1 (?H2 x_1)###end
HOLCF/Lift
Lifting.apply_rsp''
null
Quotient ?R ?Abs ?Rep ?T \<Longrightarrow> rel_fun ?R ?S ?f ?f \<Longrightarrow> ?S (?f (?Rep ?x)) (?f (?Rep ?x))
\<lbrakk> ?H1 x_1 x_2 x_3 x_4; ?H2 x_1 x_5 x_6 x_6\<rbrakk> \<Longrightarrow> x_5 (x_6 (x_3 x_7)) (x_6 (x_3 x_7))
[ "BNF_Def.rel_fun", "Lifting.Quotient" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> ('b \\<Rightarrow> 'd) \\<Rightarrow> bool", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'a) \\<Rightarrow> ('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"", "definition\n \"Quotient R Abs Rep T \\<longleftrightarrow>\n (\\<forall>a. Abs (Rep a) = a) \\<and>\n (\\<forall>a. R (Rep a) (Rep a)) \\<and>\n (\\<forall>r s. R r s \\<longleftrightarrow> R r r \\<and> R s s \\<and> Abs r = Abs s) \\<and>\n T = (\\<lambda>x y. R x x \\<and> Abs x = y)\"" ]
template
###lemma Quotient ?R ?Abs ?Rep ?T \<Longrightarrow> rel_fun ?R ?S ?f ?f \<Longrightarrow> ?S (?f (?Rep ?x)) (?f (?Rep ?x)) ###symbols BNF_Def.rel_fun :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> bool Lifting.Quotient :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" definition "Quotient R Abs Rep T \<longleftrightarrow> (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. R (Rep a) (Rep a)) \<and> (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s) \<and> T = (\<lambda>x y. R x x \<and> Abs x = y)"
###output \<lbrakk> ?H1 x_1 x_2 x_3 x_4; ?H2 x_1 x_5 x_6 x_6\<rbrakk> \<Longrightarrow> x_5 (x_6 (x_3 x_7)) (x_6 (x_3 x_7))###end
Library/Countable_Set
Countable_Set.all_countable_subset_image_inj
lemma all_countable_subset_image_inj: "(\<forall>T. countable T \<and> T \<subseteq> f ` S \<longrightarrow> P T) \<longleftrightarrow> (\<forall>T. countable T \<and> T \<subseteq> S \<and> inj_on f T \<longrightarrow>P(f ` T))"
(\<forall>T. countable T \<and> T \<subseteq> ?f ` ?S \<longrightarrow> ?P T) = (\<forall>T. countable T \<and> T \<subseteq> ?S \<and> inj_on ?f T \<longrightarrow> ?P (?f ` T))
(\<forall>y_0. ?H1 y_0 \<and> ?H2 y_0 (?H3 x_1 x_2) \<longrightarrow> x_3 y_0) = (\<forall>y_1. ?H1 y_1 \<and> ?H2 y_1 x_2 \<and> ?H4 x_1 y_1 \<longrightarrow> x_3 (?H3 x_1 y_1))
[ "Fun.inj_on", "Set.image", "Set.subset_eq", "Countable_Set.countable" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "definition inj_on :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> bool\" \\<comment> \\<open>injective\\<close>\n where \"inj_on f A \\<longleftrightarrow> (\\<forall>x\\<in>A. \\<forall>y\\<in>A. f x = f y \\<longrightarrow> x = y)\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "definition countable :: \"'a set \\<Rightarrow> bool\" where\n \"countable S \\<longleftrightarrow> (\\<exists>f::'a \\<Rightarrow> nat. inj_on f S)\"" ]
template
###lemma (\<forall>T. countable T \<and> T \<subseteq> ?f ` ?S \<longrightarrow> ?P T) = (\<forall>T. countable T \<and> T \<subseteq> ?S \<and> inj_on ?f T \<longrightarrow> ?P (?f ` T)) ###symbols Fun.inj_on :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Countable_Set.countable :::: 'a set \<Rightarrow> bool ###defs definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> \<open>injective\<close> where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" definition countable :: "'a set \<Rightarrow> bool" where "countable S \<longleftrightarrow> (\<exists>f::'a \<Rightarrow> nat. inj_on f S)"
###output (\<forall>y_0. ?H1 y_0 \<and> ?H2 y_0 (?H3 x_1 x_2) \<longrightarrow> x_3 y_0) = (\<forall>y_1. ?H1 y_1 \<and> ?H2 y_1 x_2 \<and> ?H4 x_1 y_1 \<longrightarrow> x_3 (?H3 x_1 y_1))###end
Nominal/Examples/W
Wellfounded.accp_subset
null
?R1.0 \<le> ?R2.0 \<Longrightarrow> Wellfounded.accp ?R2.0 \<le> Wellfounded.accp ?R1.0
x_1 \<le> x_2 \<Longrightarrow> ?H1 x_2 \<le> ?H1 x_1
[ "Wellfounded.accp" ]
[ "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[]
template
###lemma ?R1.0 \<le> ?R2.0 \<Longrightarrow> Wellfounded.accp ?R2.0 \<le> Wellfounded.accp ?R1.0 ###symbols Wellfounded.accp :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool ###defs
###output x_1 \<le> x_2 \<Longrightarrow> ?H1 x_2 \<le> ?H1 x_1###end
Analysis/Abstract_Topology
Abstract_Topology.connected_spaceD
lemma connected_spaceD: "\<lbrakk>connected_space X; openin X U; openin X V; topspace X \<subseteq> U \<union> V; U \<inter> V = {}; U \<noteq> {}; V \<noteq> {}\<rbrakk> \<Longrightarrow> False"
connected_space ?X \<Longrightarrow> openin ?X ?U \<Longrightarrow> openin ?X ?V \<Longrightarrow> topspace ?X \<subseteq> ?U \<union> ?V \<Longrightarrow> ?U \<inter> ?V = {} \<Longrightarrow> ?U \<noteq> {} \<Longrightarrow> ?V \<noteq> {} \<Longrightarrow> False
\<lbrakk> ?H1 x_1; ?H2 x_1 x_2; ?H2 x_1 x_3; ?H3 (?H4 x_1) (?H5 x_2 x_3); ?H6 x_2 x_3 = ?H7; x_2 \<noteq> ?H7; x_3 \<noteq> ?H7\<rbrakk> \<Longrightarrow> False
[ "Set.empty", "Set.inter", "Set.union", "Abstract_Topology.topspace", "Set.subset_eq", "Abstract_Topology.topology.openin", "Abstract_Topology.connected_space" ]
[ "'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a topology \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"", "definition \"topspace T = \\<Union>{S. openin T S}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "definition connected_space :: \"'a topology \\<Rightarrow> bool\" where\n \"connected_space X \\<equiv>\n \\<not>(\\<exists>E1 E2. openin X E1 \\<and> openin X E2 \\<and>\n topspace X \\<subseteq> E1 \\<union> E2 \\<and> E1 \\<inter> E2 = {} \\<and> E1 \\<noteq> {} \\<and> E2 \\<noteq> {})\"" ]
template
###lemma connected_space ?X \<Longrightarrow> openin ?X ?U \<Longrightarrow> openin ?X ?V \<Longrightarrow> topspace ?X \<subseteq> ?U \<union> ?V \<Longrightarrow> ?U \<inter> ?V = {} \<Longrightarrow> ?U \<noteq> {} \<Longrightarrow> ?V \<noteq> {} \<Longrightarrow> False ###symbols Set.empty :::: 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Abstract_Topology.topology.openin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Abstract_Topology.connected_space :::: 'a topology \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup" definition "topspace T = \<Union>{S. openin T S}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" definition connected_space :: "'a topology \<Rightarrow> bool" where "connected_space X \<equiv> \<not>(\<exists>E1 E2. openin X E1 \<and> openin X E2 \<and> topspace X \<subseteq> E1 \<union> E2 \<and> E1 \<inter> E2 = {} \<and> E1 \<noteq> {} \<and> E2 \<noteq> {})"
###output \<lbrakk> ?H1 x_1; ?H2 x_1 x_2; ?H2 x_1 x_3; ?H3 (?H4 x_1) (?H5 x_2 x_3); ?H6 x_2 x_3 = ?H7; x_2 \<noteq> ?H7; x_3 \<noteq> ?H7\<rbrakk> \<Longrightarrow> False###end
Library/Sublist
Sublist.prefixE
lemma prefixE [elim?]: assumes "prefix xs ys" obtains zs where "ys = xs @ zs"
prefix ?xs ?ys \<Longrightarrow> (\<And>zs. ?ys = ?xs @ zs \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 x_1 x_2; \<And>y_0. x_2 = ?H2 x_1 y_0 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "List.append", "Sublist.prefix" ]
[ "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a list \\<Rightarrow> bool" ]
[ "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "definition prefix :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> bool\"\n where \"prefix xs ys \\<longleftrightarrow> (\\<exists>zs. ys = xs @ zs)\"" ]
template
###lemma prefix ?xs ?ys \<Longrightarrow> (\<And>zs. ?ys = ?xs @ zs \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###symbols List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list Sublist.prefix :::: 'a list \<Rightarrow> 'a list \<Rightarrow> bool ###defs primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" definition prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "prefix xs ys \<longleftrightarrow> (\<exists>zs. ys = xs @ zs)"
###output \<lbrakk> ?H1 x_1 x_2; \<And>y_0. x_2 = ?H2 x_1 y_0 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3###end
Deriv
Deriv.has_field_derivative_at_within
lemma has_field_derivative_at_within: "(f has_field_derivative f') (at x) \<Longrightarrow> (f has_field_derivative f') (at x within s)"
(?f has_field_derivative ?f') (at ?x) \<Longrightarrow> (?f has_field_derivative ?f') (at ?x within ?s)
?H1 x_1 x_2 (?H2 x_3) \<Longrightarrow> ?H1 x_1 x_2 (?H3 x_3 x_4)
[ "Topological_Spaces.topological_space_class.at_within", "Topological_Spaces.topological_space_class.at", "Deriv.has_field_derivative" ]
[ "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "'a \\<Rightarrow> 'a filter", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_field_derivative :: \"('a::real_normed_field \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a filter \\<Rightarrow> bool\"\n (infix \"(has'_field'_derivative)\" 50)\n where \"(f has_field_derivative D) F \\<longleftrightarrow> (f has_derivative (*) D) F\"" ]
template
###lemma (?f has_field_derivative ?f') (at ?x) \<Longrightarrow> (?f has_field_derivative ?f') (at ?x within ?s) ###symbols Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Topological_Spaces.topological_space_class.at :::: 'a \<Rightarrow> 'a filter Deriv.has_field_derivative :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool" (infix "(has'_field'_derivative)" 50) where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F"
###output ?H1 x_1 x_2 (?H2 x_3) \<Longrightarrow> ?H1 x_1 x_2 (?H3 x_3 x_4)###end
SET_Protocol/Cardholder_Registration
Cardholder_Registration.analz_insert_pan
lemma analz_insert_pan: "[| evs \<in> set_cr; K \<notin> invKey ` pubEK ` range CA |] ==> (Pan P \<in> analz (insert (Key K) (knows Spy evs))) = (Pan P \<in> analz (knows Spy evs))"
?evs \<in> set_cr \<Longrightarrow> ?K \<notin> invKey ` pubEK ` range CA \<Longrightarrow> (Pan ?P \<in> analz (insert (Key ?K) (knows Spy ?evs))) = (Pan ?P \<in> analz (knows Spy ?evs))
\<lbrakk>x_1 \<in> ?H1; ?H2 x_2 (?H3 ?H4 (?H3 ?H5 (?H6 ?H7)))\<rbrakk> \<Longrightarrow> (?H8 x_3 \<in> ?H9 (?H10 (?H11 x_2) (?H12 ?H13 x_1))) = (?H8 x_3 \<in> ?H9 (?H12 ?H13 x_1))
[ "Message_SET.agent.Spy", "Event_SET.knows", "Message_SET.msg.Key", "Set.insert", "Message_SET.analz", "Message_SET.msg.Pan", "Message_SET.agent.CA", "Set.range", "Public_SET.pubEK", "Message_SET.invKey", "Set.image", "Set.not_member", "Cardholder_Registration.set_cr" ]
[ "agent", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "nat \\<Rightarrow> msg", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "msg set \\<Rightarrow> msg set", "nat \\<Rightarrow> msg", "nat \\<Rightarrow> agent", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "agent \\<Rightarrow> nat", "nat \\<Rightarrow> nat", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool", "event list set" ]
[ "datatype\n agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy", "primrec knows :: \"[agent, event list] \\<Rightarrow> msg set\"\nwhere\n knows_Nil:\n \"knows A [] = initState A\"\n| knows_Cons:\n \"knows A (ev # evs) =\n (if A = Spy then\n (case ev of\n Says A' B X \\<Rightarrow> insert X (knows Spy evs)\n | Gets A' X \\<Rightarrow> knows Spy evs\n | Notes A' X \\<Rightarrow>\n if A' \\<in> bad then insert X (knows Spy evs) else knows Spy evs)\n else\n (case ev of\n Says A' B X \\<Rightarrow>\n if A'=A then insert X (knows A evs) else knows A evs\n | Gets A' X \\<Rightarrow>\n if A'=A then insert X (knows A evs) else knows A evs\n | Notes A' X \\<Rightarrow>\n if A'=A then insert X (knows A evs) else knows A evs))\"", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Pan nat \\<comment> \\<open>Unguessable Primary Account Numbers (??)\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "inductive_set\n analz :: \"msg set => msg set\"\n for H :: \"msg set\"\n where\n Inj [intro,simp] : \"X \\<in> H ==> X \\<in> analz H\"\n | Fst: \"\\<lbrace>X,Y\\<rbrace> \\<in> analz H ==> X \\<in> analz H\"\n | Snd: \"\\<lbrace>X,Y\\<rbrace> \\<in> analz H ==> Y \\<in> analz H\"\n | Decrypt [dest]:\n \"[|Crypt K X \\<in> analz H; Key(invKey K) \\<in> analz H|] ==> X \\<in> analz H\"", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Pan nat \\<comment> \\<open>Unguessable Primary Account Numbers (??)\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation \"pubEK == publicKey False\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>", "inductive_set\n set_cr :: \"event list set\"\nwhere\n\n Nil: \\<comment> \\<open>Initial trace is empty\\<close>\n \"[] \\<in> set_cr\"\n\n| Fake: \\<comment> \\<open>The spy MAY say anything he CAN say.\\<close>\n \"[| evsf \\<in> set_cr; X \\<in> synth (analz (knows Spy evsf)) |]\n ==> Says Spy B X # evsf \\<in> set_cr\"\n\n| Reception: \\<comment> \\<open>If A sends a message X to B, then B might receive it\\<close>\n \"[| evsr \\<in> set_cr; Says A B X \\<in> set evsr |]\n ==> Gets B X # evsr \\<in> set_cr\"\n\n| SET_CR1: \\<comment> \\<open>CardCInitReq: C initiates a run, sending a nonce to CCA\\<close>\n \"[| evs1 \\<in> set_cr; C = Cardholder k; Nonce NC1 \\<notin> used evs1 |]\n ==> Says C (CA i) \\<lbrace>Agent C, Nonce NC1\\<rbrace> # evs1 \\<in> set_cr\"\n\n| SET_CR2: \\<comment> \\<open>CardCInitRes: CA responds sending NC1 and its certificates\\<close>\n \"[| evs2 \\<in> set_cr;\n Gets (CA i) \\<lbrace>Agent C, Nonce NC1\\<rbrace> \\<in> set evs2 |]\n ==> Says (CA i) C\n \\<lbrace>sign (priSK (CA i)) \\<lbrace>Agent C, Nonce NC1\\<rbrace>,\n cert (CA i) (pubEK (CA i)) onlyEnc (priSK RCA),\n cert (CA i) (pubSK (CA i)) onlySig (priSK RCA)\\<rbrace>\n # evs2 \\<in> set_cr\"\n\n| SET_CR3:\n \\<comment> \\<open>RegFormReq: C sends his PAN and a new nonce to CA.\n C verifies that\n - nonce received is the same as that sent;\n - certificates are signed by RCA;\n - certificates are an encryption certificate (flag is onlyEnc) and a\n signature certificate (flag is onlySig);\n - certificates pertain to the CA that C contacted (this is done by\n checking the signature).\n C generates a fresh symmetric key KC1.\n The point of encrypting \\<^term>\\<open>\\<lbrace>Agent C, Nonce NC2, Hash (Pan(pan C))\\<rbrace>\\<close>\n is not clear.\\<close>\n\"[| evs3 \\<in> set_cr; C = Cardholder k;\n Nonce NC2 \\<notin> used evs3;\n Key KC1 \\<notin> used evs3; KC1 \\<in> symKeys;\n Gets C \\<lbrace>sign (invKey SKi) \\<lbrace>Agent X, Nonce NC1\\<rbrace>,\n cert (CA i) EKi onlyEnc (priSK RCA),\n cert (CA i) SKi onlySig (priSK RCA)\\<rbrace>\n \\<in> set evs3;\n Says C (CA i) \\<lbrace>Agent C, Nonce NC1\\<rbrace> \\<in> set evs3|]\n ==> Says C (CA i) (EXHcrypt KC1 EKi \\<lbrace>Agent C, Nonce NC2\\<rbrace> (Pan(pan C)))\n # Notes C \\<lbrace>Key KC1, Agent (CA i)\\<rbrace>\n # evs3 \\<in> set_cr\"\n\n| SET_CR4:\n \\<comment> \\<open>RegFormRes:\n CA responds sending NC2 back with a new nonce NCA, after checking that\n - the digital envelope is correctly encrypted by \\<^term>\\<open>pubEK (CA i)\\<close>\n - the entire message is encrypted with the same key found inside the\n envelope (here, KC1)\\<close>\n\"[| evs4 \\<in> set_cr;\n Nonce NCA \\<notin> used evs4; KC1 \\<in> symKeys;\n Gets (CA i) (EXHcrypt KC1 EKi \\<lbrace>Agent C, Nonce NC2\\<rbrace> (Pan(pan X)))\n \\<in> set evs4 |]\n ==> Says (CA i) C\n \\<lbrace>sign (priSK (CA i)) \\<lbrace>Agent C, Nonce NC2, Nonce NCA\\<rbrace>,\n cert (CA i) (pubEK (CA i)) onlyEnc (priSK RCA),\n cert (CA i) (pubSK (CA i)) onlySig (priSK RCA)\\<rbrace>\n # evs4 \\<in> set_cr\"\n\n| SET_CR5:\n \\<comment> \\<open>CertReq: C sends his PAN, a new nonce, its proposed public signature key\n and its half of the secret value to CA.\n We now assume that C has a fixed key pair, and he submits (pubSK C).\n The protocol does not require this key to be fresh.\n The encryption below is actually EncX.\\<close>\n\"[| evs5 \\<in> set_cr; C = Cardholder k;\n Nonce NC3 \\<notin> used evs5; Nonce CardSecret \\<notin> used evs5; NC3\\<noteq>CardSecret;\n Key KC2 \\<notin> used evs5; KC2 \\<in> symKeys;\n Key KC3 \\<notin> used evs5; KC3 \\<in> symKeys; KC2\\<noteq>KC3;\n Gets C \\<lbrace>sign (invKey SKi) \\<lbrace>Agent C, Nonce NC2, Nonce NCA\\<rbrace>,\n cert (CA i) EKi onlyEnc (priSK RCA),\n cert (CA i) SKi onlySig (priSK RCA) \\<rbrace>\n \\<in> set evs5;\n Says C (CA i) (EXHcrypt KC1 EKi \\<lbrace>Agent C, Nonce NC2\\<rbrace> (Pan(pan C)))\n \\<in> set evs5 |]\n==> Says C (CA i)\n \\<lbrace>Crypt KC3\n \\<lbrace>Agent C, Nonce NC3, Key KC2, Key (pubSK C),\n Crypt (priSK C)\n (Hash \\<lbrace>Agent C, Nonce NC3, Key KC2,\n Key (pubSK C), Pan (pan C), Nonce CardSecret\\<rbrace>)\\<rbrace>,\n Crypt EKi \\<lbrace>Key KC3, Pan (pan C), Nonce CardSecret\\<rbrace> \\<rbrace>\n # Notes C \\<lbrace>Key KC2, Agent (CA i)\\<rbrace>\n # Notes C \\<lbrace>Key KC3, Agent (CA i)\\<rbrace>\n # evs5 \\<in> set_cr\"\n\n\n \\<comment> \\<open>CertRes: CA responds sending NC3 back with its half of the secret value,\n its signature certificate and the new cardholder signature\n certificate. CA checks to have never certified the key proposed by C.\n NOTE: In Merchant Registration, the corresponding rule (4)\n uses the \"sign\" primitive. The encryption below is actually \\<^term>\\<open>EncK\\<close>, \n which is just \\<^term>\\<open>Crypt K (sign SK X)\\<close>.\\<close>\n\n| SET_CR6:\n\"[| evs6 \\<in> set_cr;\n Nonce NonceCCA \\<notin> used evs6;\n KC2 \\<in> symKeys; KC3 \\<in> symKeys; cardSK \\<notin> symKeys;\n Notes (CA i) (Key cardSK) \\<notin> set evs6;\n Gets (CA i)\n \\<lbrace>Crypt KC3 \\<lbrace>Agent C, Nonce NC3, Key KC2, Key cardSK,\n Crypt (invKey cardSK)\n (Hash \\<lbrace>Agent C, Nonce NC3, Key KC2,\n Key cardSK, Pan (pan C), Nonce CardSecret\\<rbrace>)\\<rbrace>,\n Crypt (pubEK (CA i)) \\<lbrace>Key KC3, Pan (pan C), Nonce CardSecret\\<rbrace> \\<rbrace>\n \\<in> set evs6 |]\n==> Says (CA i) C\n (Crypt KC2\n \\<lbrace>sign (priSK (CA i))\n \\<lbrace>Agent C, Nonce NC3, Agent(CA i), Nonce NonceCCA\\<rbrace>,\n certC (pan C) cardSK (XOR(CardSecret,NonceCCA)) onlySig (priSK (CA i)),\n cert (CA i) (pubSK (CA i)) onlySig (priSK RCA)\\<rbrace>)\n # Notes (CA i) (Key cardSK)\n # evs6 \\<in> set_cr\"" ]
template
###lemma ?evs \<in> set_cr \<Longrightarrow> ?K \<notin> invKey ` pubEK ` range CA \<Longrightarrow> (Pan ?P \<in> analz (insert (Key ?K) (knows Spy ?evs))) = (Pan ?P \<in> analz (knows Spy ?evs)) ###symbols Message_SET.agent.Spy :::: agent Event_SET.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Message_SET.msg.Key :::: nat \<Rightarrow> msg Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Message_SET.analz :::: msg set \<Rightarrow> msg set Message_SET.msg.Pan :::: nat \<Rightarrow> msg Message_SET.agent.CA :::: nat \<Rightarrow> agent Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Public_SET.pubEK :::: agent \<Rightarrow> nat Message_SET.invKey :::: nat \<Rightarrow> nat Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool Cardholder_Registration.set_cr :::: event list set ###defs datatype agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy primrec knows :: "[agent, event list] \<Rightarrow> msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X \<Rightarrow> insert X (knows Spy evs) | Gets A' X \<Rightarrow> knows Spy evs | Notes A' X \<Rightarrow> if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Gets A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Notes A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs))" datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Pan nat \<comment> \<open>Unguessable Primary Account Numbers (??)\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" inductive_set analz :: "msg set => msg set" for H :: "msg set" where Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" | Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> X \<in> analz H" | Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H" | Decrypt [dest]: "[|Crypt K X \<in> analz H; Key(invKey K) \<in> analz H|] ==> X \<in> analz H" datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Pan nat \<comment> \<open>Unguessable Primary Account Numbers (??)\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation "pubEK == publicKey False" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close> inductive_set set_cr :: "event list set" where Nil: \<comment> \<open>Initial trace is empty\<close> "[] \<in> set_cr" | Fake: \<comment> \<open>The spy MAY say anything he CAN say.\<close> "[| evsf \<in> set_cr; X \<in> synth (analz (knows Spy evsf)) |] ==> Says Spy B X # evsf \<in> set_cr" | Reception: \<comment> \<open>If A sends a message X to B, then B might receive it\<close> "[| evsr \<in> set_cr; Says A B X \<in> set evsr |] ==> Gets B X # evsr \<in> set_cr" | SET_CR1: \<comment> \<open>CardCInitReq: C initiates a run, sending a nonce to CCA\<close> "[| evs1 \<in> set_cr; C = Cardholder k; Nonce NC1 \<notin> used evs1 |] ==> Says C (CA i) \<lbrace>Agent C, Nonce NC1\<rbrace> # evs1 \<in> set_cr" | SET_CR2: \<comment> \<open>CardCInitRes: CA responds sending NC1 and its certificates\<close> "[| evs2 \<in> set_cr; Gets (CA i) \<lbrace>Agent C, Nonce NC1\<rbrace> \<in> set evs2 |] ==> Says (CA i) C \<lbrace>sign (priSK (CA i)) \<lbrace>Agent C, Nonce NC1\<rbrace>, cert (CA i) (pubEK (CA i)) onlyEnc (priSK RCA), cert (CA i) (pubSK (CA i)) onlySig (priSK RCA)\<rbrace> # evs2 \<in> set_cr" | SET_CR3: \<comment> \<open>RegFormReq: C sends his PAN and a new nonce to CA. C verifies that - nonce received is the same as that sent; - certificates are signed by RCA; - certificates are an encryption certificate (flag is onlyEnc) and a signature certificate (flag is onlySig); - certificates pertain to the CA that C contacted (this is done by checking the signature). C generates a fresh symmetric key KC1. The point of encrypting \<^term>\<open>\<lbrace>Agent C, Nonce NC2, Hash (Pan(pan C))\<rbrace>\<close> is not clear.\<close> "[| evs3 \<in> set_cr; C = Cardholder k; Nonce NC2 \<notin> used evs3; Key KC1 \<notin> used evs3; KC1 \<in> symKeys; Gets C \<lbrace>sign (invKey SKi) \<lbrace>Agent X, Nonce NC1\<rbrace>, cert (CA i) EKi onlyEnc (priSK RCA), cert (CA i) SKi onlySig (priSK RCA)\<rbrace> \<in> set evs3; Says C (CA i) \<lbrace>Agent C, Nonce NC1\<rbrace> \<in> set evs3|] ==> Says C (CA i) (EXHcrypt KC1 EKi \<lbrace>Agent C, Nonce NC2\<rbrace> (Pan(pan C))) # Notes C \<lbrace>Key KC1, Agent (CA i)\<rbrace> # evs3 \<in> set_cr" | SET_CR4: \<comment> \<open>RegFormRes: CA responds sending NC2 back with a new nonce NCA, after checking that - the digital envelope is correctly encrypted by \<^term>\<open>pubEK (CA i)\<close> - the entire message is encrypted with the same key found inside the envelope (here, KC1)\<close> "[| evs4 \<in> set_cr; Nonce NCA \<notin> used evs4; KC1 \<in> symKeys; Gets (CA i) (EXHcrypt KC1 EKi \<lbrace>Agent C, Nonce NC2\<rbrace> (Pan(pan X))) \<in> set evs4 |] ==> Says (CA i) C \<lbrace>sign (priSK (CA i)) \<lbrace>Agent C, Nonce NC2, Nonce NCA\<rbrace>, cert (CA i) (pubEK (CA i)) onlyEnc (priSK RCA), cert (CA i) (pubSK (CA i)) onlySig (priSK RCA)\<rbrace> # evs4 \<in> set_cr" | SET_CR5: \<comment> \<open>CertReq: C sends his PAN, a new nonce, its proposed public signature key and its half of the secret value to CA. We now assume that C has a fixed key pair, and he submits (pubSK C). The protocol does not require this key to be fresh. The encryption below is actually EncX.\<close> "[| evs5 \<in> set_cr; C = Cardholder k; Nonce NC3 \<notin> used evs5; Nonce CardSecret \<notin> used evs5; NC3\<noteq>CardSecret; Key KC2 \<notin> used evs5; KC2 \<in> symKeys; Key KC3 \<notin> used evs5; KC3 \<in> symKeys; KC2\<noteq>KC3; Gets C \<lbrace>sign (invKey SKi) \<lbrace>Agent C, Nonce NC2, Nonce NCA\<rbrace>, cert (CA i) EKi onlyEnc (priSK RCA), cert (CA i) SKi onlySig (priSK RCA) \<rbrace> \<in> set evs5; Says C (CA i) (EXHcrypt KC1 EKi \<lbrace>Agent C, Nonce NC2\<rbrace> (Pan(pan C))) \<in> set evs5 |] ==> Says C (CA i) \<lbrace>Crypt KC3 \<lbrace>Agent C, Nonce NC3, Key KC2, Key (pubSK C), Crypt (priSK C) (Hash \<lbrace>Agent C, Nonce NC3, Key KC2, Key (pubSK C), Pan (pan C), Nonce CardSecret\<rbrace>)\<rbrace>, Crypt EKi \<lbrace>Key KC3, Pan (pan C), Nonce CardSecret\<rbrace> \<rbrace> # Notes C \<lbrace>Key KC2, Agent (CA i)\<rbrace> # Notes C \<lbrace>Key KC3, Agent (CA i)\<rbrace> # evs5 \<in> set_cr" \<comment> \<open>CertRes: CA responds sending NC3 back with its half of the secret value, its signature certificate and the new cardholder signature certificate. CA checks to have never certified the key proposed by C. NOTE: In Merchant Registration, the corresponding rule (4) uses the "sign" primitive. The encryption below is actually \<^term>\<open>EncK\<close>, which is just \<^term>\<open>Crypt K (sign SK X)\<close>.\<close> | SET_CR6: "[| evs6 \<in> set_cr; Nonce NonceCCA \<notin> used evs6; KC2 \<in> symKeys; KC3 \<in> symKeys; cardSK \<notin> symKeys; Notes (CA i) (Key cardSK) \<notin> set evs6; Gets (CA i) \<lbrace>Crypt KC3 \<lbrace>Agent C, Nonce NC3, Key KC2, Key cardSK, Crypt (invKey cardSK) (Hash \<lbrace>Agent C, Nonce NC3, Key KC2, Key cardSK, Pan (pan C), Nonce CardSecret\<rbrace>)\<rbrace>, Crypt (pubEK (CA i)) \<lbrace>Key KC3, Pan (pan C), Nonce CardSecret\<rbrace> \<rbrace> \<in> set evs6 |] ==> Says (CA i) C (Crypt KC2 \<lbrace>sign (priSK (CA i)) \<lbrace>Agent C, Nonce NC3, Agent(CA i), Nonce NonceCCA\<rbrace>, certC (pan C) cardSK (XOR(CardSecret,NonceCCA)) onlySig (priSK (CA i)), cert (CA i) (pubSK (CA i)) onlySig (priSK RCA)\<rbrace>) # Notes (CA i) (Key cardSK) # evs6 \<in> set_cr"
###output \<lbrakk>x_1 \<in> ?H1; ?H2 x_2 (?H3 ?H4 (?H3 ?H5 (?H6 ?H7)))\<rbrakk> \<Longrightarrow> (?H8 x_3 \<in> ?H9 (?H10 (?H11 x_2) (?H12 ?H13 x_1))) = (?H8 x_3 \<in> ?H9 (?H12 ?H13 x_1))###end
Bali/WellType
WellType.is_acc_class_is_accessible
lemma is_acc_class_is_accessible: "is_acc_class G P C \<Longrightarrow> G\<turnstile>(Class C) accessible_in P"
is_acc_class ?G ?P ?C \<Longrightarrow> ?G \<turnstile> Class ?C accessible_in ?P
?H1 x_1 x_2 x_3 \<Longrightarrow> ?H2 x_1 (?H3 x_3) x_2
[ "Type.Class", "DeclConcepts.accessible_in", "DeclConcepts.is_acc_class" ]
[ "qtname \\<Rightarrow> ty", "prog \\<Rightarrow> ty \\<Rightarrow> pname \\<Rightarrow> bool", "prog \\<Rightarrow> pname \\<Rightarrow> qtname \\<Rightarrow> bool" ]
[ "abbreviation \"Class C == RefT (ClassT C)\"", "primrec\n accessible_in :: \"prog \\<Rightarrow> ty \\<Rightarrow> pname \\<Rightarrow> bool\" (\"_ \\<turnstile> _ accessible'_in _\" [61,61,61] 60) and\n rt_accessible_in :: \"prog \\<Rightarrow> ref_ty \\<Rightarrow> pname \\<Rightarrow> bool\" (\"_ \\<turnstile> _ accessible'_in'' _\" [61,61,61] 60)\nwhere\n \"G\\<turnstile>(PrimT p) accessible_in pack = True\"\n| accessible_in_RefT_simp:\n \"G\\<turnstile>(RefT r) accessible_in pack = G\\<turnstile>r accessible_in' pack\"\n| \"G\\<turnstile>(NullT) accessible_in' pack = True\"\n| \"G\\<turnstile>(IfaceT I) accessible_in' pack = ((pid I = pack) \\<or> is_public G I)\"\n| \"G\\<turnstile>(ClassT C) accessible_in' pack = ((pid C = pack) \\<or> is_public G C)\"\n| \"G\\<turnstile>(ArrayT ty) accessible_in' pack = G\\<turnstile>ty accessible_in pack\"", "definition\n is_acc_class :: \"prog \\<Rightarrow> pname \\<Rightarrow> qtname \\<Rightarrow> bool\"\n where \"is_acc_class G P C = (is_class G C \\<and> G\\<turnstile>(Class C) accessible_in P)\"" ]
template
###lemma is_acc_class ?G ?P ?C \<Longrightarrow> ?G \<turnstile> Class ?C accessible_in ?P ###symbols Type.Class :::: qtname \<Rightarrow> ty DeclConcepts.accessible_in :::: prog \<Rightarrow> ty \<Rightarrow> pname \<Rightarrow> bool DeclConcepts.is_acc_class :::: prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> bool ###defs abbreviation "Class C == RefT (ClassT C)" primrec accessible_in :: "prog \<Rightarrow> ty \<Rightarrow> pname \<Rightarrow> bool" ("_ \<turnstile> _ accessible'_in _" [61,61,61] 60) and rt_accessible_in :: "prog \<Rightarrow> ref_ty \<Rightarrow> pname \<Rightarrow> bool" ("_ \<turnstile> _ accessible'_in'' _" [61,61,61] 60) where "G\<turnstile>(PrimT p) accessible_in pack = True" | accessible_in_RefT_simp: "G\<turnstile>(RefT r) accessible_in pack = G\<turnstile>r accessible_in' pack" | "G\<turnstile>(NullT) accessible_in' pack = True" | "G\<turnstile>(IfaceT I) accessible_in' pack = ((pid I = pack) \<or> is_public G I)" | "G\<turnstile>(ClassT C) accessible_in' pack = ((pid C = pack) \<or> is_public G C)" | "G\<turnstile>(ArrayT ty) accessible_in' pack = G\<turnstile>ty accessible_in pack" definition is_acc_class :: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> bool" where "is_acc_class G P C = (is_class G C \<and> G\<turnstile>(Class C) accessible_in P)"
###output ?H1 x_1 x_2 x_3 \<Longrightarrow> ?H2 x_1 (?H3 x_3) x_2###end
Analysis/Linear_Algebra
Linear_Algebra.abs_triangle_half_r
lemma abs_triangle_half_r: fixes y :: "'a::linordered_field" shows "abs (y - x1) < e/2 \<Longrightarrow> abs (y - x2) < e/2 \<Longrightarrow> abs (x1 - x2) < e"
\<bar> ?y - ?x1.0\<bar> < ?e / (2:: ?'a) \<Longrightarrow> \<bar> ?y - ?x2.0\<bar> < ?e / (2:: ?'a) \<Longrightarrow> \<bar> ?x1.0 - ?x2.0\<bar> < ?e
\<lbrakk> ?H1 (?H2 x_1 x_2) < ?H3 x_3 (?H4 (?H5 ?H6)); ?H1 (?H2 x_1 x_4) < ?H3 x_3 (?H4 (?H5 ?H6))\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_2 x_4) < x_3
[ "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Fields.inverse_class.inverse_divide", "Groups.minus_class.minus", "Groups.abs_class.abs" ]
[ "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")" ]
template
###lemma \<bar> ?y - ?x1.0\<bar> < ?e / (2:: ?'a) \<Longrightarrow> \<bar> ?y - ?x2.0\<bar> < ?e / (2:: ?'a) \<Longrightarrow> \<bar> ?x1.0 - ?x2.0\<bar> < ?e ###symbols Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>")
###output \<lbrakk> ?H1 (?H2 x_1 x_2) < ?H3 x_3 (?H4 (?H5 ?H6)); ?H1 (?H2 x_1 x_4) < ?H3 x_3 (?H4 (?H5 ?H6))\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_2 x_4) < x_3###end
Homology/Homology_Groups
Homology_Groups.singular_relboundary_ss
lemma singular_relboundary_ss: "singular_relboundary p X S x \<Longrightarrow> Poly_Mapping.keys x \<subseteq> singular_simplex_set p X"
singular_relboundary ?p ?X ?S ?x \<Longrightarrow> Poly_Mapping.keys ?x \<subseteq> singular_simplex_set ?p ?X
?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H2 (?H3 x_4) (?H4 x_1 x_2)
[ "Simplices.singular_simplex_set", "Poly_Mapping.keys", "Set.subset_eq", "Simplices.singular_relboundary" ]
[ "nat \\<Rightarrow> 'a topology \\<Rightarrow> ((nat \\<Rightarrow> real) \\<Rightarrow> 'a) set", "('a \\<Rightarrow>\\<^sub>0 'b) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "nat \\<Rightarrow> 'a topology \\<Rightarrow> 'a set \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a) \\<Rightarrow>\\<^sub>0 int) \\<Rightarrow> bool" ]
[ "abbreviation singular_simplex_set :: \"nat \\<Rightarrow> 'a topology \\<Rightarrow> ((nat \\<Rightarrow> real) \\<Rightarrow> 'a) set\" where\n \"singular_simplex_set p X \\<equiv> Collect (singular_simplex p X)\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "definition singular_relboundary :: \"nat \\<Rightarrow> 'a topology \\<Rightarrow> 'a set \\<Rightarrow> ('a chain) \\<Rightarrow> bool\"\n where\n \"singular_relboundary p X S \\<equiv>\n \\<lambda>c. \\<exists>d. singular_chain (Suc p) X d \\<and> (chain_boundary (Suc p) d, c) \\<in> (mod_subset p (subtopology X S))\"" ]
template
###lemma singular_relboundary ?p ?X ?S ?x \<Longrightarrow> Poly_Mapping.keys ?x \<subseteq> singular_simplex_set ?p ?X ###symbols Simplices.singular_simplex_set :::: nat \<Rightarrow> 'a topology \<Rightarrow> ((nat \<Rightarrow> real) \<Rightarrow> 'a) set Poly_Mapping.keys :::: ('a \<Rightarrow>\<^sub>0 'b) \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Simplices.singular_relboundary :::: nat \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow>\<^sub>0 int) \<Rightarrow> bool ###defs abbreviation singular_simplex_set :: "nat \<Rightarrow> 'a topology \<Rightarrow> ((nat \<Rightarrow> real) \<Rightarrow> 'a) set" where "singular_simplex_set p X \<equiv> Collect (singular_simplex p X)" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" definition singular_relboundary :: "nat \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> ('a chain) \<Rightarrow> bool" where "singular_relboundary p X S \<equiv> \<lambda>c. \<exists>d. singular_chain (Suc p) X d \<and> (chain_boundary (Suc p) d, c) \<in> (mod_subset p (subtopology X S))"
###output ?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H2 (?H3 x_4) (?H4 x_1 x_2)###end
Probability/Probability
Probability_Measure.subdensity_real
null
?T \<in> ?P \<rightarrow>\<^sub>M ?Q \<Longrightarrow> distributed ?M ?P ?X (\<lambda>x. ennreal (?f x)) \<Longrightarrow> distributed ?M ?Q ?Y (\<lambda>x. ennreal (?g x)) \<Longrightarrow> ?Y = ?T \<circ> ?X \<Longrightarrow> AE x in ?P. 0 \<le> ?g (?T x) \<Longrightarrow> AE x in ?P. 0 \<le> ?f x \<Longrightarrow> AE x in ?P. ?g (?T x) = 0 \<longrightarrow> ?f x = 0
\<lbrakk>x_1 \<in> ?H1 x_2 x_3; ?H2 x_4 x_2 x_5 (\<lambda>y_0. ?H3 (x_6 y_0)); ?H2 x_4 x_3 x_7 (\<lambda>y_1. ?H3 (x_8 y_1)); x_7 = ?H4 x_1 x_5; ?H5 x_2 (\<lambda>y_2. ?H6 \<le> x_8 (x_1 y_2)); ?H5 x_2 (\<lambda>y_3. ?H6 \<le> x_6 y_3)\<rbrakk> \<Longrightarrow> ?H5 x_2 (\<lambda>y_4. x_8 (x_1 y_4) = ?H6 \<longrightarrow> x_6 y_4 = ?H6)
[ "Groups.zero_class.zero", "Measure_Space.almost_everywhere", "Fun.comp", "Extended_Nonnegative_Real.ennreal", "Probability_Measure.distributed", "Sigma_Algebra.measurable" ]
[ "'a", "'a measure \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "real \\<Rightarrow> ennreal", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> ennreal) \\<Rightarrow> bool", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation almost_everywhere :: \"'a measure \\<Rightarrow> ('a \\<Rightarrow> bool) \\<Rightarrow> bool\" where\n \"almost_everywhere M P \\<equiv> eventually P (ae_filter M)\"", "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "typedef ennreal = \"{x :: ereal. 0 \\<le> x}\"\n morphisms enn2ereal e2ennreal'", "definition distributed :: \"'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> ennreal) \\<Rightarrow> bool\"\nwhere\n \"distributed M N X f \\<longleftrightarrow>\n distr M N X = density N f \\<and> f \\<in> borel_measurable N \\<and> X \\<in> measurable M N\"" ]
template
###lemma ?T \<in> ?P \<rightarrow>\<^sub>M ?Q \<Longrightarrow> distributed ?M ?P ?X (\<lambda>x. ennreal (?f x)) \<Longrightarrow> distributed ?M ?Q ?Y (\<lambda>x. ennreal (?g x)) \<Longrightarrow> ?Y = ?T \<circ> ?X \<Longrightarrow> AE x in ?P. 0 \<le> ?g (?T x) \<Longrightarrow> AE x in ?P. 0 \<le> ?f x \<Longrightarrow> AE x in ?P. ?g (?T x) = 0 \<longrightarrow> ?f x = 0 ###symbols Groups.zero_class.zero :::: 'a Measure_Space.almost_everywhere :::: 'a measure \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Extended_Nonnegative_Real.ennreal :::: real \<Rightarrow> ennreal Probability_Measure.distributed :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool Sigma_Algebra.measurable :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set ###defs class zero = fixes zero :: 'a ("0") abbreviation almost_everywhere :: "'a measure \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where "almost_everywhere M P \<equiv> eventually P (ae_filter M)" definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" typedef ennreal = "{x :: ereal. 0 \<le> x}" morphisms enn2ereal e2ennreal' definition distributed :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> bool" where "distributed M N X f \<longleftrightarrow> distr M N X = density N f \<and> f \<in> borel_measurable N \<and> X \<in> measurable M N"
###output \<lbrakk>x_1 \<in> ?H1 x_2 x_3; ?H2 x_4 x_2 x_5 (\<lambda>y_0. ?H3 (x_6 y_0)); ?H2 x_4 x_3 x_7 (\<lambda>y_1. ?H3 (x_8 y_1)); x_7 = ?H4 x_1 x_5; ?H5 x_2 (\<lambda>y_2. ?H6 \<le> x_8 (x_1 y_2)); ?H5 x_2 (\<lambda>y_3. ?H6 \<le> x_6 y_3)\<rbrakk> \<Longrightarrow> ?H5 x_2 (\<lambda>y_4. x_8 (x_1 y_4) = ?H6 \<longrightarrow> x_6 y_4 = ?H6)###end
HOLCF/FOCUS/Buffer_adm
Buffer_adm.adm_BufAC
lemma adm_BufAC: "f \<in> BufEq \<Longrightarrow> adm (\<lambda>s. s \<in> BufAC_Asm \<longrightarrow> (s, f\<cdot>s) \<in> BufAC_Cmt)"
?f \<in> BufEq \<Longrightarrow> adm (\<lambda>s. s \<in> BufAC_Asm \<longrightarrow> (s, ?f\<cdot>s) \<in> BufAC_Cmt)
x_1 \<in> ?H1 \<Longrightarrow> ?H2 (\<lambda>y_0. y_0 \<in> ?H3 \<longrightarrow> (y_0, ?H4 x_1 y_0) \<in> ?H5)
[ "Buffer.BufAC_Cmt", "Cfun.cfun.Rep_cfun", "Buffer.BufAC_Asm", "Adm.adm", "Buffer.BufEq" ]
[ "(M lift stream \\<times> D lift stream) set", "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b", "M lift stream set", "('a \\<Rightarrow> bool) \\<Rightarrow> bool", "(M lift stream \\<rightarrow> D lift stream) set" ]
[ "definition adm :: \"('a::cpo \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"adm P \\<longleftrightarrow> (\\<forall>Y. chain Y \\<longrightarrow> (\\<forall>i. P (Y i)) \\<longrightarrow> P (\\<Squnion>i. Y i))\"" ]
template
###lemma ?f \<in> BufEq \<Longrightarrow> adm (\<lambda>s. s \<in> BufAC_Asm \<longrightarrow> (s, ?f\<cdot>s) \<in> BufAC_Cmt) ###symbols Buffer.BufAC_Cmt :::: (M lift stream \<times> D lift stream) set Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Buffer.BufAC_Asm :::: M lift stream set Adm.adm :::: ('a \<Rightarrow> bool) \<Rightarrow> bool Buffer.BufEq :::: (M lift stream \<rightarrow> D lift stream) set ###defs definition adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool" where "adm P \<longleftrightarrow> (\<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i))"
###output x_1 \<in> ?H1 \<Longrightarrow> ?H2 (\<lambda>y_0. y_0 \<in> ?H3 \<longrightarrow> (y_0, ?H4 x_1 y_0) \<in> ?H5)###end
Algebra/Algebra
Algebraic_Closure.union_ring_carrier
null
carrier (union_ring ?C) = \<Union> (carrier ` ?C)
?H1 (?H2 x_1) = ?H3 (?H4 ?H1 x_1)
[ "Set.image", "Complete_Lattices.Union", "Algebraic_Closure.union_ring", "Congruence.partial_object.carrier" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set", "('a, 'b) ring_scheme set \\<Rightarrow> 'a ring", "('a, 'b) partial_object_scheme \\<Rightarrow> 'a set" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"", "definition union_ring :: \"(('a, 'c) ring_scheme) set \\<Rightarrow> 'a ring\"\n where \"union_ring C = \n \\<lparr> carrier = (\\<Union>(carrier ` C)),\n monoid.mult = (\\<lambda>a b. (monoid.mult (SOME R. R \\<in> C \\<and> a \\<in> carrier R \\<and> b \\<in> carrier R) a b)),\n one = one (SOME R. R \\<in> C),\n zero = zero (SOME R. R \\<in> C),\n add = (\\<lambda>a b. (add (SOME R. R \\<in> C \\<and> a \\<in> carrier R \\<and> b \\<in> carrier R) a b)) \\<rparr>\"" ]
template
###lemma carrier (union_ring ?C) = \<Union> (carrier ` ?C) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set Algebraic_Closure.union_ring :::: ('a, 'b) ring_scheme set \<Rightarrow> 'a ring Congruence.partial_object.carrier :::: ('a, 'b) partial_object_scheme \<Rightarrow> 'a set ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S" definition union_ring :: "(('a, 'c) ring_scheme) set \<Rightarrow> 'a ring" where "union_ring C = \<lparr> carrier = (\<Union>(carrier ` C)), monoid.mult = (\<lambda>a b. (monoid.mult (SOME R. R \<in> C \<and> a \<in> carrier R \<and> b \<in> carrier R) a b)), one = one (SOME R. R \<in> C), zero = zero (SOME R. R \<in> C), add = (\<lambda>a b. (add (SOME R. R \<in> C \<and> a \<in> carrier R \<and> b \<in> carrier R) a b)) \<rparr>"
###output ?H1 (?H2 x_1) = ?H3 (?H4 ?H1 x_1)###end
SPARK/Examples/RIPEMD-160/F
Filter.eventually_filtercomap
null
eventually ?P (filtercomap ?f ?F) = (\<exists>Q. eventually Q ?F \<and> (\<forall>x. Q (?f x) \<longrightarrow> ?P x))
?H1 x_1 (?H2 x_2 x_3) = (\<exists>y_0. ?H1 y_0 x_3 \<and> (\<forall>y_1. y_0 (x_2 y_1) \<longrightarrow> x_1 y_1))
[ "Filter.filtercomap", "Filter.eventually" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b filter \\<Rightarrow> 'a filter", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "definition filtercomap :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b filter \\<Rightarrow> 'a filter\" where\n \"filtercomap f F = Abs_filter (\\<lambda>P. \\<exists>Q. eventually Q F \\<and> (\\<forall>x. Q (f x) \\<longrightarrow> P x))\"", "definition eventually :: \"('a \\<Rightarrow> bool) \\<Rightarrow> 'a filter \\<Rightarrow> bool\"\n where \"eventually P F \\<longleftrightarrow> Rep_filter F P\"" ]
template
###lemma eventually ?P (filtercomap ?f ?F) = (\<exists>Q. eventually Q ?F \<and> (\<forall>x. Q (?f x) \<longrightarrow> ?P x)) ###symbols Filter.filtercomap :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter Filter.eventually :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs definition filtercomap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter" where "filtercomap f F = Abs_filter (\<lambda>P. \<exists>Q. eventually Q F \<and> (\<forall>x. Q (f x) \<longrightarrow> P x))" definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool" where "eventually P F \<longleftrightarrow> Rep_filter F P"
###output ?H1 x_1 (?H2 x_2 x_3) = (\<exists>y_0. ?H1 y_0 x_3 \<and> (\<forall>y_1. y_0 (x_2 y_1) \<longrightarrow> x_1 y_1))###end
Nonstandard_Analysis/Star
Star.STAR_starfun_rabs_add_minus
lemma STAR_starfun_rabs_add_minus: "*s* {x. \<bar>f x + - y\<bar> < r} = {x. \<bar>( *f* f) x + -star_of y\<bar> < star_of r}"
*s* {x. \<bar> ?f x + - ?y\<bar> < ?r} = {x. \<bar>(*f* ?f) x + - star_of ?y\<bar> < star_of ?r}
?H1 (?H2 (\<lambda>y_0. ?H3 (?H4 (x_1 y_0) (?H5 x_2)) < x_3)) = ?H2 (\<lambda>y_1. ?H3 (?H4 (?H6 x_1 y_1) (?H5 (?H7 x_2))) < ?H7 x_3)
[ "StarDef.star_of", "StarDef.starfun", "Groups.uminus_class.uminus", "Groups.plus_class.plus", "Groups.abs_class.abs", "Set.Collect", "StarDef.starset" ]
[ "'a \\<Rightarrow> 'a star", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a star \\<Rightarrow> 'b star", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a star set" ]
[ "definition star_of :: \"'a \\<Rightarrow> 'a star\"\n where \"star_of x \\<equiv> star_n (\\<lambda>n. x)\"", "definition starfun :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a star \\<Rightarrow> 'b star\" (\\<open>*f* _\\<close> [80] 80)\n where \"starfun f \\<equiv> \\<lambda>x. star_of f \\<star> x\"", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "definition starset :: \"'a set \\<Rightarrow> 'a star set\" (\\<open>*s* _\\<close> [80] 80)\n where \"starset A = Iset (star_of A)\"" ]
template
###lemma *s* {x. \<bar> ?f x + - ?y\<bar> < ?r} = {x. \<bar>(*f* ?f) x + - star_of ?y\<bar> < star_of ?r} ###symbols StarDef.star_of :::: 'a \<Rightarrow> 'a star StarDef.starfun :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a star \<Rightarrow> 'b star Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set StarDef.starset :::: 'a set \<Rightarrow> 'a star set ###defs definition star_of :: "'a \<Rightarrow> 'a star" where "star_of x \<equiv> star_n (\<lambda>n. x)" definition starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a star \<Rightarrow> 'b star" (\<open>*f* _\<close> [80] 80) where "starfun f \<equiv> \<lambda>x. star_of f \<star> x" class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") definition starset :: "'a set \<Rightarrow> 'a star set" (\<open>*s* _\<close> [80] 80) where "starset A = Iset (star_of A)"
###output ?H1 (?H2 (\<lambda>y_0. ?H3 (?H4 (x_1 y_0) (?H5 x_2)) < x_3)) = ?H2 (\<lambda>y_1. ?H3 (?H4 (?H6 x_1 y_1) (?H5 (?H7 x_2))) < ?H7 x_3)###end
Probability/SPMF
SPMF.emeasure_restrict_spmf
lemma emeasure_restrict_spmf [simp]: "emeasure (measure_spmf (p \<upharpoonleft> A)) X = emeasure (measure_spmf p) (X \<inter> A)"
emeasure (measure_spmf (?p \<upharpoonleft> ?A)) ?X = emeasure (measure_spmf ?p) (?X \<inter> ?A)
?H1 (?H2 (?H3 x_1 x_2)) x_3 = ?H1 (?H2 x_1) (?H4 x_3 x_2)
[ "Set.inter", "SPMF.restrict_spmf", "SPMF.measure_spmf", "Sigma_Algebra.emeasure" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a spmf \\<Rightarrow> 'a set \\<Rightarrow> 'a spmf", "'a spmf \\<Rightarrow> 'a measure", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ennreal" ]
[ "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "definition restrict_spmf :: \"'a spmf \\<Rightarrow> 'a set \\<Rightarrow> 'a spmf\" (infixl \"\\<upharpoonleft>\" 110)\n where \"p \\<upharpoonleft> A = map_pmf (\\<lambda>x. x \\<bind> (\\<lambda>y. if y \\<in> A then Some y else None)) p\"", "definition measure_spmf :: \"'a spmf \\<Rightarrow> 'a measure\"\n where \"measure_spmf p = distr (restrict_space (measure_pmf p) (range Some)) (count_space UNIV) the\"" ]
template
###lemma emeasure (measure_spmf (?p \<upharpoonleft> ?A)) ?X = emeasure (measure_spmf ?p) (?X \<inter> ?A) ###symbols Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set SPMF.restrict_spmf :::: 'a spmf \<Rightarrow> 'a set \<Rightarrow> 'a spmf SPMF.measure_spmf :::: 'a spmf \<Rightarrow> 'a measure Sigma_Algebra.emeasure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal ###defs abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" definition restrict_spmf :: "'a spmf \<Rightarrow> 'a set \<Rightarrow> 'a spmf" (infixl "\<upharpoonleft>" 110) where "p \<upharpoonleft> A = map_pmf (\<lambda>x. x \<bind> (\<lambda>y. if y \<in> A then Some y else None)) p" definition measure_spmf :: "'a spmf \<Rightarrow> 'a measure" where "measure_spmf p = distr (restrict_space (measure_pmf p) (range Some)) (count_space UNIV) the"
###output ?H1 (?H2 (?H3 x_1 x_2)) x_3 = ?H1 (?H2 x_1) (?H4 x_3 x_2)###end
Decision_Procs/Parametric_Ferrante_Rackoff
Parametric_Ferrante_Rackoff.simptm_nb
lemma simptm_nb[simp]: "tmbound n t \<Longrightarrow> tmbound n (simptm t)"
tmbound ?n ?t \<Longrightarrow> tmbound ?n (simptm ?t)
?H1 x_1 x_2 \<Longrightarrow> ?H1 x_1 (?H2 x_2)
[ "Parametric_Ferrante_Rackoff.simptm", "Parametric_Ferrante_Rackoff.tmbound" ]
[ "tm \\<Rightarrow> tm", "nat \\<Rightarrow> tm \\<Rightarrow> bool" ]
[ "fun simptm :: \"tm \\<Rightarrow> tm\"\n where\n \"simptm (CP j) = CP (polynate j)\"\n | \"simptm (Bound n) = CNP n (1)\\<^sub>p (CP 0\\<^sub>p)\"\n | \"simptm (Neg t) = tmneg (simptm t)\"\n | \"simptm (Add t s) = tmadd (simptm t) (simptm s)\"\n | \"simptm (Sub t s) = tmsub (simptm t) (simptm s)\"\n | \"simptm (Mul i t) =\n (let i' = polynate i in if i' = 0\\<^sub>p then CP 0\\<^sub>p else tmmul (simptm t) i')\"\n | \"simptm (CNP n c t) =\n (let c' = polynate c in if c' = 0\\<^sub>p then simptm t else tmadd (CNP n c' (CP 0\\<^sub>p)) (simptm t))\"", "primrec tmbound :: \"nat \\<Rightarrow> tm \\<Rightarrow> bool\" \\<comment> \\<open>a \\<open>tm\\<close> is \\<^emph>\\<open>independent\\<close> of Bound n\\<close>\n where\n \"tmbound n (CP c) = True\"\n | \"tmbound n (Bound m) = (n \\<noteq> m)\"\n | \"tmbound n (CNP m c a) = (n\\<noteq>m \\<and> tmbound n a)\"\n | \"tmbound n (Neg a) = tmbound n a\"\n | \"tmbound n (Add a b) = (tmbound n a \\<and> tmbound n b)\"\n | \"tmbound n (Sub a b) = (tmbound n a \\<and> tmbound n b)\"\n | \"tmbound n (Mul i a) = tmbound n a\"" ]
template
###lemma tmbound ?n ?t \<Longrightarrow> tmbound ?n (simptm ?t) ###symbols Parametric_Ferrante_Rackoff.simptm :::: tm \<Rightarrow> tm Parametric_Ferrante_Rackoff.tmbound :::: nat \<Rightarrow> tm \<Rightarrow> bool ###defs fun simptm :: "tm \<Rightarrow> tm" where "simptm (CP j) = CP (polynate j)" | "simptm (Bound n) = CNP n (1)\<^sub>p (CP 0\<^sub>p)" | "simptm (Neg t) = tmneg (simptm t)" | "simptm (Add t s) = tmadd (simptm t) (simptm s)" | "simptm (Sub t s) = tmsub (simptm t) (simptm s)" | "simptm (Mul i t) = (let i' = polynate i in if i' = 0\<^sub>p then CP 0\<^sub>p else tmmul (simptm t) i')" | "simptm (CNP n c t) = (let c' = polynate c in if c' = 0\<^sub>p then simptm t else tmadd (CNP n c' (CP 0\<^sub>p)) (simptm t))" primrec tmbound :: "nat \<Rightarrow> tm \<Rightarrow> bool" \<comment> \<open>a \<open>tm\<close> is \<^emph>\<open>independent\<close> of Bound n\<close> where "tmbound n (CP c) = True" | "tmbound n (Bound m) = (n \<noteq> m)" | "tmbound n (CNP m c a) = (n\<noteq>m \<and> tmbound n a)" | "tmbound n (Neg a) = tmbound n a" | "tmbound n (Add a b) = (tmbound n a \<and> tmbound n b)" | "tmbound n (Sub a b) = (tmbound n a \<and> tmbound n b)" | "tmbound n (Mul i a) = tmbound n a"
###output ?H1 x_1 x_2 \<Longrightarrow> ?H1 x_1 (?H2 x_2)###end
Library/Word
Word.word_and_le2
null
and ?a ?y \<le> ?a
?H1 x_1 x_2 \<le> x_1
[ "Bit_Operations.semiring_bit_operations_class.and" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class semiring_bit_operations = semiring_bits +\n fixes \"and\" :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>AND\\<close> 64)\n and or :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>OR\\<close> 59)\n and xor :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>XOR\\<close> 59)\n and mask :: \\<open>nat \\<Rightarrow> 'a\\<close>\n and set_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and unset_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and flip_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and push_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and drop_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and take_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n assumes and_rec: \\<open>a AND b = of_bool (odd a \\<and> odd b) + 2 * ((a div 2) AND (b div 2))\\<close>\n and or_rec: \\<open>a OR b = of_bool (odd a \\<or> odd b) + 2 * ((a div 2) OR (b div 2))\\<close>\n and xor_rec: \\<open>a XOR b = of_bool (odd a \\<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\\<close>\n and mask_eq_exp_minus_1: \\<open>mask n = 2 ^ n - 1\\<close>\n and set_bit_eq_or: \\<open>set_bit n a = a OR push_bit n 1\\<close>\n and unset_bit_eq_or_xor: \\<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\\<close>\n and flip_bit_eq_xor: \\<open>flip_bit n a = a XOR push_bit n 1\\<close>\n and push_bit_eq_mult: \\<open>push_bit n a = a * 2 ^ n\\<close>\n and drop_bit_eq_div: \\<open>drop_bit n a = a div 2 ^ n\\<close>\n and take_bit_eq_mod: \\<open>take_bit n a = a mod 2 ^ n\\<close>\nbegin" ]
template
###lemma and ?a ?y \<le> ?a ###symbols Bit_Operations.semiring_bit_operations_class.and :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class semiring_bit_operations = semiring_bits + fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>AND\<close> 64) and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>OR\<close> 59) and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>XOR\<close> 59) and mask :: \<open>nat \<Rightarrow> 'a\<close> and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> assumes and_rec: \<open>a AND b = of_bool (odd a \<and> odd b) + 2 * ((a div 2) AND (b div 2))\<close> and or_rec: \<open>a OR b = of_bool (odd a \<or> odd b) + 2 * ((a div 2) OR (b div 2))\<close> and xor_rec: \<open>a XOR b = of_bool (odd a \<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\<close> and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close> and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close> and unset_bit_eq_or_xor: \<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\<close> and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close> and push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close> and drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close> and take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close> begin
###output ?H1 x_1 x_2 \<le> x_1###end
UNITY/Rename
Rename.rename_image_preserves
lemma rename_image_preserves: "bij h ==> rename h ` preserves v = preserves (v o inv h)"
bij ?h \<Longrightarrow> rename ?h ` preserves ?v = preserves (?v \<circ> inv ?h)
?H1 x_1 \<Longrightarrow> ?H2 (?H3 x_1) (?H4 x_2) = ?H4 (?H5 x_2 (?H6 x_1))
[ "Hilbert_Choice.inv", "Fun.comp", "Comp.preserves", "Rename.rename", "Set.image", "Fun.bij" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a program set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a program \\<Rightarrow> 'b program", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "abbreviation inv :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'a)\" where\n\"inv \\<equiv> inv_into UNIV\"", "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "definition preserves :: \"('a=>'b) => 'a program set\"\n where \"preserves v == \\<Inter>z. stable {s. v s = z}\"", "definition rename :: \"['a => 'b, 'a program] => 'b program\" where\n \"rename h == extend (%(x,u::unit). h x)\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation bij :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> bool\"\n where \"bij f \\<equiv> bij_betw f UNIV UNIV\"" ]
template
###lemma bij ?h \<Longrightarrow> rename ?h ` preserves ?v = preserves (?v \<circ> inv ?h) ###symbols Hilbert_Choice.inv :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Comp.preserves :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a program set Rename.rename :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a program \<Rightarrow> 'b program Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Fun.bij :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs abbreviation inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where "inv \<equiv> inv_into UNIV" definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" definition preserves :: "('a=>'b) => 'a program set" where "preserves v == \<Inter>z. stable {s. v s = z}" definition rename :: "['a => 'b, 'a program] => 'b program" where "rename h == extend (%(x,u::unit). h x)" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation bij :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where "bij f \<equiv> bij_betw f UNIV UNIV"
###output ?H1 x_1 \<Longrightarrow> ?H2 (?H3 x_1) (?H4 x_2) = ?H4 (?H5 x_2 (?H6 x_1))###end
Computational_Algebra/Formal_Laurent_Series
Formal_Laurent_Series.fls_const_nonzero
lemma fls_const_nonzero: "c \<noteq> 0 \<Longrightarrow> fls_const c \<noteq> 0"
?c \<noteq> (0:: ?'a) \<Longrightarrow> fls_const ?c \<noteq> 0
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 x_1 \<noteq> ?H1
[ "Formal_Laurent_Series.fls_const", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a fls", "'a" ]
[ "definition fls_const :: \"'a::zero \\<Rightarrow> 'a fls\"\n where \"fls_const c \\<equiv> Abs_fls (\\<lambda>n. if n = 0 then c else 0)\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?c \<noteq> (0:: ?'a) \<Longrightarrow> fls_const ?c \<noteq> 0 ###symbols Formal_Laurent_Series.fls_const :::: 'a \<Rightarrow> 'a fls Groups.zero_class.zero :::: 'a ###defs definition fls_const :: "'a::zero \<Rightarrow> 'a fls" where "fls_const c \<equiv> Abs_fls (\<lambda>n. if n = 0 then c else 0)" class zero = fixes zero :: 'a ("0")
###output x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 x_1 \<noteq> ?H1###end
Bali/WellForm
WellForm.wf_mdeclE
lemma wf_mdeclE [consumes 1]: "\<lbrakk>wf_mdecl G C (sig,m); \<lbrakk>wf_mhead G (pid C) sig (mhead m); unique (lcls (mbody m)); \<forall>pn\<in>set (pars m). table_of (lcls (mbody m)) pn = None; \<forall>(vn,T)\<in>set (lcls (mbody m)). is_acc_type G (pid C) T; jumpNestingOkS {Ret} (stmt (mbody m)); is_class G C; \<lparr>prg=G,cls=C,lcl=callee_lcl C sig m\<rparr>\<turnstile>(stmt (mbody m))\<Colon>\<surd>; (\<exists> A. \<lparr>prg=G,cls=C,lcl=callee_lcl C sig m\<rparr>\<turnstile> parameters m \<guillemotright>\<langle>stmt (mbody m)\<rangle>\<guillemotright> A \<and> Result \<in> nrm A) \<rbrakk> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
wf_mdecl ?G ?C (?sig, ?m) \<Longrightarrow> (wf_mhead ?G (pid ?C) ?sig (mhead ?m) \<Longrightarrow> unique (lcls (mbody ?m)) \<Longrightarrow> \<forall>pn\<in>set (pars ?m). table_of (lcls (mbody ?m)) pn = None \<Longrightarrow> \<forall>(vn, T)\<in>set (lcls (mbody ?m)). is_acc_type ?G (pid ?C) T \<Longrightarrow> jumpNestingOkS {Ret} (stmt (mbody ?m)) \<Longrightarrow> is_class ?G ?C \<Longrightarrow> \<lparr>prg = ?G, cls = ?C, lcl = callee_lcl ?C ?sig ?m\<rparr>\<turnstile>stmt (mbody ?m)\<Colon>\<surd> \<Longrightarrow> \<exists>A. \<lparr>prg = ?G, cls = ?C, lcl = callee_lcl ?C ?sig ?m\<rparr>\<turnstile> parameters ?m \<guillemotright>\<langle>stmt (mbody ?m)\<rangle>\<guillemotright> A \<and> Result \<in> nrm A \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk> ?H1 x_1 x_2 (x_3, x_4); \<lbrakk> ?H2 x_1 (?H3 x_2) x_3 (?H4 x_4); ?H5 (?H6 (?H7 x_4)); \<forall>y_0\<in> ?H8 (?H9 x_4). ?H10 (?H6 (?H7 x_4)) y_0 = ?H11; Ball (?H8 (?H6 (?H7 x_4))) (?H12 (\<lambda>y_1. ?H13 x_1 (?H3 x_2))); ?H14 (?H15 ?H16 ?H17) (?H18 (?H7 x_4)); ?H19 x_1 x_2; ?H20 (?H21 x_1 x_2 (?H22 x_2 x_3 x_4) ?H23) (?H18 (?H7 x_4)); \<exists>y_3. ?H24 (?H21 x_1 x_2 (?H22 x_2 x_3 x_4) ?H23) (?H25 x_4) (?H26 (?H18 (?H7 x_4))) y_3 \<and> ?H27 \<in> ?H28 y_3\<rbrakk> \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5
[ "DefiniteAssignment.assigned.nrm", "Name.Result", "Term.inj_term_class.inj_term", "WellForm.parameters", "DefiniteAssignment.da", "Product_Type.Unity", "WellForm.callee_lcl", "WellType.env.env_ext", "WellType.wt_stmt_syntax", "Decl.is_class", "Decl.mbody.stmt", "Set.empty", "Term.jump.Ret", "Set.insert", "DefiniteAssignment.jumpNestingOkS", "DeclConcepts.is_acc_type", "Product_Type.prod.case_prod", "Option.option.None", "Table.table_of", "Decl.mhead.pars", "List.list.set", "Decl.methd.mbody", "Decl.mbody.lcls", "Basis.unique", "Decl.mhead", "Name.qtname.pid", "WellForm.wf_mhead", "WellForm.wf_mdecl" ]
[ "'a assigned_scheme \\<Rightarrow> lname set", "lname", "'a \\<Rightarrow> Term.term", "methd \\<Rightarrow> lname set", "env \\<Rightarrow> lname set \\<Rightarrow> Term.term \\<Rightarrow> assigned \\<Rightarrow> bool", "unit", "qtname \\<Rightarrow> sig \\<Rightarrow> methd \\<Rightarrow> lenv", "prog \\<Rightarrow> qtname \\<Rightarrow> lenv \\<Rightarrow> 'a \\<Rightarrow> 'a env_scheme", "env \\<Rightarrow> stmt \\<Rightarrow> bool", "prog \\<Rightarrow> qtname \\<Rightarrow> bool", "'a mbody_scheme \\<Rightarrow> stmt", "'a set", "jump", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "jump set \\<Rightarrow> stmt \\<Rightarrow> bool", "prog \\<Rightarrow> pname \\<Rightarrow> ty \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c", "'a option", "('a \\<times> 'b) list \\<Rightarrow> 'a \\<Rightarrow> 'b option", "'a mhead_scheme \\<Rightarrow> vname list", "'a list \\<Rightarrow> 'a set", "'a methd_scheme \\<Rightarrow> mbody", "'a mbody_scheme \\<Rightarrow> (vname \\<times> ty) list", "('a \\<times> 'b) list \\<Rightarrow> bool", "methd \\<Rightarrow> mhead", "'a qtname_scheme \\<Rightarrow> pname", "prog \\<Rightarrow> pname \\<Rightarrow> sig \\<Rightarrow> mhead \\<Rightarrow> bool", "prog \\<Rightarrow> qtname \\<Rightarrow> mdecl \\<Rightarrow> bool" ]
[ "record assigned = \n nrm :: \"lname set\" \\<comment> \\<open>Definetly assigned variables \n for normal completion\\<close>\n brk :: \"breakass\" \\<comment> \\<open>Definetly assigned variables for \n abrupt completion with a break\\<close>", "abbreviation Result :: lname\n where \"Result == EName Res\"", "class inj_term =\n fixes inj_term:: \"'a \\<Rightarrow> term\" (\"\\<langle>_\\<rangle>\" 1000)", "definition\n parameters :: \"methd \\<Rightarrow> lname set\" where\n \"parameters m = set (map (EName \\<circ> VNam) (pars m)) \\<union> (if (static m) then {} else {This})\"", "inductive\n da :: \"env \\<Rightarrow> lname set \\<Rightarrow> term \\<Rightarrow> assigned \\<Rightarrow> bool\" (\"_\\<turnstile> _ \\<guillemotright>_\\<guillemotright> _\" [65,65,65,65] 71)\nwhere\n Skip: \"Env\\<turnstile> B \\<guillemotright>\\<langle>Skip\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\n| Expr: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Expr e\\<rangle>\\<guillemotright> A\"\n| Lab: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C; nrm A = nrm C \\<inter> (brk C) l; brk A = rmlab l (brk C)\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Break l\\<bullet> c\\<rangle>\\<guillemotright> A\" \n\n| Comp: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1; Env\\<turnstile> nrm C1 \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2; \n nrm A = nrm C2; brk A = (brk C1) \\<Rightarrow>\\<inter> (brk C2)\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>c1;; c2\\<rangle>\\<guillemotright> A\"\n\n| If: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E;\n Env\\<turnstile> (B \\<union> assigns_if True e) \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1;\n Env\\<turnstile> (B \\<union> assigns_if False e) \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2;\n nrm A = nrm C1 \\<inter> nrm C2;\n brk A = brk C1 \\<Rightarrow>\\<inter> brk C2 \\<rbrakk> \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>If(e) c1 Else c2\\<rangle>\\<guillemotright> A\"\n\n\\<comment> \\<open>Note that \\<^term>\\<open>E\\<close> is not further used, because we take the specialized\n sets that also consider if the expression evaluates to True or False. \n Inside of \\<^term>\\<open>e\\<close> there is no {\\tt break} or {\\tt finally}, so the break\n map of \\<^term>\\<open>E\\<close> will be the trivial one. So \n \\<^term>\\<open>Env\\<turnstile>B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E\\<close> is just used to ensure the definite assignment in\n expression \\<^term>\\<open>e\\<close>.\n Notice the implicit analysis of a constant boolean expression \\<^term>\\<open>e\\<close>\n in this rule. For example, if \\<^term>\\<open>e\\<close> is constantly \\<^term>\\<open>True\\<close> then \n \\<^term>\\<open>assigns_if False e = UNIV\\<close> and therefor \\<^term>\\<open>nrm C2=UNIV\\<close>.\n So finally \\<^term>\\<open>nrm A = nrm C1\\<close>. For the break maps this trick \n workd too, because the trivial break map will map all labels to \n \\<^term>\\<open>UNIV\\<close>. In the example, if no break occurs in \\<^term>\\<open>c2\\<close> the break\n maps will trivially map to \\<^term>\\<open>UNIV\\<close> and if a break occurs it will map\n to \\<^term>\\<open>UNIV\\<close> too, because \\<^term>\\<open>assigns_if False e = UNIV\\<close>. So\n in the intersection of the break maps the path \\<^term>\\<open>c2\\<close> will have no\n contribution.\\<close>\n\n| Loop: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; \n Env\\<turnstile> (B \\<union> assigns_if True e) \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C;\n nrm A = nrm C \\<inter> (B \\<union> assigns_if False e);\n brk A = brk C\\<rbrakk> \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>l\\<bullet> While(e) c\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>The \\<open>Loop\\<close> rule resembles some of the ideas of the \\<open>If\\<close> rule.\n For the \\<^term>\\<open>nrm A\\<close> the set \\<^term>\\<open>B \\<union> assigns_if False e\\<close> \n will be \\<^term>\\<open>UNIV\\<close> if the condition is constantly True. To normally exit\n the while loop, we must consider the body \\<^term>\\<open>c\\<close> to be completed \n normally (\\<^term>\\<open>nrm C\\<close>) or with a break. But in this model, \n the label \\<^term>\\<open>l\\<close> of the loop\n only handles continue labels, not break labels. The break label will be\n handled by an enclosing \\<^term>\\<open>Lab\\<close> statement. So we don't have to\n handle the breaks specially.\\<close>\n\n| Jmp: \"\\<lbrakk>jump=Ret \\<longrightarrow> Result \\<in> B;\n nrm A = UNIV;\n brk A = (case jump of\n Break l \\<Rightarrow> \\<lambda> k. if k=l then B else UNIV \n | Cont l \\<Rightarrow> \\<lambda> k. UNIV\n | Ret \\<Rightarrow> \\<lambda> k. UNIV)\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Jmp jump\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>In case of a break to label \\<^term>\\<open>l\\<close> the corresponding break set is all\n variables assigned before the break. The assigned variables for normal\n completion of the \\<^term>\\<open>Jmp\\<close> is \\<^term>\\<open>UNIV\\<close>, because the statement will\n never complete normally. For continue and return the break map is the \n trivial one. In case of a return we enshure that the result value is\n assigned.\\<close>\n\n| Throw: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; nrm A = UNIV; brk A = (\\<lambda> l. UNIV)\\<rbrakk> \n \\<Longrightarrow> Env\\<turnstile> B \\<guillemotright>\\<langle>Throw e\\<rangle>\\<guillemotright> A\"\n\n| Try: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1; \n Env\\<lparr>lcl := (lcl Env)(VName vn\\<mapsto>Class C)\\<rparr>\\<turnstile> (B \\<union> {VName vn}) \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2; \n nrm A = nrm C1 \\<inter> nrm C2;\n brk A = brk C1 \\<Rightarrow>\\<inter> brk C2\\<rbrakk> \n \\<Longrightarrow> Env\\<turnstile> B \\<guillemotright>\\<langle>Try c1 Catch(C vn) c2\\<rangle>\\<guillemotright> A\"\n\n| Fin: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c1\\<rangle>\\<guillemotright> C1;\n Env\\<turnstile> B \\<guillemotright>\\<langle>c2\\<rangle>\\<guillemotright> C2;\n nrm A = nrm C1 \\<union> nrm C2;\n brk A = ((brk C1) \\<Rightarrow>\\<union>\\<^sub>\\<forall> (nrm C2)) \\<Rightarrow>\\<inter> (brk C2)\\<rbrakk> \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>c1 Finally c2\\<rangle>\\<guillemotright> A\" \n\\<comment> \\<open>The set of assigned variables before execution \\<^term>\\<open>c2\\<close> are the same\n as before execution \\<^term>\\<open>c1\\<close>, because \\<^term>\\<open>c1\\<close> could throw an exception\n and so we can't guarantee that any variable will be assigned in \\<^term>\\<open>c1\\<close>.\n The \\<open>Finally\\<close> statement completes\n normally if both \\<^term>\\<open>c1\\<close> and \\<^term>\\<open>c2\\<close> complete normally. If \\<^term>\\<open>c1\\<close>\n completes abruptly with a break, then \\<^term>\\<open>c2\\<close> also will be executed \n and may terminate normally or with a break. The overall break map then is\n the intersection of the maps of both paths. If \\<^term>\\<open>c2\\<close> terminates \n normally we have to extend all break sets in \\<^term>\\<open>brk C1\\<close> with \n \\<^term>\\<open>nrm C2\\<close> (\\<open>\\<Rightarrow>\\<union>\\<^sub>\\<forall>\\<close>). If \\<^term>\\<open>c2\\<close> exits with a break this\n break will appear in the overall result state. We don't know if \n \\<^term>\\<open>c1\\<close> completed normally or abruptly (maybe with an exception not only\n a break) so \\<^term>\\<open>c1\\<close> has no contribution to the break map following this\n path.\\<close>\n\n\\<comment> \\<open>Evaluation of expressions and the break sets of definite assignment:\n Thinking of a Java expression we assume that we can never have\n a break statement inside of a expression. So for all expressions the\n break sets could be set to the trivial one: \\<^term>\\<open>\\<lambda> l. UNIV\\<close>. \n But we can't\n trivially proof, that evaluating an expression will never result in a \n break, allthough Java expressions allready syntactically don't allow\n nested stetements in them. The reason are the nested class initialzation \n statements which are inserted by the evaluation rules. So to proof the\n absence of a break we need to ensure, that the initialization statements\n will never end up in a break. In a wellfromed initialization statement, \n of course, were breaks are nested correctly inside of \\<^term>\\<open>Lab\\<close> \n or \\<^term>\\<open>Loop\\<close> statements evaluation of the whole initialization \n statement will never result in a break, because this break will be \n handled inside of the statement. But for simplicity we haven't added\n the analysis of the correct nesting of breaks in the typing judgments \n right now. So we have decided to adjust the rules of definite assignment\n to fit to these circumstances. If an initialization is involved during\n evaluation of the expression (evaluation rules \\<open>FVar\\<close>, \\<open>NewC\\<close> \n and \\<open>NewA\\<close>\\<close>\n\n| Init: \"Env\\<turnstile> B \\<guillemotright>\\<langle>Init C\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\\<comment> \\<open>Wellformedness of a program will ensure, that every static initialiser \n is definetly assigned and the jumps are nested correctly. The case here\n for \\<^term>\\<open>Init\\<close> is just for convenience, to get a proper precondition \n for the induction hypothesis in various proofs, so that we don't have to\n expand the initialisation on every point where it is triggerred by the\n evaluation rules.\\<close> \n| NewC: \"Env\\<turnstile> B \\<guillemotright>\\<langle>NewC C\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\" \n\n| NewA: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>New T[e]\\<rangle>\\<guillemotright> A\"\n\n| Cast: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Cast T e\\<rangle>\\<guillemotright> A\"\n\n| Inst: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>e InstOf T\\<rangle>\\<guillemotright> A\"\n\n| Lit: \"Env\\<turnstile> B \\<guillemotright>\\<langle>Lit v\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\n| UnOp: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>UnOp unop e\\<rangle>\\<guillemotright> A\"\n\n| CondAnd: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> (B \\<union> assigns_if True e1) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2; \n nrm A = B \\<union> (assigns_if True (BinOp CondAnd e1 e2) \\<inter> \n assigns_if False (BinOp CondAnd e1 e2));\n brk A = (\\<lambda> l. UNIV) \\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>BinOp CondAnd e1 e2\\<rangle>\\<guillemotright> A\"\n\n| CondOr: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> (B \\<union> assigns_if False e1) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2; \n nrm A = B \\<union> (assigns_if True (BinOp CondOr e1 e2) \\<inter> \n assigns_if False (BinOp CondOr e1 e2));\n brk A = (\\<lambda> l. UNIV) \\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>BinOp CondOr e1 e2\\<rangle>\\<guillemotright> A\"\n\n| BinOp: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> nrm E1 \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> A; \n binop \\<noteq> CondAnd; binop \\<noteq> CondOr\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>BinOp binop e1 e2\\<rangle>\\<guillemotright> A\"\n\n| Super: \"This \\<in> B \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Super\\<rangle>\\<guillemotright> \\<lparr>nrm=B,brk=\\<lambda> l. UNIV\\<rparr>\"\n\n| AccLVar: \"\\<lbrakk>vn \\<in> B;\n nrm A = B; brk A = (\\<lambda> k. UNIV)\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>Acc (LVar vn)\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>To properly access a local variable we have to test the definite \n assignment here. The variable must occur in the set \\<^term>\\<open>B\\<close>\\<close>\n\n| Acc: \"\\<lbrakk>\\<forall> vn. v \\<noteq> LVar vn;\n Env\\<turnstile> B \\<guillemotright>\\<langle>v\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Acc v\\<rangle>\\<guillemotright> A\"\n\n| AssLVar: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; nrm A = nrm E \\<union> {vn}; brk A = brk E\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>(LVar vn) := e\\<rangle>\\<guillemotright> A\"\n\n| Ass: \"\\<lbrakk>\\<forall> vn. v \\<noteq> LVar vn; Env\\<turnstile> B \\<guillemotright>\\<langle>v\\<rangle>\\<guillemotright> V; Env\\<turnstile> nrm V \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>v := e\\<rangle>\\<guillemotright> A\"\n\n| CondBool: \"\\<lbrakk>Env\\<turnstile>(c ? e1 : e2)\\<Colon>-(PrimT Boolean);\n Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C;\n Env\\<turnstile> (B \\<union> assigns_if True c) \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1;\n Env\\<turnstile> (B \\<union> assigns_if False c) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2;\n nrm A = B \\<union> (assigns_if True (c ? e1 : e2) \\<inter> \n assigns_if False (c ? e1 : e2));\n brk A = (\\<lambda> l. UNIV)\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>c ? e1 : e2\\<rangle>\\<guillemotright> A\" \n\n| Cond: \"\\<lbrakk>\\<not> Env\\<turnstile>(c ? e1 : e2)\\<Colon>-(PrimT Boolean);\n Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C;\n Env\\<turnstile> (B \\<union> assigns_if True c) \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1;\n Env\\<turnstile> (B \\<union> assigns_if False c) \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> E2;\n nrm A = nrm E1 \\<inter> nrm E2; brk A = (\\<lambda> l. UNIV)\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>c ? e1 : e2\\<rangle>\\<guillemotright> A\" \n\n| Call: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> E; Env\\<turnstile> nrm E \\<guillemotright>\\<langle>args\\<rangle>\\<guillemotright> A\\<rbrakk> \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>{accC,statT,mode}e\\<cdot>mn({pTs}args)\\<rangle>\\<guillemotright> A\"\n\n\\<comment> \\<open>The interplay of \\<^term>\\<open>Call\\<close>, \\<^term>\\<open>Methd\\<close> and \\<^term>\\<open>Body\\<close>:\n Why rules for \\<^term>\\<open>Methd\\<close> and \\<^term>\\<open>Body\\<close> at all? Note that a\n Java source program will not include bare \\<^term>\\<open>Methd\\<close> or \\<^term>\\<open>Body\\<close>\n terms. These terms are just introduced during evaluation. So definite\n assignment of \\<^term>\\<open>Call\\<close> does not consider \\<^term>\\<open>Methd\\<close> or \n \\<^term>\\<open>Body\\<close> at all. So for definite assignment alone we could omit the\n rules for \\<^term>\\<open>Methd\\<close> and \\<^term>\\<open>Body\\<close>. \n But since evaluation of the method invocation is\n split up into three rules we must ensure that we have enough information\n about the call even in the \\<^term>\\<open>Body\\<close> term to make sure that we can\n proof type safety. Also we must be able transport this information \n from \\<^term>\\<open>Call\\<close> to \\<^term>\\<open>Methd\\<close> and then further to \\<^term>\\<open>Body\\<close> \n during evaluation to establish the definite assignment of \\<^term>\\<open>Methd\\<close>\n during evaluation of \\<^term>\\<open>Call\\<close>, and of \\<^term>\\<open>Body\\<close> during evaluation\n of \\<^term>\\<open>Methd\\<close>. This is necessary since definite assignment will be\n a precondition for each induction hypothesis coming out of the evaluation\n rules, and therefor we have to establish the definite assignment of the\n sub-evaluation during the type-safety proof. Note that well-typedness is\n also a precondition for type-safety and so we can omit some assertion \n that are already ensured by well-typedness.\\<close>\n| Methd: \"\\<lbrakk>methd (prg Env) D sig = Some m;\n Env\\<turnstile> B \\<guillemotright>\\<langle>Body (declclass m) (stmt (mbody (mthd m)))\\<rangle>\\<guillemotright> A\n \\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Methd D sig\\<rangle>\\<guillemotright> A\" \n\n| Body: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>c\\<rangle>\\<guillemotright> C; jumpNestingOkS {Ret} c; Result \\<in> nrm C;\n nrm A = B; brk A = (\\<lambda> l. UNIV)\\<rbrakk>\n \\<Longrightarrow>\n Env\\<turnstile> B \\<guillemotright>\\<langle>Body D c\\<rangle>\\<guillemotright> A\"\n\\<comment> \\<open>Note that \\<^term>\\<open>A\\<close> is not correlated to \\<^term>\\<open>C\\<close>. If the body\n statement returns abruptly with return, evaluation of \\<^term>\\<open>Body\\<close>\n will absorb this return and complete normally. So we cannot trivially\n get the assigned variables of the body statement since it has not \n completed normally or with a break.\n If the body completes normally we guarantee that the result variable\n is set with this rule. But if the body completes abruptly with a return\n we can't guarantee that the result variable is set here, since \n definite assignment only talks about normal completion and breaks. So\n for a return the \\<^term>\\<open>Jump\\<close> rule ensures that the result variable is\n set and then this information must be carried over to the \\<^term>\\<open>Body\\<close>\n rule by the conformance predicate of the state.\\<close>\n| LVar: \"Env\\<turnstile> B \\<guillemotright>\\<langle>LVar vn\\<rangle>\\<guillemotright> \\<lparr>nrm=B, brk=\\<lambda> l. UNIV\\<rparr>\" \n\n| FVar: \"Env\\<turnstile> B \\<guillemotright>\\<langle>e\\<rangle>\\<guillemotright> A \n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>{accC,statDeclC,stat}e..fn\\<rangle>\\<guillemotright> A\" \n\n| AVar: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e1\\<rangle>\\<guillemotright> E1; Env\\<turnstile> nrm E1 \\<guillemotright>\\<langle>e2\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>e1.[e2]\\<rangle>\\<guillemotright> A\" \n\n| Nil: \"Env\\<turnstile> B \\<guillemotright>\\<langle>[]::expr list\\<rangle>\\<guillemotright> \\<lparr>nrm=B, brk=\\<lambda> l. UNIV\\<rparr>\" \n\n| Cons: \"\\<lbrakk>Env\\<turnstile> B \\<guillemotright>\\<langle>e::expr\\<rangle>\\<guillemotright> E; Env\\<turnstile> nrm E \\<guillemotright>\\<langle>es\\<rangle>\\<guillemotright> A\\<rbrakk>\n \\<Longrightarrow> \n Env\\<turnstile> B \\<guillemotright>\\<langle>e#es\\<rangle>\\<guillemotright> A\"", "definition Unity :: unit (\"'(')\")\n where \"() = Abs_unit True\"", "definition\n callee_lcl :: \"qtname \\<Rightarrow> sig \\<Rightarrow> methd \\<Rightarrow> lenv\" where\n \"callee_lcl C sig m =\n (\\<lambda>k. (case k of\n EName e \n \\<Rightarrow> (case e of \n VNam v \n \\<Rightarrow>((table_of (lcls (mbody m)))(pars m [\\<mapsto>] parTs sig)) v\n | Res \\<Rightarrow> Some (resTy m))\n | This \\<Rightarrow> if is_static m then None else Some (Class C)))\"", "record env = \n prg:: \"prog\" \\<comment> \\<open>program\\<close>\n cls:: \"qtname\" \\<comment> \\<open>current package and class name\\<close>\n lcl:: \"lenv\" \\<comment> \\<open>local environment\\<close>", "abbreviation\n wt_stmt_syntax :: \"env \\<Rightarrow> stmt \\<Rightarrow> bool\" (\"_\\<turnstile>_\\<Colon>\\<surd>\" [51,51 ] 50)\n where \"E\\<turnstile>s\\<Colon>\\<surd> == E\\<turnstile>In1r s \\<Colon> Inl (PrimT Void)\"", "abbreviation\n is_class :: \"prog \\<Rightarrow> qtname \\<Rightarrow> bool\"\n where \"is_class G C == class G C \\<noteq> None\"", "record mbody = (* method body *)\n lcls:: \"(vname \\<times> ty) list\" (* local variables *)\n stmt:: stmt", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "datatype jump\n = Break label \\<comment> \\<open>break\\<close>\n | Cont label \\<comment> \\<open>continue\\<close>\n | Ret \\<comment> \\<open>return from method\\<close>", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "primrec jumpNestingOkS :: \"jump set \\<Rightarrow> stmt \\<Rightarrow> bool\"\nwhere\n \"jumpNestingOkS jmps (Skip) = True\"\n| \"jumpNestingOkS jmps (Expr e) = True\"\n| \"jumpNestingOkS jmps (j\\<bullet> s) = jumpNestingOkS ({j} \\<union> jmps) s\"\n| \"jumpNestingOkS jmps (c1;;c2) = (jumpNestingOkS jmps c1 \\<and> \n jumpNestingOkS jmps c2)\"\n| \"jumpNestingOkS jmps (If(e) c1 Else c2) = (jumpNestingOkS jmps c1 \\<and> \n jumpNestingOkS jmps c2)\"\n| \"jumpNestingOkS jmps (l\\<bullet> While(e) c) = jumpNestingOkS ({Cont l} \\<union> jmps) c\"\n\\<comment> \\<open>The label of the while loop only handles continue jumps. Breaks are only\n handled by \\<^term>\\<open>Lab\\<close>\\<close>\n| \"jumpNestingOkS jmps (Jmp j) = (j \\<in> jmps)\"\n| \"jumpNestingOkS jmps (Throw e) = True\"\n| \"jumpNestingOkS jmps (Try c1 Catch(C vn) c2) = (jumpNestingOkS jmps c1 \\<and> \n jumpNestingOkS jmps c2)\"\n| \"jumpNestingOkS jmps (c1 Finally c2) = (jumpNestingOkS jmps c1 \\<and> \n jumpNestingOkS jmps c2)\"\n| \"jumpNestingOkS jmps (Init C) = True\" \n \\<comment> \\<open>wellformedness of the program must enshure that for all initializers \n jumpNestingOkS {} holds\\<close> \n\\<comment> \\<open>Dummy analysis for intermediate smallstep term \\<^term>\\<open>FinA\\<close>\\<close>\n| \"jumpNestingOkS jmps (FinA a c) = False\"", "definition\n is_acc_type :: \"prog \\<Rightarrow> pname \\<Rightarrow> ty \\<Rightarrow> bool\"\n where \"is_acc_type G P T = (is_type G T \\<and> G\\<turnstile>T accessible_in P)\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "datatype 'a option =\n None\n | Some (the: 'a)", "abbreviation\n table_of :: \"('a \\<times> 'b) list \\<Rightarrow> ('a, 'b) table\" \\<comment> \\<open>concrete table\\<close>\n where \"table_of \\<equiv> map_of\"", "definition\n mhead :: \"methd \\<Rightarrow> mhead\"\n where \"mhead m = \\<lparr>access=access m, static=static m, pars=pars m, resT=resT m\\<rparr>\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "record methd = mhead + (* method in a class *)\n mbody::mbody", "record mbody = (* method body *)\n lcls:: \"(vname \\<times> ty) list\" (* local variables *)\n stmt:: stmt", "definition unique :: \"('a \\<times> 'b) list \\<Rightarrow> bool\"\n where \"unique = distinct \\<circ> map fst\"", "definition\n mhead :: \"methd \\<Rightarrow> mhead\"\n where \"mhead m = \\<lparr>access=access m, static=static m, pars=pars m, resT=resT m\\<rparr>\"", "record qtname = \\<comment> \\<open>qualified tname cf. 6.5.3, 6.5.4\\<close>\n pid :: pname \n tid :: tname", "definition\n wf_mhead :: \"prog \\<Rightarrow> pname \\<Rightarrow> sig \\<Rightarrow> mhead \\<Rightarrow> bool\" where\n \"wf_mhead G P = (\\<lambda> sig mh. length (parTs sig) = length (pars mh) \\<and>\n ( \\<forall>T\\<in>set (parTs sig). is_acc_type G P T) \\<and> \n is_acc_type G P (resTy mh) \\<and>\n distinct (pars mh))\"", "definition\n wf_mdecl :: \"prog \\<Rightarrow> qtname \\<Rightarrow> mdecl \\<Rightarrow> bool\" where\n \"wf_mdecl G C =\n (\\<lambda>(sig,m).\n wf_mhead G (pid C) sig (mhead m) \\<and> \n unique (lcls (mbody m)) \\<and> \n (\\<forall>(vn,T)\\<in>set (lcls (mbody m)). is_acc_type G (pid C) T) \\<and> \n (\\<forall>pn\\<in>set (pars m). table_of (lcls (mbody m)) pn = None) \\<and>\n jumpNestingOkS {Ret} (stmt (mbody m)) \\<and> \n is_class G C \\<and>\n \\<lparr>prg=G,cls=C,lcl=callee_lcl C sig m\\<rparr>\\<turnstile>(stmt (mbody m))\\<Colon>\\<surd> \\<and>\n (\\<exists> A. \\<lparr>prg=G,cls=C,lcl=callee_lcl C sig m\\<rparr> \n \\<turnstile> parameters m \\<guillemotright>\\<langle>stmt (mbody m)\\<rangle>\\<guillemotright> A \n \\<and> Result \\<in> nrm A))\"" ]
template
###lemma wf_mdecl ?G ?C (?sig, ?m) \<Longrightarrow> (wf_mhead ?G (pid ?C) ?sig (mhead ?m) \<Longrightarrow> unique (lcls (mbody ?m)) \<Longrightarrow> \<forall>pn\<in>set (pars ?m). table_of (lcls (mbody ?m)) pn = None \<Longrightarrow> \<forall>(vn, T)\<in>set (lcls (mbody ?m)). is_acc_type ?G (pid ?C) T \<Longrightarrow> jumpNestingOkS {Ret} (stmt (mbody ?m)) \<Longrightarrow> is_class ?G ?C \<Longrightarrow> \<lparr>prg = ?G, cls = ?C, lcl = callee_lcl ?C ?sig ?m\<rparr>\<turnstile>stmt (mbody ?m)\<Colon>\<surd> \<Longrightarrow> \<exists>A. \<lparr>prg = ?G, cls = ?C, lcl = callee_lcl ?C ?sig ?m\<rparr>\<turnstile> parameters ?m \<guillemotright>\<langle>stmt (mbody ?m)\<rangle>\<guillemotright> A \<and> Result \<in> nrm A \<Longrightarrow> ?P) \<Longrightarrow> ?P ###symbols DefiniteAssignment.assigned.nrm :::: 'a assigned_scheme \<Rightarrow> lname set Name.Result :::: lname Term.inj_term_class.inj_term :::: 'a \<Rightarrow> Term.term WellForm.parameters :::: methd \<Rightarrow> lname set DefiniteAssignment.da :::: env \<Rightarrow> lname set \<Rightarrow> Term.term \<Rightarrow> assigned \<Rightarrow> bool Product_Type.Unity :::: unit WellForm.callee_lcl :::: qtname \<Rightarrow> sig \<Rightarrow> methd \<Rightarrow> lenv WellType.env.env_ext :::: prog \<Rightarrow> qtname \<Rightarrow> lenv \<Rightarrow> 'a \<Rightarrow> 'a env_scheme WellType.wt_stmt_syntax :::: env \<Rightarrow> stmt \<Rightarrow> bool Decl.is_class :::: prog \<Rightarrow> qtname \<Rightarrow> bool Decl.mbody.stmt :::: 'a mbody_scheme \<Rightarrow> stmt Set.empty :::: 'a set Term.jump.Ret :::: jump Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set DefiniteAssignment.jumpNestingOkS :::: jump set \<Rightarrow> stmt \<Rightarrow> bool DeclConcepts.is_acc_type :::: prog \<Rightarrow> pname \<Rightarrow> ty \<Rightarrow> bool Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c Option.option.None :::: 'a option Table.table_of :::: ('a \<times> 'b) list \<Rightarrow> 'a \<Rightarrow> 'b option Decl.mhead.pars :::: 'a mhead_scheme \<Rightarrow> vname list List.list.set :::: 'a list \<Rightarrow> 'a set Decl.methd.mbody :::: 'a methd_scheme \<Rightarrow> mbody Decl.mbody.lcls :::: 'a mbody_scheme \<Rightarrow> (vname \<times> ty) list Basis.unique :::: ('a \<times> 'b) list \<Rightarrow> bool Decl.mhead :::: methd \<Rightarrow> mhead Name.qtname.pid :::: 'a qtname_scheme \<Rightarrow> pname WellForm.wf_mhead :::: prog \<Rightarrow> pname \<Rightarrow> sig \<Rightarrow> mhead \<Rightarrow> bool WellForm.wf_mdecl :::: prog \<Rightarrow> qtname \<Rightarrow> mdecl \<Rightarrow> bool ###defs record assigned = nrm :: "lname set" \<comment> \<open>Definetly assigned variables for normal completion\<close> brk :: "breakass" \<comment> \<open>Definetly assigned variables for abrupt completion with a break\<close> abbreviation Result :: lname where "Result == EName Res" class inj_term = fixes inj_term:: "'a \<Rightarrow> term" ("\<langle>_\<rangle>" 1000) definition parameters :: "methd \<Rightarrow> lname set" where "parameters m = set (map (EName \<circ> VNam) (pars m)) \<union> (if (static m) then {} else {This})" inductive da :: "env \<Rightarrow> lname set \<Rightarrow> term \<Rightarrow> assigned \<Rightarrow> bool" ("_\<turnstile> _ \<guillemotright>_\<guillemotright> _" [65,65,65,65] 71) where Skip: "Env\<turnstile> B \<guillemotright>\<langle>Skip\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | Expr: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Expr e\<rangle>\<guillemotright> A" | Lab: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; nrm A = nrm C \<inter> (brk C) l; brk A = rmlab l (brk C)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Break l\<bullet> c\<rangle>\<guillemotright> A" | Comp: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<turnstile> nrm C1 \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C2; brk A = (brk C1) \<Rightarrow>\<inter> (brk C2)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c1;; c2\<rangle>\<guillemotright> A" | If: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; Env\<turnstile> (B \<union> assigns_if True e) \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<turnstile> (B \<union> assigns_if False e) \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C1 \<inter> nrm C2; brk A = brk C1 \<Rightarrow>\<inter> brk C2 \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>If(e) c1 Else c2\<rangle>\<guillemotright> A" \<comment> \<open>Note that \<^term>\<open>E\<close> is not further used, because we take the specialized sets that also consider if the expression evaluates to True or False. Inside of \<^term>\<open>e\<close> there is no {\tt break} or {\tt finally}, so the break map of \<^term>\<open>E\<close> will be the trivial one. So \<^term>\<open>Env\<turnstile>B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E\<close> is just used to ensure the definite assignment in expression \<^term>\<open>e\<close>. Notice the implicit analysis of a constant boolean expression \<^term>\<open>e\<close> in this rule. For example, if \<^term>\<open>e\<close> is constantly \<^term>\<open>True\<close> then \<^term>\<open>assigns_if False e = UNIV\<close> and therefor \<^term>\<open>nrm C2=UNIV\<close>. So finally \<^term>\<open>nrm A = nrm C1\<close>. For the break maps this trick workd too, because the trivial break map will map all labels to \<^term>\<open>UNIV\<close>. In the example, if no break occurs in \<^term>\<open>c2\<close> the break maps will trivially map to \<^term>\<open>UNIV\<close> and if a break occurs it will map to \<^term>\<open>UNIV\<close> too, because \<^term>\<open>assigns_if False e = UNIV\<close>. So in the intersection of the break maps the path \<^term>\<open>c2\<close> will have no contribution.\<close> | Loop: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; Env\<turnstile> (B \<union> assigns_if True e) \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; nrm A = nrm C \<inter> (B \<union> assigns_if False e); brk A = brk C\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>l\<bullet> While(e) c\<rangle>\<guillemotright> A" \<comment> \<open>The \<open>Loop\<close> rule resembles some of the ideas of the \<open>If\<close> rule. For the \<^term>\<open>nrm A\<close> the set \<^term>\<open>B \<union> assigns_if False e\<close> will be \<^term>\<open>UNIV\<close> if the condition is constantly True. To normally exit the while loop, we must consider the body \<^term>\<open>c\<close> to be completed normally (\<^term>\<open>nrm C\<close>) or with a break. But in this model, the label \<^term>\<open>l\<close> of the loop only handles continue labels, not break labels. The break label will be handled by an enclosing \<^term>\<open>Lab\<close> statement. So we don't have to handle the breaks specially.\<close> | Jmp: "\<lbrakk>jump=Ret \<longrightarrow> Result \<in> B; nrm A = UNIV; brk A = (case jump of Break l \<Rightarrow> \<lambda> k. if k=l then B else UNIV | Cont l \<Rightarrow> \<lambda> k. UNIV | Ret \<Rightarrow> \<lambda> k. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Jmp jump\<rangle>\<guillemotright> A" \<comment> \<open>In case of a break to label \<^term>\<open>l\<close> the corresponding break set is all variables assigned before the break. The assigned variables for normal completion of the \<^term>\<open>Jmp\<close> is \<^term>\<open>UNIV\<close>, because the statement will never complete normally. For continue and return the break map is the trivial one. In case of a return we enshure that the result value is assigned.\<close> | Throw: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; nrm A = UNIV; brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Throw e\<rangle>\<guillemotright> A" | Try: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<lparr>lcl := (lcl Env)(VName vn\<mapsto>Class C)\<rparr>\<turnstile> (B \<union> {VName vn}) \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C1 \<inter> nrm C2; brk A = brk C1 \<Rightarrow>\<inter> brk C2\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Try c1 Catch(C vn) c2\<rangle>\<guillemotright> A" | Fin: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c1\<rangle>\<guillemotright> C1; Env\<turnstile> B \<guillemotright>\<langle>c2\<rangle>\<guillemotright> C2; nrm A = nrm C1 \<union> nrm C2; brk A = ((brk C1) \<Rightarrow>\<union>\<^sub>\<forall> (nrm C2)) \<Rightarrow>\<inter> (brk C2)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c1 Finally c2\<rangle>\<guillemotright> A" \<comment> \<open>The set of assigned variables before execution \<^term>\<open>c2\<close> are the same as before execution \<^term>\<open>c1\<close>, because \<^term>\<open>c1\<close> could throw an exception and so we can't guarantee that any variable will be assigned in \<^term>\<open>c1\<close>. The \<open>Finally\<close> statement completes normally if both \<^term>\<open>c1\<close> and \<^term>\<open>c2\<close> complete normally. If \<^term>\<open>c1\<close> completes abruptly with a break, then \<^term>\<open>c2\<close> also will be executed and may terminate normally or with a break. The overall break map then is the intersection of the maps of both paths. If \<^term>\<open>c2\<close> terminates normally we have to extend all break sets in \<^term>\<open>brk C1\<close> with \<^term>\<open>nrm C2\<close> (\<open>\<Rightarrow>\<union>\<^sub>\<forall>\<close>). If \<^term>\<open>c2\<close> exits with a break this break will appear in the overall result state. We don't know if \<^term>\<open>c1\<close> completed normally or abruptly (maybe with an exception not only a break) so \<^term>\<open>c1\<close> has no contribution to the break map following this path.\<close> \<comment> \<open>Evaluation of expressions and the break sets of definite assignment: Thinking of a Java expression we assume that we can never have a break statement inside of a expression. So for all expressions the break sets could be set to the trivial one: \<^term>\<open>\<lambda> l. UNIV\<close>. But we can't trivially proof, that evaluating an expression will never result in a break, allthough Java expressions allready syntactically don't allow nested stetements in them. The reason are the nested class initialzation statements which are inserted by the evaluation rules. So to proof the absence of a break we need to ensure, that the initialization statements will never end up in a break. In a wellfromed initialization statement, of course, were breaks are nested correctly inside of \<^term>\<open>Lab\<close> or \<^term>\<open>Loop\<close> statements evaluation of the whole initialization statement will never result in a break, because this break will be handled inside of the statement. But for simplicity we haven't added the analysis of the correct nesting of breaks in the typing judgments right now. So we have decided to adjust the rules of definite assignment to fit to these circumstances. If an initialization is involved during evaluation of the expression (evaluation rules \<open>FVar\<close>, \<open>NewC\<close> and \<open>NewA\<close>\<close> | Init: "Env\<turnstile> B \<guillemotright>\<langle>Init C\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" \<comment> \<open>Wellformedness of a program will ensure, that every static initialiser is definetly assigned and the jumps are nested correctly. The case here for \<^term>\<open>Init\<close> is just for convenience, to get a proper precondition for the induction hypothesis in various proofs, so that we don't have to expand the initialisation on every point where it is triggerred by the evaluation rules.\<close> | NewC: "Env\<turnstile> B \<guillemotright>\<langle>NewC C\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | NewA: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>New T[e]\<rangle>\<guillemotright> A" | Cast: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Cast T e\<rangle>\<guillemotright> A" | Inst: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>e InstOf T\<rangle>\<guillemotright> A" | Lit: "Env\<turnstile> B \<guillemotright>\<langle>Lit v\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | UnOp: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>UnOp unop e\<rangle>\<guillemotright> A" | CondAnd: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if True e1) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = B \<union> (assigns_if True (BinOp CondAnd e1 e2) \<inter> assigns_if False (BinOp CondAnd e1 e2)); brk A = (\<lambda> l. UNIV) \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>BinOp CondAnd e1 e2\<rangle>\<guillemotright> A" | CondOr: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if False e1) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = B \<union> (assigns_if True (BinOp CondOr e1 e2) \<inter> assigns_if False (BinOp CondOr e1 e2)); brk A = (\<lambda> l. UNIV) \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>BinOp CondOr e1 e2\<rangle>\<guillemotright> A" | BinOp: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> nrm E1 \<guillemotright>\<langle>e2\<rangle>\<guillemotright> A; binop \<noteq> CondAnd; binop \<noteq> CondOr\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>BinOp binop e1 e2\<rangle>\<guillemotright> A" | Super: "This \<in> B \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Super\<rangle>\<guillemotright> \<lparr>nrm=B,brk=\<lambda> l. UNIV\<rparr>" | AccLVar: "\<lbrakk>vn \<in> B; nrm A = B; brk A = (\<lambda> k. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Acc (LVar vn)\<rangle>\<guillemotright> A" \<comment> \<open>To properly access a local variable we have to test the definite assignment here. The variable must occur in the set \<^term>\<open>B\<close>\<close> | Acc: "\<lbrakk>\<forall> vn. v \<noteq> LVar vn; Env\<turnstile> B \<guillemotright>\<langle>v\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Acc v\<rangle>\<guillemotright> A" | AssLVar: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; nrm A = nrm E \<union> {vn}; brk A = brk E\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>(LVar vn) := e\<rangle>\<guillemotright> A" | Ass: "\<lbrakk>\<forall> vn. v \<noteq> LVar vn; Env\<turnstile> B \<guillemotright>\<langle>v\<rangle>\<guillemotright> V; Env\<turnstile> nrm V \<guillemotright>\<langle>e\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>v := e\<rangle>\<guillemotright> A" | CondBool: "\<lbrakk>Env\<turnstile>(c ? e1 : e2)\<Colon>-(PrimT Boolean); Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; Env\<turnstile> (B \<union> assigns_if True c) \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if False c) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = B \<union> (assigns_if True (c ? e1 : e2) \<inter> assigns_if False (c ? e1 : e2)); brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c ? e1 : e2\<rangle>\<guillemotright> A" | Cond: "\<lbrakk>\<not> Env\<turnstile>(c ? e1 : e2)\<Colon>-(PrimT Boolean); Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; Env\<turnstile> (B \<union> assigns_if True c) \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> (B \<union> assigns_if False c) \<guillemotright>\<langle>e2\<rangle>\<guillemotright> E2; nrm A = nrm E1 \<inter> nrm E2; brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>c ? e1 : e2\<rangle>\<guillemotright> A" | Call: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> E; Env\<turnstile> nrm E \<guillemotright>\<langle>args\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>{accC,statT,mode}e\<cdot>mn({pTs}args)\<rangle>\<guillemotright> A" \<comment> \<open>The interplay of \<^term>\<open>Call\<close>, \<^term>\<open>Methd\<close> and \<^term>\<open>Body\<close>: Why rules for \<^term>\<open>Methd\<close> and \<^term>\<open>Body\<close> at all? Note that a Java source program will not include bare \<^term>\<open>Methd\<close> or \<^term>\<open>Body\<close> terms. These terms are just introduced during evaluation. So definite assignment of \<^term>\<open>Call\<close> does not consider \<^term>\<open>Methd\<close> or \<^term>\<open>Body\<close> at all. So for definite assignment alone we could omit the rules for \<^term>\<open>Methd\<close> and \<^term>\<open>Body\<close>. But since evaluation of the method invocation is split up into three rules we must ensure that we have enough information about the call even in the \<^term>\<open>Body\<close> term to make sure that we can proof type safety. Also we must be able transport this information from \<^term>\<open>Call\<close> to \<^term>\<open>Methd\<close> and then further to \<^term>\<open>Body\<close> during evaluation to establish the definite assignment of \<^term>\<open>Methd\<close> during evaluation of \<^term>\<open>Call\<close>, and of \<^term>\<open>Body\<close> during evaluation of \<^term>\<open>Methd\<close>. This is necessary since definite assignment will be a precondition for each induction hypothesis coming out of the evaluation rules, and therefor we have to establish the definite assignment of the sub-evaluation during the type-safety proof. Note that well-typedness is also a precondition for type-safety and so we can omit some assertion that are already ensured by well-typedness.\<close> | Methd: "\<lbrakk>methd (prg Env) D sig = Some m; Env\<turnstile> B \<guillemotright>\<langle>Body (declclass m) (stmt (mbody (mthd m)))\<rangle>\<guillemotright> A \<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Methd D sig\<rangle>\<guillemotright> A" | Body: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>c\<rangle>\<guillemotright> C; jumpNestingOkS {Ret} c; Result \<in> nrm C; nrm A = B; brk A = (\<lambda> l. UNIV)\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>Body D c\<rangle>\<guillemotright> A" \<comment> \<open>Note that \<^term>\<open>A\<close> is not correlated to \<^term>\<open>C\<close>. If the body statement returns abruptly with return, evaluation of \<^term>\<open>Body\<close> will absorb this return and complete normally. So we cannot trivially get the assigned variables of the body statement since it has not completed normally or with a break. If the body completes normally we guarantee that the result variable is set with this rule. But if the body completes abruptly with a return we can't guarantee that the result variable is set here, since definite assignment only talks about normal completion and breaks. So for a return the \<^term>\<open>Jump\<close> rule ensures that the result variable is set and then this information must be carried over to the \<^term>\<open>Body\<close> rule by the conformance predicate of the state.\<close> | LVar: "Env\<turnstile> B \<guillemotright>\<langle>LVar vn\<rangle>\<guillemotright> \<lparr>nrm=B, brk=\<lambda> l. UNIV\<rparr>" | FVar: "Env\<turnstile> B \<guillemotright>\<langle>e\<rangle>\<guillemotright> A \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>{accC,statDeclC,stat}e..fn\<rangle>\<guillemotright> A" | AVar: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e1\<rangle>\<guillemotright> E1; Env\<turnstile> nrm E1 \<guillemotright>\<langle>e2\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>e1.[e2]\<rangle>\<guillemotright> A" | Nil: "Env\<turnstile> B \<guillemotright>\<langle>[]::expr list\<rangle>\<guillemotright> \<lparr>nrm=B, brk=\<lambda> l. UNIV\<rparr>" | Cons: "\<lbrakk>Env\<turnstile> B \<guillemotright>\<langle>e::expr\<rangle>\<guillemotright> E; Env\<turnstile> nrm E \<guillemotright>\<langle>es\<rangle>\<guillemotright> A\<rbrakk> \<Longrightarrow> Env\<turnstile> B \<guillemotright>\<langle>e#es\<rangle>\<guillemotright> A" definition Unity :: unit ("'(')") where "() = Abs_unit True" definition callee_lcl :: "qtname \<Rightarrow> sig \<Rightarrow> methd \<Rightarrow> lenv" where "callee_lcl C sig m = (\<lambda>k. (case k of EName e \<Rightarrow> (case e of VNam v \<Rightarrow>((table_of (lcls (mbody m)))(pars m [\<mapsto>] parTs sig)) v | Res \<Rightarrow> Some (resTy m)) | This \<Rightarrow> if is_static m then None else Some (Class C)))" record env = prg:: "prog" \<comment> \<open>program\<close> cls:: "qtname" \<comment> \<open>current package and class name\<close> lcl:: "lenv" \<comment> \<open>local environment\<close> abbreviation wt_stmt_syntax :: "env \<Rightarrow> stmt \<Rightarrow> bool" ("_\<turnstile>_\<Colon>\<surd>" [51,51 ] 50) where "E\<turnstile>s\<Colon>\<surd> == E\<turnstile>In1r s \<Colon> Inl (PrimT Void)" abbreviation is_class :: "prog \<Rightarrow> qtname \<Rightarrow> bool" where "is_class G C == class G C \<noteq> None" record mbody = (* method body *) lcls:: "(vname \<times> ty) list" (* local variables *) stmt:: stmt abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" datatype jump = Break label \<comment> \<open>break\<close> | Cont label \<comment> \<open>continue\<close> | Ret \<comment> \<open>return from method\<close> definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" primrec jumpNestingOkS :: "jump set \<Rightarrow> stmt \<Rightarrow> bool" where "jumpNestingOkS jmps (Skip) = True" | "jumpNestingOkS jmps (Expr e) = True" | "jumpNestingOkS jmps (j\<bullet> s) = jumpNestingOkS ({j} \<union> jmps) s" | "jumpNestingOkS jmps (c1;;c2) = (jumpNestingOkS jmps c1 \<and> jumpNestingOkS jmps c2)" | "jumpNestingOkS jmps (If(e) c1 Else c2) = (jumpNestingOkS jmps c1 \<and> jumpNestingOkS jmps c2)" | "jumpNestingOkS jmps (l\<bullet> While(e) c) = jumpNestingOkS ({Cont l} \<union> jmps) c" \<comment> \<open>The label of the while loop only handles continue jumps. Breaks are only handled by \<^term>\<open>Lab\<close>\<close> | "jumpNestingOkS jmps (Jmp j) = (j \<in> jmps)" | "jumpNestingOkS jmps (Throw e) = True" | "jumpNestingOkS jmps (Try c1 Catch(C vn) c2) = (jumpNestingOkS jmps c1 \<and> jumpNestingOkS jmps c2)" | "jumpNestingOkS jmps (c1 Finally c2) = (jumpNestingOkS jmps c1 \<and> jumpNestingOkS jmps c2)" | "jumpNestingOkS jmps (Init C) = True" \<comment> \<open>wellformedness of the program must enshure that for all initializers jumpNestingOkS {} holds\<close> \<comment> \<open>Dummy analysis for intermediate smallstep term \<^term>\<open>FinA\<close>\<close> | "jumpNestingOkS jmps (FinA a c) = False" definition is_acc_type :: "prog \<Rightarrow> pname \<Rightarrow> ty \<Rightarrow> bool" where "is_acc_type G P T = (is_type G T \<and> G\<turnstile>T accessible_in P)" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" datatype 'a option = None | Some (the: 'a) abbreviation table_of :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) table" \<comment> \<open>concrete table\<close> where "table_of \<equiv> map_of" definition mhead :: "methd \<Rightarrow> mhead" where "mhead m = \<lparr>access=access m, static=static m, pars=pars m, resT=resT m\<rparr>" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" record methd = mhead + (* method in a class *) mbody::mbody record mbody = (* method body *) lcls:: "(vname \<times> ty) list" (* local variables *) stmt:: stmt definition unique :: "('a \<times> 'b) list \<Rightarrow> bool" where "unique = distinct \<circ> map fst" definition mhead :: "methd \<Rightarrow> mhead" where "mhead m = \<lparr>access=access m, static=static m, pars=pars m, resT=resT m\<rparr>" record qtname = \<comment> \<open>qualified tname cf. 6.5.3, 6.5.4\<close> pid :: pname tid :: tname definition wf_mhead :: "prog \<Rightarrow> pname \<Rightarrow> sig \<Rightarrow> mhead \<Rightarrow> bool" where "wf_mhead G P = (\<lambda> sig mh. length (parTs sig) = length (pars mh) \<and> ( \<forall>T\<in>set (parTs sig). is_acc_type G P T) \<and> is_acc_type G P (resTy mh) \<and> distinct (pars mh))" definition wf_mdecl :: "prog \<Rightarrow> qtname \<Rightarrow> mdecl \<Rightarrow> bool" where "wf_mdecl G C = (\<lambda>(sig,m). wf_mhead G (pid C) sig (mhead m) \<and> unique (lcls (mbody m)) \<and> (\<forall>(vn,T)\<in>set (lcls (mbody m)). is_acc_type G (pid C) T) \<and> (\<forall>pn\<in>set (pars m). table_of (lcls (mbody m)) pn = None) \<and> jumpNestingOkS {Ret} (stmt (mbody m)) \<and> is_class G C \<and> \<lparr>prg=G,cls=C,lcl=callee_lcl C sig m\<rparr>\<turnstile>(stmt (mbody m))\<Colon>\<surd> \<and> (\<exists> A. \<lparr>prg=G,cls=C,lcl=callee_lcl C sig m\<rparr> \<turnstile> parameters m \<guillemotright>\<langle>stmt (mbody m)\<rangle>\<guillemotright> A \<and> Result \<in> nrm A))"
###output \<lbrakk> ?H1 x_1 x_2 (x_3, x_4); \<lbrakk> ?H2 x_1 (?H3 x_2) x_3 (?H4 x_4); ?H5 (?H6 (?H7 x_4)); \<forall>y_0\<in> ?H8 (?H9 x_4). ?H10 (?H6 (?H7 x_4)) y_0 = ?H11; Ball (?H8 (?H6 (?H7 x_4))) (?H12 (\<lambda>y_1. ?H13 x_1 (?H3 x_2))); ?H14 (?H15 ?H16 ?H17) (?H18 (?H7 x_4)); ?H19 x_1 x_2; ?H20 (?H21 x_1 x_2 (?H22 x_2 x_3 x_4) ?H23) (?H18 (?H7 x_4)); \<exists>y_3. ?H24 (?H21 x_1 x_2 (?H22 x_2 x_3 x_4) ?H23) (?H25 x_4) (?H26 (?H18 (?H7 x_4))) y_3 \<and> ?H27 \<in> ?H28 y_3\<rbrakk> \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5###end
Nonstandard_Analysis/Star
Star.starfun_const_fun
lemma starfun_const_fun [simp]: "\<And>x. ( *f* (\<lambda>x. k)) x = star_of k"
(*f* (\<lambda>x. ?k)) ?x = star_of ?k
?H1 (\<lambda>y_0. x_1) x_2 = ?H2 x_1
[ "StarDef.star_of", "StarDef.starfun" ]
[ "'a \\<Rightarrow> 'a star", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a star \\<Rightarrow> 'b star" ]
[ "definition star_of :: \"'a \\<Rightarrow> 'a star\"\n where \"star_of x \\<equiv> star_n (\\<lambda>n. x)\"", "definition starfun :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a star \\<Rightarrow> 'b star\" (\\<open>*f* _\\<close> [80] 80)\n where \"starfun f \\<equiv> \\<lambda>x. star_of f \\<star> x\"" ]
template
###lemma (*f* (\<lambda>x. ?k)) ?x = star_of ?k ###symbols StarDef.star_of :::: 'a \<Rightarrow> 'a star StarDef.starfun :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a star \<Rightarrow> 'b star ###defs definition star_of :: "'a \<Rightarrow> 'a star" where "star_of x \<equiv> star_n (\<lambda>n. x)" definition starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a star \<Rightarrow> 'b star" (\<open>*f* _\<close> [80] 80) where "starfun f \<equiv> \<lambda>x. star_of f \<star> x"
###output ?H1 (\<lambda>y_0. x_1) x_2 = ?H2 x_1###end
Library/Extended
Extended.max_extended_simps(1)
lemma max_extended_simps[simp]: "max (Fin x) (Fin y) = Fin(max x y)" "max xx Pinf = Pinf" "max xx Minf = xx" "max Pinf yy = Pinf" "max Minf yy = yy"
max (Fin ?x) (Fin ?y) = Fin (max ?x ?y)
?H1 (?H2 x_1) (?H2 x_2) = ?H2 (?H1 x_1 x_2)
[ "Extended.extended.Fin", "Orderings.ord_class.max" ]
[ "'a \\<Rightarrow> 'a extended", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "datatype 'a extended = Fin 'a | Pinf (\"\\<infinity>\") | Minf (\"-\\<infinity>\")", "class ord =\n fixes less_eq :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\n and less :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\nbegin" ]
template
###lemma max (Fin ?x) (Fin ?y) = Fin (max ?x ?y) ###symbols Extended.extended.Fin :::: 'a \<Rightarrow> 'a extended Orderings.ord_class.max :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs datatype 'a extended = Fin 'a | Pinf ("\<infinity>") | Minf ("-\<infinity>") class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin
###output ?H1 (?H2 x_1) (?H2 x_2) = ?H2 (?H1 x_1 x_2)###end
Probability/Probability_Mass_Function
Probability_Mass_Function.measure_Ici
null
rel_pmf ?R ?p ?q \<Longrightarrow> reflp ?R \<Longrightarrow> transp ?R \<Longrightarrow> measure_pmf.prob ?p {y. ?R ?x y} \<le> measure_pmf.prob ?q {y. ?R ?x y}
\<lbrakk> ?H1 x_1 x_2 x_3; ?H2 x_1; ?H3 x_1\<rbrakk> \<Longrightarrow> ?H4 x_2 (?H5 (x_1 x_4)) \<le> ?H4 x_3 (?H5 (x_1 x_4))
[ "Set.Collect", "Probability_Mass_Function.measure_pmf.prob", "Relation.transp", "Relation.reflp", "Probability_Mass_Function.rel_pmf" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a pmf \\<Rightarrow> 'a set \\<Rightarrow> real", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a pmf \\<Rightarrow> 'b pmf \\<Rightarrow> bool" ]
[ "abbreviation transp :: \"('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> bool\" where\n \"transp \\<equiv> transp_on UNIV\"", "abbreviation reflp :: \"('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"reflp \\<equiv> reflp_on UNIV\"", "inductive rel_pmf :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a pmf \\<Rightarrow> 'b pmf \\<Rightarrow> bool\"\nfor R p q\nwhere\n \"\\<lbrakk> \\<And>x y. (x, y) \\<in> set_pmf pq \\<Longrightarrow> R x y;\n map_pmf fst pq = p; map_pmf snd pq = q \\<rbrakk>\n \\<Longrightarrow> rel_pmf R p q\"" ]
template
###lemma rel_pmf ?R ?p ?q \<Longrightarrow> reflp ?R \<Longrightarrow> transp ?R \<Longrightarrow> measure_pmf.prob ?p {y. ?R ?x y} \<le> measure_pmf.prob ?q {y. ?R ?x y} ###symbols Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Probability_Mass_Function.measure_pmf.prob :::: 'a pmf \<Rightarrow> 'a set \<Rightarrow> real Relation.transp :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool Relation.reflp :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool Probability_Mass_Function.rel_pmf :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf \<Rightarrow> bool ###defs abbreviation transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "transp \<equiv> transp_on UNIV" abbreviation reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "reflp \<equiv> reflp_on UNIV" inductive rel_pmf :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf \<Rightarrow> bool" for R p q where "\<lbrakk> \<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y; map_pmf fst pq = p; map_pmf snd pq = q \<rbrakk> \<Longrightarrow> rel_pmf R p q"
###output \<lbrakk> ?H1 x_1 x_2 x_3; ?H2 x_1; ?H3 x_1\<rbrakk> \<Longrightarrow> ?H4 x_2 (?H5 (x_1 x_4)) \<le> ?H4 x_3 (?H5 (x_1 x_4))###end
Matrix_LP/ComputeNumeral
ComputeNumeral.compute_div_mod(221)
null
Parity.adjust_mod ?l ?r = (if ?r = 0 then 0 else numeral ?l - ?r)
?H1 x_1 x_2 = (if x_2 = ?H2 then ?H2 else ?H3 (?H4 x_1) x_2)
[ "Num.numeral_class.numeral", "Groups.minus_class.minus", "Groups.zero_class.zero", "Parity.adjust_mod" ]
[ "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a", "num \\<Rightarrow> int \\<Rightarrow> int" ]
[ "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class zero =\n fixes zero :: 'a (\"0\")", "definition adjust_mod :: \"num \\<Rightarrow> int \\<Rightarrow> int\"\nwhere\n [simp]: \"adjust_mod l r = (if r = 0 then 0 else numeral l - r)\"" ]
template
###lemma Parity.adjust_mod ?l ?r = (if ?r = 0 then 0 else numeral ?l - ?r) ###symbols Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a Parity.adjust_mod :::: num \<Rightarrow> int \<Rightarrow> int ###defs primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class zero = fixes zero :: 'a ("0") definition adjust_mod :: "num \<Rightarrow> int \<Rightarrow> int" where [simp]: "adjust_mod l r = (if r = 0 then 0 else numeral l - r)"
###output ?H1 x_1 x_2 = (if x_2 = ?H2 then ?H2 else ?H3 (?H4 x_1) x_2)###end
Analysis/Starlike
Starlike.affine_hull_2_alt
lemma affine_hull_2_alt: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = range (\<lambda>u. a + u *\<^sub>R (b - a))"
affine hull { ?a, ?b} = range (\<lambda>u. ?a + u *\<^sub>R (?b - ?a))
?H1 ?H2 (?H3 x_1 (?H3 x_2 ?H4)) = ?H5 (\<lambda>y_0. ?H6 x_1 (?H7 y_0 (?H8 x_2 x_1)))
[ "Groups.minus_class.minus", "Real_Vector_Spaces.scaleR_class.scaleR", "Groups.plus_class.plus", "Set.range", "Set.empty", "Set.insert", "Affine.affine", "Hull.hull" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "real \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> bool", "('a set \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class scaleR =\n fixes scaleR :: \"real \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixr \"*\\<^sub>R\" 75)\nbegin", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition hull :: \"('a set \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"hull\" 75)\n where \"S hull s = \\<Inter>{t. S t \\<and> s \\<subseteq> t}\"" ]
template
###lemma affine hull { ?a, ?b} = range (\<lambda>u. ?a + u *\<^sub>R (?b - ?a)) ###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Real_Vector_Spaces.scaleR_class.scaleR :::: real \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Affine.affine :::: 'a set \<Rightarrow> bool Hull.hull :::: ('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class scaleR = fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) begin class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75) where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}"
###output ?H1 ?H2 (?H3 x_1 (?H3 x_2 ?H4)) = ?H5 (\<lambda>y_0. ?H6 x_1 (?H7 y_0 (?H8 x_2 x_1)))###end
Set
Set.member_filter
lemma member_filter [simp]: "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x"
(?x \<in> Set.filter ?P ?A) = (?x \<in> ?A \<and> ?P ?x)
(x_1 \<in> ?H1 x_2 x_3) = (x_1 \<in> x_3 \<and> x_2 x_1)
[ "Set.filter" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "definition filter :: \"('a \\<Rightarrow> bool) \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where [code_abbrev]: \"filter P A = {a \\<in> A. P a}\"" ]
template
###lemma (?x \<in> Set.filter ?P ?A) = (?x \<in> ?A \<and> ?P ?x) ###symbols Set.filter :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where [code_abbrev]: "filter P A = {a \<in> A. P a}"
###output (x_1 \<in> ?H1 x_2 x_3) = (x_1 \<in> x_3 \<and> x_2 x_1)###end
Nominal/Examples/SOS
SOS.Vs_reduce_to_themselves
lemma Vs_reduce_to_themselves: assumes a: "v \<in> V T" shows "v \<Down> v"
?v \<in> V ?T \<Longrightarrow> ?v \<Down> ?v
x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 x_1 x_1
[ "SOS.big", "SOS.V" ]
[ "trm \\<Rightarrow> trm \\<Rightarrow> bool", "ty \\<Rightarrow> trm set" ]
[]
template
###lemma ?v \<in> V ?T \<Longrightarrow> ?v \<Down> ?v ###symbols SOS.big :::: trm \<Rightarrow> trm \<Rightarrow> bool SOS.V :::: ty \<Rightarrow> trm set ###defs
###output x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 x_1 x_1###end
Proofs/Lambda/NormalForm
NormalForm.Abs_NF
lemma Abs_NF: assumes NF: "NF (Abs t \<degree>\<degree> ts)" shows "ts = []"
NF (Abs ?t \<degree>\<degree> ?ts) \<Longrightarrow> ?ts = []
?H1 (?H2 (?H3 x_1) x_2) \<Longrightarrow> x_2 = ?H4
[ "List.list.Nil", "Lambda.dB.Abs", "ListApplication.list_application", "NormalForm.NF" ]
[ "'a list", "dB \\<Rightarrow> dB", "dB \\<Rightarrow> dB list \\<Rightarrow> dB", "dB \\<Rightarrow> bool" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype dB =\n Var nat\n | App dB dB (infixl \"\\<degree>\" 200)\n | Abs dB" ]
template
###lemma NF (Abs ?t \<degree>\<degree> ?ts) \<Longrightarrow> ?ts = [] ###symbols List.list.Nil :::: 'a list Lambda.dB.Abs :::: dB \<Rightarrow> dB ListApplication.list_application :::: dB \<Rightarrow> dB list \<Rightarrow> dB NormalForm.NF :::: dB \<Rightarrow> bool ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype dB = Var nat | App dB dB (infixl "\<degree>" 200) | Abs dB
###output ?H1 (?H2 (?H3 x_1) x_2) \<Longrightarrow> x_2 = ?H4###end
Decision_Procs/Parametric_Ferrante_Rackoff
Parametric_Ferrante_Rackoff.simptm_ci
lemma simptm_ci[simp]: "Itm vs bs (simptm t) = Itm vs bs t"
Itm ?vs ?bs (simptm ?t) = Itm ?vs ?bs ?t
?H1 x_1 x_2 (?H2 x_3) = ?H1 x_1 x_2 x_3
[ "Parametric_Ferrante_Rackoff.simptm", "Parametric_Ferrante_Rackoff.Itm" ]
[ "tm \\<Rightarrow> tm", "'a list \\<Rightarrow> 'a list \\<Rightarrow> tm \\<Rightarrow> 'a" ]
[ "fun simptm :: \"tm \\<Rightarrow> tm\"\n where\n \"simptm (CP j) = CP (polynate j)\"\n | \"simptm (Bound n) = CNP n (1)\\<^sub>p (CP 0\\<^sub>p)\"\n | \"simptm (Neg t) = tmneg (simptm t)\"\n | \"simptm (Add t s) = tmadd (simptm t) (simptm s)\"\n | \"simptm (Sub t s) = tmsub (simptm t) (simptm s)\"\n | \"simptm (Mul i t) =\n (let i' = polynate i in if i' = 0\\<^sub>p then CP 0\\<^sub>p else tmmul (simptm t) i')\"\n | \"simptm (CNP n c t) =\n (let c' = polynate c in if c' = 0\\<^sub>p then simptm t else tmadd (CNP n c' (CP 0\\<^sub>p)) (simptm t))\"", "primrec Itm :: \"'a::field_char_0 list \\<Rightarrow> 'a list \\<Rightarrow> tm \\<Rightarrow> 'a\"\n where\n \"Itm vs bs (CP c) = (Ipoly vs c)\"\n | \"Itm vs bs (Bound n) = bs!n\"\n | \"Itm vs bs (Neg a) = -(Itm vs bs a)\"\n | \"Itm vs bs (Add a b) = Itm vs bs a + Itm vs bs b\"\n | \"Itm vs bs (Sub a b) = Itm vs bs a - Itm vs bs b\"\n | \"Itm vs bs (Mul c a) = (Ipoly vs c) * Itm vs bs a\"\n | \"Itm vs bs (CNP n c t) = (Ipoly vs c)*(bs!n) + Itm vs bs t\"" ]
template
###lemma Itm ?vs ?bs (simptm ?t) = Itm ?vs ?bs ?t ###symbols Parametric_Ferrante_Rackoff.simptm :::: tm \<Rightarrow> tm Parametric_Ferrante_Rackoff.Itm :::: 'a list \<Rightarrow> 'a list \<Rightarrow> tm \<Rightarrow> 'a ###defs fun simptm :: "tm \<Rightarrow> tm" where "simptm (CP j) = CP (polynate j)" | "simptm (Bound n) = CNP n (1)\<^sub>p (CP 0\<^sub>p)" | "simptm (Neg t) = tmneg (simptm t)" | "simptm (Add t s) = tmadd (simptm t) (simptm s)" | "simptm (Sub t s) = tmsub (simptm t) (simptm s)" | "simptm (Mul i t) = (let i' = polynate i in if i' = 0\<^sub>p then CP 0\<^sub>p else tmmul (simptm t) i')" | "simptm (CNP n c t) = (let c' = polynate c in if c' = 0\<^sub>p then simptm t else tmadd (CNP n c' (CP 0\<^sub>p)) (simptm t))" primrec Itm :: "'a::field_char_0 list \<Rightarrow> 'a list \<Rightarrow> tm \<Rightarrow> 'a" where "Itm vs bs (CP c) = (Ipoly vs c)" | "Itm vs bs (Bound n) = bs!n" | "Itm vs bs (Neg a) = -(Itm vs bs a)" | "Itm vs bs (Add a b) = Itm vs bs a + Itm vs bs b" | "Itm vs bs (Sub a b) = Itm vs bs a - Itm vs bs b" | "Itm vs bs (Mul c a) = (Ipoly vs c) * Itm vs bs a" | "Itm vs bs (CNP n c t) = (Ipoly vs c)*(bs!n) + Itm vs bs t"
###output ?H1 x_1 x_2 (?H2 x_3) = ?H1 x_1 x_2 x_3###end
Orderings
Orderings.predicate2D
lemma predicate2D: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"
?P \<le> ?Q \<Longrightarrow> ?P ?x ?y \<Longrightarrow> ?Q ?x ?y
\<lbrakk>x_1 \<le> x_2; x_1 x_3 x_4\<rbrakk> \<Longrightarrow> x_2 x_3 x_4
[]
[]
[]
template
###lemma ?P \<le> ?Q \<Longrightarrow> ?P ?x ?y \<Longrightarrow> ?Q ?x ?y ###symbols ###defs
###output \<lbrakk>x_1 \<le> x_2; x_1 x_3 x_4\<rbrakk> \<Longrightarrow> x_2 x_3 x_4###end
Auth/Yahalom2
Yahalom2.B_trusts_YM4_shrK
lemma B_trusts_YM4_shrK: "\<lbrakk>Crypt (shrK B) \<lbrace>Agent A, Agent B, Key K, Nonce NB\<rbrace> \<in> parts (knows Spy evs); B \<notin> bad; evs \<in> yahalom\<rbrakk> \<Longrightarrow> \<exists>NA. Says Server A \<lbrace>Nonce NB, Crypt (shrK A) \<lbrace>Agent B, Key K, Nonce NA\<rbrace>, Crypt (shrK B) \<lbrace>Agent A, Agent B, Key K, Nonce NB\<rbrace>\<rbrace> \<in> set evs"
Crypt (shrK ?B) \<lbrace>Agent ?A, Agent ?B, Key ?K, Nonce ?NB\<rbrace> \<in> parts (knows Spy ?evs) \<Longrightarrow> ?B \<notin> bad \<Longrightarrow> ?evs \<in> yahalom \<Longrightarrow> \<exists>NA. Says Server ?A \<lbrace>Nonce ?NB, Crypt (shrK ?A) \<lbrace>Agent ?B, Key ?K, Nonce NA\<rbrace>, Crypt (shrK ?B) \<lbrace>Agent ?A, Agent ?B, Key ?K, Nonce ?NB\<rbrace>\<rbrace> \<in> set ?evs
\<lbrakk> ?H1 (?H2 x_1) (?H3 (?H4 x_2) (?H3 (?H4 x_1) (?H3 (?H5 x_3) (?H6 x_4)))) \<in> ?H7 (?H8 ?H9 x_5); ?H10 x_1 ?H11; x_5 \<in> ?H12\<rbrakk> \<Longrightarrow> \<exists>y_0. ?H13 ?H14 x_2 (?H3 (?H6 x_4) (?H3 (?H1 (?H2 x_2) (?H3 (?H4 x_1) (?H3 (?H5 x_3) (?H6 y_0)))) (?H1 (?H2 x_1) (?H3 (?H4 x_2) (?H3 (?H4 x_1) (?H3 (?H5 x_3) (?H6 x_4))))))) \<in> ?H15 x_5
[ "List.list.set", "Message.agent.Server", "Event.event.Says", "Yahalom2.yahalom", "Event.bad", "Set.not_member", "Message.agent.Spy", "Event.knows", "Message.parts", "Message.msg.Nonce", "Message.msg.Key", "Message.msg.Agent", "Message.msg.MPair", "Public.shrK", "Message.msg.Crypt" ]
[ "'a list \\<Rightarrow> 'a set", "agent", "agent \\<Rightarrow> agent \\<Rightarrow> msg \\<Rightarrow> event", "event list set", "agent set", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool", "agent", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "msg set \\<Rightarrow> msg set", "nat \\<Rightarrow> msg", "nat \\<Rightarrow> msg", "agent \\<Rightarrow> msg", "msg \\<Rightarrow> msg \\<Rightarrow> msg", "agent \\<Rightarrow> nat", "nat \\<Rightarrow> msg \\<Rightarrow> msg" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype\n event = Says agent agent msg\n | Gets agent msg\n | Notes agent msg", "inductive_set yahalom :: \"event list set\"\n where\n (*Initial trace is empty*)\n Nil: \"[] \\<in> yahalom\"\n\n (*The spy MAY say anything he CAN say. We do not expect him to\n invent new nonces here, but he can also use NS1. Common to\n all similar protocols.*)\n | Fake: \"\\<lbrakk>evsf \\<in> yahalom; X \\<in> synth (analz (knows Spy evsf))\\<rbrakk>\n \\<Longrightarrow> Says Spy B X # evsf \\<in> yahalom\"\n\n (*A message that has been sent can be received by the\n intended recipient.*)\n | Reception: \"\\<lbrakk>evsr \\<in> yahalom; Says A B X \\<in> set evsr\\<rbrakk>\n \\<Longrightarrow> Gets B X # evsr \\<in> yahalom\"\n\n (*Alice initiates a protocol run*)\n | YM1: \"\\<lbrakk>evs1 \\<in> yahalom; Nonce NA \\<notin> used evs1\\<rbrakk>\n \\<Longrightarrow> Says A B \\<lbrace>Agent A, Nonce NA\\<rbrace> # evs1 \\<in> yahalom\"\n\n (*Bob's response to Alice's message.*)\n | YM2: \"\\<lbrakk>evs2 \\<in> yahalom; Nonce NB \\<notin> used evs2;\n Gets B \\<lbrace>Agent A, Nonce NA\\<rbrace> \\<in> set evs2\\<rbrakk>\n \\<Longrightarrow> Says B Server\n \\<lbrace>Agent B, Nonce NB, Crypt (shrK B) \\<lbrace>Agent A, Nonce NA\\<rbrace>\\<rbrace>\n # evs2 \\<in> yahalom\"\n\n (*The Server receives Bob's message. He responds by sending a\n new session key to Alice, with a certificate for forwarding to Bob.\n Both agents are quoted in the 2nd certificate to prevent attacks!*)\n | YM3: \"\\<lbrakk>evs3 \\<in> yahalom; Key KAB \\<notin> used evs3;\n Gets Server \\<lbrace>Agent B, Nonce NB,\n Crypt (shrK B) \\<lbrace>Agent A, Nonce NA\\<rbrace>\\<rbrace>\n \\<in> set evs3\\<rbrakk>\n \\<Longrightarrow> Says Server A\n \\<lbrace>Nonce NB,\n Crypt (shrK A) \\<lbrace>Agent B, Key KAB, Nonce NA\\<rbrace>,\n Crypt (shrK B) \\<lbrace>Agent A, Agent B, Key KAB, Nonce NB\\<rbrace>\\<rbrace>\n # evs3 \\<in> yahalom\"\n\n (*Alice receives the Server's (?) message, checks her Nonce, and\n uses the new session key to send Bob his Nonce.*)\n | YM4: \"\\<lbrakk>evs4 \\<in> yahalom;\n Gets A \\<lbrace>Nonce NB, Crypt (shrK A) \\<lbrace>Agent B, Key K, Nonce NA\\<rbrace>,\n X\\<rbrace> \\<in> set evs4;\n Says A B \\<lbrace>Agent A, Nonce NA\\<rbrace> \\<in> set evs4\\<rbrakk>\n \\<Longrightarrow> Says A B \\<lbrace>X, Crypt K (Nonce NB)\\<rbrace> # evs4 \\<in> yahalom\"\n\n (*This message models possible leaks of session keys. The nonces\n identify the protocol run. Quoting Server here ensures they are\n correct. *)\n | Oops: \"\\<lbrakk>evso \\<in> yahalom;\n Says Server A \\<lbrace>Nonce NB,\n Crypt (shrK A) \\<lbrace>Agent B, Key K, Nonce NA\\<rbrace>,\n X\\<rbrace> \\<in> set evso\\<rbrakk>\n \\<Longrightarrow> Notes Spy \\<lbrace>Nonce NA, Nonce NB, Key K\\<rbrace> # evso \\<in> yahalom\"", "consts \n bad :: \"agent set\" \\<comment> \\<open>compromised agents\\<close>", "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>", "primrec knows :: \"agent \\<Rightarrow> event list \\<Rightarrow> msg set\"\nwhere\n knows_Nil: \"knows A [] = initState A\"\n| knows_Cons:\n \"knows A (ev # evs) =\n (if A = Spy then \n (case ev of\n Says A' B X \\<Rightarrow> insert X (knows Spy evs)\n | Gets A' X \\<Rightarrow> knows Spy evs\n | Notes A' X \\<Rightarrow> \n if A' \\<in> bad then insert X (knows Spy evs) else knows Spy evs)\n else\n (case ev of\n Says A' B X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Gets A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs\n | Notes A' X \\<Rightarrow> \n if A'=A then insert X (knows A evs) else knows A evs))\"", "inductive_set\n parts :: \"msg set \\<Rightarrow> msg set\"\n for H :: \"msg set\"\n where\n Inj [intro]: \"X \\<in> H \\<Longrightarrow> X \\<in> parts H\"\n | Fst: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"\n | Snd: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> Y \\<in> parts H\"\n | Body: \"Crypt K X \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "consts\n shrK :: \"agent => key\" \\<comment> \\<open>long-term shared keys\\<close>", "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>" ]
template
###lemma Crypt (shrK ?B) \<lbrace>Agent ?A, Agent ?B, Key ?K, Nonce ?NB\<rbrace> \<in> parts (knows Spy ?evs) \<Longrightarrow> ?B \<notin> bad \<Longrightarrow> ?evs \<in> yahalom \<Longrightarrow> \<exists>NA. Says Server ?A \<lbrace>Nonce ?NB, Crypt (shrK ?A) \<lbrace>Agent ?B, Key ?K, Nonce NA\<rbrace>, Crypt (shrK ?B) \<lbrace>Agent ?A, Agent ?B, Key ?K, Nonce ?NB\<rbrace>\<rbrace> \<in> set ?evs ###symbols List.list.set :::: 'a list \<Rightarrow> 'a set Message.agent.Server :::: agent Event.event.Says :::: agent \<Rightarrow> agent \<Rightarrow> msg \<Rightarrow> event Yahalom2.yahalom :::: event list set Event.bad :::: agent set Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool Message.agent.Spy :::: agent Event.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Message.parts :::: msg set \<Rightarrow> msg set Message.msg.Nonce :::: nat \<Rightarrow> msg Message.msg.Key :::: nat \<Rightarrow> msg Message.msg.Agent :::: agent \<Rightarrow> msg Message.msg.MPair :::: msg \<Rightarrow> msg \<Rightarrow> msg Public.shrK :::: agent \<Rightarrow> nat Message.msg.Crypt :::: nat \<Rightarrow> msg \<Rightarrow> msg ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype event = Says agent agent msg | Gets agent msg | Notes agent msg inductive_set yahalom :: "event list set" where (*Initial trace is empty*) Nil: "[] \<in> yahalom" (*The spy MAY say anything he CAN say. We do not expect him to invent new nonces here, but he can also use NS1. Common to all similar protocols.*) | Fake: "\<lbrakk>evsf \<in> yahalom; X \<in> synth (analz (knows Spy evsf))\<rbrakk> \<Longrightarrow> Says Spy B X # evsf \<in> yahalom" (*A message that has been sent can be received by the intended recipient.*) | Reception: "\<lbrakk>evsr \<in> yahalom; Says A B X \<in> set evsr\<rbrakk> \<Longrightarrow> Gets B X # evsr \<in> yahalom" (*Alice initiates a protocol run*) | YM1: "\<lbrakk>evs1 \<in> yahalom; Nonce NA \<notin> used evs1\<rbrakk> \<Longrightarrow> Says A B \<lbrace>Agent A, Nonce NA\<rbrace> # evs1 \<in> yahalom" (*Bob's response to Alice's message.*) | YM2: "\<lbrakk>evs2 \<in> yahalom; Nonce NB \<notin> used evs2; Gets B \<lbrace>Agent A, Nonce NA\<rbrace> \<in> set evs2\<rbrakk> \<Longrightarrow> Says B Server \<lbrace>Agent B, Nonce NB, Crypt (shrK B) \<lbrace>Agent A, Nonce NA\<rbrace>\<rbrace> # evs2 \<in> yahalom" (*The Server receives Bob's message. He responds by sending a new session key to Alice, with a certificate for forwarding to Bob. Both agents are quoted in the 2nd certificate to prevent attacks!*) | YM3: "\<lbrakk>evs3 \<in> yahalom; Key KAB \<notin> used evs3; Gets Server \<lbrace>Agent B, Nonce NB, Crypt (shrK B) \<lbrace>Agent A, Nonce NA\<rbrace>\<rbrace> \<in> set evs3\<rbrakk> \<Longrightarrow> Says Server A \<lbrace>Nonce NB, Crypt (shrK A) \<lbrace>Agent B, Key KAB, Nonce NA\<rbrace>, Crypt (shrK B) \<lbrace>Agent A, Agent B, Key KAB, Nonce NB\<rbrace>\<rbrace> # evs3 \<in> yahalom" (*Alice receives the Server's (?) message, checks her Nonce, and uses the new session key to send Bob his Nonce.*) | YM4: "\<lbrakk>evs4 \<in> yahalom; Gets A \<lbrace>Nonce NB, Crypt (shrK A) \<lbrace>Agent B, Key K, Nonce NA\<rbrace>, X\<rbrace> \<in> set evs4; Says A B \<lbrace>Agent A, Nonce NA\<rbrace> \<in> set evs4\<rbrakk> \<Longrightarrow> Says A B \<lbrace>X, Crypt K (Nonce NB)\<rbrace> # evs4 \<in> yahalom" (*This message models possible leaks of session keys. The nonces identify the protocol run. Quoting Server here ensures they are correct. *) | Oops: "\<lbrakk>evso \<in> yahalom; Says Server A \<lbrace>Nonce NB, Crypt (shrK A) \<lbrace>Agent B, Key K, Nonce NA\<rbrace>, X\<rbrace> \<in> set evso\<rbrakk> \<Longrightarrow> Notes Spy \<lbrace>Nonce NA, Nonce NB, Key K\<rbrace> # evso \<in> yahalom" consts bad :: "agent set" \<comment> \<open>compromised agents\<close> abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close> primrec knows :: "agent \<Rightarrow> event list \<Rightarrow> msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X \<Rightarrow> insert X (knows Spy evs) | Gets A' X \<Rightarrow> knows Spy evs | Notes A' X \<Rightarrow> if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Gets A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Notes A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs))" inductive_set parts :: "msg set \<Rightarrow> msg set" for H :: "msg set" where Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" | Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" | Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" | Body: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H" datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> consts shrK :: "agent => key" \<comment> \<open>long-term shared keys\<close> datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close>
###output \<lbrakk> ?H1 (?H2 x_1) (?H3 (?H4 x_2) (?H3 (?H4 x_1) (?H3 (?H5 x_3) (?H6 x_4)))) \<in> ?H7 (?H8 ?H9 x_5); ?H10 x_1 ?H11; x_5 \<in> ?H12\<rbrakk> \<Longrightarrow> \<exists>y_0. ?H13 ?H14 x_2 (?H3 (?H6 x_4) (?H3 (?H1 (?H2 x_2) (?H3 (?H4 x_1) (?H3 (?H5 x_3) (?H6 y_0)))) (?H1 (?H2 x_1) (?H3 (?H4 x_2) (?H3 (?H4 x_1) (?H3 (?H5 x_3) (?H6 x_4))))))) \<in> ?H15 x_5###end
Analysis/Borel_Space
Borel_Space.borel_measurable_power
lemma borel_measurable_power [measurable (raw)]: fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}" assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. (f x) ^ n) \<in> borel_measurable M"
?f \<in> borel_measurable ?M \<Longrightarrow> (\<lambda>x. ?f x ^ ?n) \<in> borel_measurable ?M
x_1 \<in> ?H1 x_2 \<Longrightarrow> (\<lambda>y_0. ?H2 (x_1 y_0) x_3) \<in> ?H1 x_2
[ "Power.power_class.power", "Borel_Space.borel_measurable" ]
[ "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set" ]
[ "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "abbreviation \"borel_measurable M \\<equiv> measurable M borel\"" ]
template
###lemma ?f \<in> borel_measurable ?M \<Longrightarrow> (\<lambda>x. ?f x ^ ?n) \<in> borel_measurable ?M ###symbols Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Borel_Space.borel_measurable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) set ###defs primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" abbreviation "borel_measurable M \<equiv> measurable M borel"
###output x_1 \<in> ?H1 x_2 \<Longrightarrow> (\<lambda>y_0. ?H2 (x_1 y_0) x_3) \<in> ?H1 x_2###end
UNITY/Simple/Lift
Lift.E_thm01
lemma E_thm01: "Lift \<in> (stopped \<inter> atFloor n) LeadsTo (opened \<inter> atFloor n)"
Lift \<in> stopped \<inter> atFloor ?n \<longmapsto>w opened \<inter> atFloor ?n
?H1 \<in> ?H2 (?H3 ?H4 (?H5 x_1)) (?H3 ?H6 (?H5 x_1))
[ "Lift.opened", "Lift.atFloor", "Lift.stopped", "Set.inter", "SubstAx.LeadsTo", "Lift.Lift" ]
[ "state set", "int \\<Rightarrow> state set", "state set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a program set", "state program" ]
[ "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "definition LeadsTo :: \"['a set, 'a set] => 'a program set\" (infixl \"LeadsTo\" 60) where\n \"A LeadsTo B == {F. F \\<in> (reachable F \\<inter> A) leadsTo B}\"" ]
template
###lemma Lift \<in> stopped \<inter> atFloor ?n \<longmapsto>w opened \<inter> atFloor ?n ###symbols Lift.opened :::: state set Lift.atFloor :::: int \<Rightarrow> state set Lift.stopped :::: state set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set SubstAx.LeadsTo :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a program set Lift.Lift :::: state program ###defs abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" definition LeadsTo :: "['a set, 'a set] => 'a program set" (infixl "LeadsTo" 60) where "A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}"
###output ?H1 \<in> ?H2 (?H3 ?H4 (?H5 x_1)) (?H3 ?H6 (?H5 x_1))###end
Complex_Analysis/Contour_Integration
Contour_Integration.has_contour_integral_eq
lemma has_contour_integral_eq: "\<lbrakk>(f has_contour_integral y) p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> (g has_contour_integral y) p"
(?f has_contour_integral ?y) ?p \<Longrightarrow> (\<And>x. x \<in> path_image ?p \<Longrightarrow> ?f x = ?g x) \<Longrightarrow> (?g has_contour_integral ?y) ?p
\<lbrakk> ?H1 x_1 x_2 x_3; \<And>y_0. y_0 \<in> ?H2 x_3 \<Longrightarrow> x_1 y_0 = x_4 y_0\<rbrakk> \<Longrightarrow> ?H1 x_4 x_2 x_3
[ "Path_Connected.path_image", "Contour_Integration.has_contour_integral" ]
[ "(real \\<Rightarrow> 'a) \\<Rightarrow> 'a set", "(complex \\<Rightarrow> complex) \\<Rightarrow> complex \\<Rightarrow> (real \\<Rightarrow> complex) \\<Rightarrow> bool" ]
[]
template
###lemma (?f has_contour_integral ?y) ?p \<Longrightarrow> (\<And>x. x \<in> path_image ?p \<Longrightarrow> ?f x = ?g x) \<Longrightarrow> (?g has_contour_integral ?y) ?p ###symbols Path_Connected.path_image :::: (real \<Rightarrow> 'a) \<Rightarrow> 'a set Contour_Integration.has_contour_integral :::: (complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool ###defs
###output \<lbrakk> ?H1 x_1 x_2 x_3; \<And>y_0. y_0 \<in> ?H2 x_3 \<Longrightarrow> x_1 y_0 = x_4 y_0\<rbrakk> \<Longrightarrow> ?H1 x_4 x_2 x_3###end
Analysis/Abstract_Topology
Abstract_Topology.continuous_closedin_preimage_gen
lemma continuous_closedin_preimage_gen: assumes "continuous_on S f" "f \<in> S \<rightarrow> T" "closedin (top_of_set T) U" shows "closedin (top_of_set S) (S \<inter> f -` U)"
continuous_on ?S ?f \<Longrightarrow> ?f \<in> ?S \<rightarrow> ?T \<Longrightarrow> closedin (top_of_set ?T) ?U \<Longrightarrow> closedin (top_of_set ?S) (?S \<inter> ?f -` ?U)
\<lbrakk> ?H1 x_1 x_2; x_2 \<in> ?H2 x_1 x_3; ?H3 (?H4 x_3) x_4\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1) (?H5 x_1 (?H6 x_2 x_4))
[ "Set.vimage", "Set.inter", "Abstract_Topology.top_of_set", "Abstract_Topology.closedin", "FuncSet.funcset", "Topological_Spaces.continuous_on" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "definition vimage :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set\" (infixr \"-`\" 90)\n where \"f -` B \\<equiv> {x. f x \\<in> B}\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "abbreviation top_of_set :: \"'a::topological_space set \\<Rightarrow> 'a topology\"\n where \"top_of_set \\<equiv> subtopology (topology open)\"", "abbreviation funcset :: \"'a set \\<Rightarrow> 'b set \\<Rightarrow> ('a \\<Rightarrow> 'b) set\" (infixr \"\\<rightarrow>\" 60)\n where \"A \\<rightarrow> B \\<equiv> Pi A (\\<lambda>_. B)\"", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"" ]
template
###lemma continuous_on ?S ?f \<Longrightarrow> ?f \<in> ?S \<rightarrow> ?T \<Longrightarrow> closedin (top_of_set ?T) ?U \<Longrightarrow> closedin (top_of_set ?S) (?S \<inter> ?f -` ?U) ###symbols Set.vimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Abstract_Topology.top_of_set :::: 'a set \<Rightarrow> 'a topology Abstract_Topology.closedin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool FuncSet.funcset :::: 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set" (infixr "-`" 90) where "f -` B \<equiv> {x. f x \<in> B}" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" abbreviation top_of_set :: "'a::topological_space set \<Rightarrow> 'a topology" where "top_of_set \<equiv> subtopology (topology open)" abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>" 60) where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))"
###output \<lbrakk> ?H1 x_1 x_2; x_2 \<in> ?H2 x_1 x_3; ?H3 (?H4 x_3) x_4\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_1) (?H5 x_1 (?H6 x_2 x_4))###end
Complex_Analysis/Riemann_Mapping
Riemann_Mapping.Riemann_mapping_theorem
theorem Riemann_mapping_theorem: "open S \<and> simply_connected S \<longleftrightarrow> S = {} \<or> S = UNIV \<or> (\<exists>f g. f holomorphic_on S \<and> g holomorphic_on ball 0 1 \<and> (\<forall>z \<in> S. f z \<in> ball 0 1 \<and> g(f z) = z) \<and> (\<forall>z \<in> ball 0 1. g z \<in> S \<and> f(g z) = z))" (is "_ = ?rhs")
(open ?S \<and> simply_connected ?S) = (?S = {} \<or> ?S = UNIV \<or> (\<exists>f g. f holomorphic_on ?S \<and> g holomorphic_on ball 0 1 \<and> (\<forall>z\<in> ?S. f z \<in> ball 0 1 \<and> g (f z) = z) \<and> (\<forall>z\<in>ball 0 1. g z \<in> ?S \<and> f (g z) = z)))
(?H1 x_1 \<and> ?H2 x_1) = (x_1 = ?H3 \<or> x_1 = ?H4 \<or> (\<exists>y_0 y_1. ?H5 y_0 x_1 \<and> ?H5 y_1 (?H6 ?H7 ?H8) \<and> (\<forall>y_2\<in>x_1. y_0 y_2 \<in> ?H6 ?H7 ?H8 \<and> y_1 (y_0 y_2) = y_2) \<and> (\<forall>y_3\<in> ?H6 ?H7 ?H8. y_1 y_3 \<in> x_1 \<and> y_0 (y_1 y_3) = y_3)))
[ "Groups.one_class.one", "Groups.zero_class.zero", "Elementary_Metric_Spaces.ball", "Complex_Analysis_Basics.holomorphic_on", "Set.UNIV", "Set.empty", "Homotopy.simply_connected", "Topological_Spaces.open_class.open" ]
[ "'a", "'a", "'a \\<Rightarrow> real \\<Rightarrow> 'a set", "(complex \\<Rightarrow> complex) \\<Rightarrow> complex set \\<Rightarrow> bool", "'a set", "'a set", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> bool" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "class \"open\" =\n fixes \"open\" :: \"'a set \\<Rightarrow> bool\"" ]
template
###lemma (open ?S \<and> simply_connected ?S) = (?S = {} \<or> ?S = UNIV \<or> (\<exists>f g. f holomorphic_on ?S \<and> g holomorphic_on ball 0 1 \<and> (\<forall>z\<in> ?S. f z \<in> ball 0 1 \<and> g (f z) = z) \<and> (\<forall>z\<in>ball 0 1. g z \<in> ?S \<and> f (g z) = z))) ###symbols Groups.one_class.one :::: 'a Groups.zero_class.zero :::: 'a Elementary_Metric_Spaces.ball :::: 'a \<Rightarrow> real \<Rightarrow> 'a set Complex_Analysis_Basics.holomorphic_on :::: (complex \<Rightarrow> complex) \<Rightarrow> complex set \<Rightarrow> bool Set.UNIV :::: 'a set Set.empty :::: 'a set Homotopy.simply_connected :::: 'a set \<Rightarrow> bool Topological_Spaces.open_class.open :::: 'a set \<Rightarrow> bool ###defs class one = fixes one :: 'a ("1") class zero = fixes zero :: 'a ("0") abbreviation UNIV :: "'a set" where "UNIV \<equiv> top" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" class "open" = fixes "open" :: "'a set \<Rightarrow> bool"
###output (?H1 x_1 \<and> ?H2 x_1) = (x_1 = ?H3 \<or> x_1 = ?H4 \<or> (\<exists>y_0 y_1. ?H5 y_0 x_1 \<and> ?H5 y_1 (?H6 ?H7 ?H8) \<and> (\<forall>y_2\<in>x_1. y_0 y_2 \<in> ?H6 ?H7 ?H8 \<and> y_1 (y_0 y_2) = y_2) \<and> (\<forall>y_3\<in> ?H6 ?H7 ?H8. y_1 y_3 \<in> x_1 \<and> y_0 (y_1 y_3) = y_3)))###end
Matrix_LP/SparseMatrix
SparseMatrix.nprt_move_matrix
lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lattice_ring) matrix) j i) = move_matrix (nprt A) j i"
nprt (move_matrix ?A ?j ?i) = move_matrix (nprt ?A) ?j ?i
?H1 (?H2 x_1 x_2 x_3) = ?H2 (?H1 x_1) x_2 x_3
[ "Matrix.move_matrix", "Lattice_Algebras.lattice_ab_group_add_class.nprt" ]
[ "'a matrix \\<Rightarrow> int \\<Rightarrow> int \\<Rightarrow> 'a matrix", "'a \\<Rightarrow> 'a" ]
[ "definition move_matrix :: \"('a::zero) matrix \\<Rightarrow> int \\<Rightarrow> int \\<Rightarrow> 'a matrix\" where\n \"move_matrix A y x == Abs_matrix(% j i. if (((int j)-y) < 0) | (((int i)-x) < 0) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))\"", "class lattice_ab_group_add = ordered_ab_group_add + lattice\nbegin" ]
template
###lemma nprt (move_matrix ?A ?j ?i) = move_matrix (nprt ?A) ?j ?i ###symbols Matrix.move_matrix :::: 'a matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix Lattice_Algebras.lattice_ab_group_add_class.nprt :::: 'a \<Rightarrow> 'a ###defs definition move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix" where "move_matrix A y x == Abs_matrix(% j i. if (((int j)-y) < 0) | (((int i)-x) < 0) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))" class lattice_ab_group_add = ordered_ab_group_add + lattice begin
###output ?H1 (?H2 x_1 x_2 x_3) = ?H2 (?H1 x_1) x_2 x_3###end
ex/Tree23
Tree23.bal_exec
lemma bal_exec: "bal t \<Longrightarrow> bal (exec as t)"
bal ?t \<Longrightarrow> bal (exec ?as ?t)
?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_2 x_1)
[ "Tree23.exec", "Tree23.bal" ]
[ "'a act list \\<Rightarrow> 'a tree23 \\<Rightarrow> 'a tree23", "'a tree23 \\<Rightarrow> bool" ]
[ "fun exec where\n\"exec [] t = t\" |\n\"exec (Add k x # as) t = exec as (add0 k x t)\" |\n\"exec (Del k # as) t = exec as (del0 k t)\"", "fun bal :: \"'a tree23 \\<Rightarrow> bool\" where\n\"bal Empty = True\" |\n\"bal (Branch2 l _ r) = (bal l & bal r & height l = height r)\" |\n\"bal (Branch3 l _ m _ r) = (bal l & bal m & bal r & height l = height m & height m = height r)\"" ]
template
###lemma bal ?t \<Longrightarrow> bal (exec ?as ?t) ###symbols Tree23.exec :::: 'a act list \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23 Tree23.bal :::: 'a tree23 \<Rightarrow> bool ###defs fun exec where "exec [] t = t" | "exec (Add k x # as) t = exec as (add0 k x t)" | "exec (Del k # as) t = exec as (del0 k t)" fun bal :: "'a tree23 \<Rightarrow> bool" where "bal Empty = True" | "bal (Branch2 l _ r) = (bal l & bal r & height l = height r)" | "bal (Branch3 l _ m _ r) = (bal l & bal m & bal r & height l = height m & height m = height r)"
###output ?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_2 x_1)###end
Analysis/Abstract_Topology
Abstract_Topology.separated_eq_distinguishable
lemma separated_eq_distinguishable: "separatedin X {x} {y} \<longleftrightarrow> x \<in> topspace X \<and> y \<in> topspace X \<and> (\<exists>U. openin X U \<and> x \<in> U \<and> (y \<notin> U)) \<and> (\<exists>v. openin X v \<and> y \<in> v \<and> (x \<notin> v))"
separatedin ?X { ?x} { ?y} = (?x \<in> topspace ?X \<and> ?y \<in> topspace ?X \<and> (\<exists>U. openin ?X U \<and> ?x \<in> U \<and> ?y \<notin> U) \<and> (\<exists>v. openin ?X v \<and> ?y \<in> v \<and> ?x \<notin> v))
?H1 x_1 (?H2 x_2 ?H3) (?H2 x_3 ?H3) = (x_2 \<in> ?H4 x_1 \<and> x_3 \<in> ?H4 x_1 \<and> (\<exists>y_0. ?H5 x_1 y_0 \<and> x_2 \<in> y_0 \<and> ?H6 x_3 y_0) \<and> (\<exists>y_1. ?H5 x_1 y_1 \<and> x_3 \<in> y_1 \<and> ?H6 x_2 y_1))
[ "Set.not_member", "Abstract_Topology.topology.openin", "Abstract_Topology.topspace", "Set.empty", "Set.insert", "Abstract_Topology.separatedin" ]
[ "'a \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a topology \\<Rightarrow> 'a set", "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>", "definition \"topspace T = \\<Union>{S. openin T S}\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition separatedin :: \"'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"separatedin X S T \\<equiv>\n S \\<subseteq> topspace X \\<and> T \\<subseteq> topspace X \\<and>\n S \\<inter> X closure_of T = {} \\<and> T \\<inter> X closure_of S = {}\"" ]
template
###lemma separatedin ?X { ?x} { ?y} = (?x \<in> topspace ?X \<and> ?y \<in> topspace ?X \<and> (\<exists>U. openin ?X U \<and> ?x \<in> U \<and> ?y \<notin> U) \<and> (\<exists>v. openin ?X v \<and> ?y \<in> v \<and> ?x \<notin> v)) ###symbols Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool Abstract_Topology.topology.openin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Abstract_Topology.separatedin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close> definition "topspace T = \<Union>{S. openin T S}" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition separatedin :: "'a topology \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "separatedin X S T \<equiv> S \<subseteq> topspace X \<and> T \<subseteq> topspace X \<and> S \<inter> X closure_of T = {} \<and> T \<inter> X closure_of S = {}"
###output ?H1 x_1 (?H2 x_2 ?H3) (?H2 x_3 ?H3) = (x_2 \<in> ?H4 x_1 \<and> x_3 \<in> ?H4 x_1 \<and> (\<exists>y_0. ?H5 x_1 y_0 \<and> x_2 \<in> y_0 \<and> ?H6 x_3 y_0) \<and> (\<exists>y_1. ?H5 x_1 y_1 \<and> x_3 \<in> y_1 \<and> ?H6 x_2 y_1))###end
Analysis/Abstract_Topological_Spaces
Abstract_Topological_Spaces.retraction_maps_Kolmogorov_quotient
lemma retraction_maps_Kolmogorov_quotient: "retraction_maps X (subtopology X (Kolmogorov_quotient X ` topspace X)) (Kolmogorov_quotient X) id"
retraction_maps ?X (subtopology ?X (Kolmogorov_quotient ?X ` topspace ?X)) (Kolmogorov_quotient ?X) id
?H1 x_1 (?H2 x_1 (?H3 (?H4 x_1) (?H5 x_1))) (?H4 x_1) ?H6
[ "Fun.id", "Abstract_Topology.topspace", "Abstract_Topological_Spaces.Kolmogorov_quotient", "Set.image", "Abstract_Topology.subtopology", "Abstract_Topology.retraction_maps" ]
[ "'a \\<Rightarrow> 'a", "'a topology \\<Rightarrow> 'a set", "'a topology \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "definition id :: \"'a \\<Rightarrow> 'a\"\n where \"id = (\\<lambda>x. x)\"", "definition \"topspace T = \\<Union>{S. openin T S}\"", "definition Kolmogorov_quotient \n where \"Kolmogorov_quotient X \\<equiv> \\<lambda>x. @y. \\<forall>U. openin X U \\<longrightarrow> (y \\<in> U \\<longleftrightarrow> x \\<in> U)\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "definition retraction_maps :: \"'a topology \\<Rightarrow> 'b topology \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'a) \\<Rightarrow> bool\"\n where \"retraction_maps X Y f g \\<equiv>\n continuous_map X Y f \\<and> continuous_map Y X g \\<and> (\\<forall>x \\<in> topspace Y. f(g x) = x)\"" ]
template
###lemma retraction_maps ?X (subtopology ?X (Kolmogorov_quotient ?X ` topspace ?X)) (Kolmogorov_quotient ?X) id ###symbols Fun.id :::: 'a \<Rightarrow> 'a Abstract_Topology.topspace :::: 'a topology \<Rightarrow> 'a set Abstract_Topological_Spaces.Kolmogorov_quotient :::: 'a topology \<Rightarrow> 'a \<Rightarrow> 'a Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Abstract_Topology.subtopology :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology Abstract_Topology.retraction_maps :::: 'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> bool ###defs definition id :: "'a \<Rightarrow> 'a" where "id = (\<lambda>x. x)" definition "topspace T = \<Union>{S. openin T S}" definition Kolmogorov_quotient where "Kolmogorov_quotient X \<equiv> \<lambda>x. @y. \<forall>U. openin X U \<longrightarrow> (y \<in> U \<longleftrightarrow> x \<in> U)" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" definition retraction_maps :: "'a topology \<Rightarrow> 'b topology \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> bool" where "retraction_maps X Y f g \<equiv> continuous_map X Y f \<and> continuous_map Y X g \<and> (\<forall>x \<in> topspace Y. f(g x) = x)"
###output ?H1 x_1 (?H2 x_1 (?H3 (?H4 x_1) (?H5 x_1))) (?H4 x_1) ?H6###end
Induct/Com
Complete_Lattices.Collect_ex_eq
null
{x. \<exists>y. ?P x y} = (\<Union>y. {x. ?P x y})
?H1 (\<lambda>y_0. \<exists>y_1. x_1 y_0 y_1) = ?H2 (?H3 (\<lambda>y_2. ?H1 (\<lambda>y_3. x_1 y_3 y_2)))
[ "Set.range", "Complete_Lattices.Union", "Set.Collect" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set" ]
[ "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"" ]
template
###lemma {x. \<exists>y. ?P x y} = (\<Union>y. {x. ?P x y}) ###symbols Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set ###defs abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S"
###output ?H1 (\<lambda>y_0. \<exists>y_1. x_1 y_0 y_1) = ?H2 (?H3 (\<lambda>y_2. ?H1 (\<lambda>y_3. x_1 y_3 y_2)))###end
UNITY/WFair
WFair.leadsTo_UN
lemma leadsTo_UN: "(!!i. i \<in> I ==> F \<in> (A i) leadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) leadsTo B"
(\<And>i. i \<in> ?I \<Longrightarrow> ?F \<in> ?A i \<longmapsto> ?B) \<Longrightarrow> ?F \<in> \<Union> (?A ` ?I) \<longmapsto> ?B
(\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> x_2 \<in> ?H1 (x_3 y_0) x_4) \<Longrightarrow> x_2 \<in> ?H1 (?H2 (?H3 x_3 x_1)) x_4
[ "Set.image", "Complete_Lattices.Union", "WFair.leadsTo" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a program set" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"", "definition leadsTo :: \"['a set, 'a set] => 'a program set\" (infixl \"leadsTo\" 60) where\n \\<comment> \\<open>visible version of the LEADS-TO relation\\<close>\n \"A leadsTo B == {F. (A,B) \\<in> leads F}\"" ]
template
###lemma (\<And>i. i \<in> ?I \<Longrightarrow> ?F \<in> ?A i \<longmapsto> ?B) \<Longrightarrow> ?F \<in> \<Union> (?A ` ?I) \<longmapsto> ?B ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Complete_Lattices.Union :::: 'a set set \<Rightarrow> 'a set WFair.leadsTo :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a program set ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S" definition leadsTo :: "['a set, 'a set] => 'a program set" (infixl "leadsTo" 60) where \<comment> \<open>visible version of the LEADS-TO relation\<close> "A leadsTo B == {F. (A,B) \<in> leads F}"
###output (\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> x_2 \<in> ?H1 (x_3 y_0) x_4) \<Longrightarrow> x_2 \<in> ?H1 (?H2 (?H3 x_3 x_1)) x_4###end
Analysis/Measure_Space
Measure_Space.measure_Un2
lemma measure_Un2: "A \<in> fmeasurable M \<Longrightarrow> B \<in> fmeasurable M \<Longrightarrow> measure M (A \<union> B) = measure M A + measure M (B - A)"
?A \<in> fmeasurable ?M \<Longrightarrow> ?B \<in> fmeasurable ?M \<Longrightarrow> Sigma_Algebra.measure ?M (?A \<union> ?B) = Sigma_Algebra.measure ?M ?A + Sigma_Algebra.measure ?M (?B - ?A)
\<lbrakk>x_1 \<in> ?H1 x_2; x_3 \<in> ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 x_2 (?H3 x_1 x_3) = ?H4 (?H2 x_2 x_1) (?H2 x_2 (?H5 x_3 x_1))
[ "Groups.minus_class.minus", "Groups.plus_class.plus", "Set.union", "Sigma_Algebra.measure", "Measure_Space.fmeasurable" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> real", "'a measure \\<Rightarrow> 'a set set" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"" ]
template
###lemma ?A \<in> fmeasurable ?M \<Longrightarrow> ?B \<in> fmeasurable ?M \<Longrightarrow> Sigma_Algebra.measure ?M (?A \<union> ?B) = Sigma_Algebra.measure ?M ?A + Sigma_Algebra.measure ?M (?B - ?A) ###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Sigma_Algebra.measure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> real Measure_Space.fmeasurable :::: 'a measure \<Rightarrow> 'a set set ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup"
###output \<lbrakk>x_1 \<in> ?H1 x_2; x_3 \<in> ?H1 x_2\<rbrakk> \<Longrightarrow> ?H2 x_2 (?H3 x_1 x_3) = ?H4 (?H2 x_2 x_1) (?H2 x_2 (?H5 x_3 x_1))###end
Analysis/Finite_Cartesian_Product
Finite_Cartesian_Product.sum_cmul
lemma sum_cmul: fixes f:: "'c \<Rightarrow> ('a::semiring_1)^'n" shows "sum (\<lambda>x. c *s f x) S = c *s sum f S"
(\<Sum>x\<in> ?S. ?c *s ?f x) = ?c *s sum ?f ?S
?H1 (\<lambda>y_0. ?H2 x_1 (x_2 y_0)) x_3 = ?H2 x_1 (?H1 x_2 x_3)
[ "Finite_Cartesian_Product.vector_scalar_mult", "Groups_Big.comm_monoid_add_class.sum" ]
[ "'a \\<Rightarrow> ('a, 'b) vec \\<Rightarrow> ('a, 'b) vec", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b" ]
[ "definition vector_scalar_mult:: \"'a::times \\<Rightarrow> 'a ^ 'n \\<Rightarrow> 'a ^ 'n\" (infixl \"*s\" 70)\n where \"c *s x = (\\<chi> i. c * (x$i))\"" ]
template
###lemma (\<Sum>x\<in> ?S. ?c *s ?f x) = ?c *s sum ?f ?S ###symbols Finite_Cartesian_Product.vector_scalar_mult :::: 'a \<Rightarrow> ('a, 'b) vec \<Rightarrow> ('a, 'b) vec Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b ###defs definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70) where "c *s x = (\<chi> i. c * (x$i))"
###output ?H1 (\<lambda>y_0. ?H2 x_1 (x_2 y_0)) x_3 = ?H2 x_1 (?H1 x_2 x_3)###end
Library/Countable_Set_Type
Countable_Set_Type.cpsubsetD
null
csubset ?A ?B \<Longrightarrow> cin ?c ?A \<Longrightarrow> cin ?c ?B
\<lbrakk> ?H1 x_1 x_2; ?H2 x_3 x_1\<rbrakk> \<Longrightarrow> ?H2 x_3 x_2
[ "Countable_Set_Type.cin", "Countable_Set_Type.csubset" ]
[ "'a \\<Rightarrow> 'a cset \\<Rightarrow> bool", "'a cset \\<Rightarrow> 'a cset \\<Rightarrow> bool" ]
[ "abbreviation csubset :: \"'a cset \\<Rightarrow> 'a cset \\<Rightarrow> bool\" where \"csubset xs ys \\<equiv> xs < ys\"" ]
template
###lemma csubset ?A ?B \<Longrightarrow> cin ?c ?A \<Longrightarrow> cin ?c ?B ###symbols Countable_Set_Type.cin :::: 'a \<Rightarrow> 'a cset \<Rightarrow> bool Countable_Set_Type.csubset :::: 'a cset \<Rightarrow> 'a cset \<Rightarrow> bool ###defs abbreviation csubset :: "'a cset \<Rightarrow> 'a cset \<Rightarrow> bool" where "csubset xs ys \<equiv> xs < ys"
###output \<lbrakk> ?H1 x_1 x_2; ?H2 x_3 x_1\<rbrakk> \<Longrightarrow> ?H2 x_3 x_2###end
Analysis/Complex_Transcendental
Complex_Transcendental.has_field_derivative_Arcsin
lemma has_field_derivative_Arcsin: assumes "Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1" shows "(Arcsin has_field_derivative inverse(cos(Arcsin z))) (at z)"
(Im ?z = 0 \<Longrightarrow> \<bar>Re ?z\<bar> < 1) \<Longrightarrow> (Arcsin has_field_derivative inverse (cos (Arcsin ?z))) (at ?z)
(?H1 x_1 = ?H2 \<Longrightarrow> ?H3 (?H4 x_1) < ?H5) \<Longrightarrow> ?H6 ?H7 (?H8 (?H9 (?H7 x_1))) (?H10 x_1)
[ "Topological_Spaces.topological_space_class.at", "Transcendental.cos", "Fields.inverse_class.inverse", "Complex_Transcendental.Arcsin", "Deriv.has_field_derivative", "Groups.one_class.one", "Complex.complex.Re", "Groups.abs_class.abs", "Groups.zero_class.zero", "Complex.complex.Im" ]
[ "'a \\<Rightarrow> 'a filter", "'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "complex \\<Rightarrow> complex", "('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a filter \\<Rightarrow> bool", "'a", "complex \\<Rightarrow> real", "'a \\<Rightarrow> 'a", "'a", "complex \\<Rightarrow> real" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition cos :: \"'a \\<Rightarrow> 'a::{real_normed_algebra_1,banach}\"\n where \"cos = (\\<lambda>x. \\<Sum>n. cos_coeff n *\\<^sub>R x^n)\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "definition has_field_derivative :: \"('a::real_normed_field \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a filter \\<Rightarrow> bool\"\n (infix \"(has'_field'_derivative)\" 50)\n where \"(f has_field_derivative D) F \\<longleftrightarrow> (f has_derivative (*) D) F\"", "class one =\n fixes one :: 'a (\"1\")", "codatatype complex = Complex (Re: real) (Im: real)", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")", "class zero =\n fixes zero :: 'a (\"0\")", "codatatype complex = Complex (Re: real) (Im: real)" ]
template
###lemma (Im ?z = 0 \<Longrightarrow> \<bar>Re ?z\<bar> < 1) \<Longrightarrow> (Arcsin has_field_derivative inverse (cos (Arcsin ?z))) (at ?z) ###symbols Topological_Spaces.topological_space_class.at :::: 'a \<Rightarrow> 'a filter Transcendental.cos :::: 'a \<Rightarrow> 'a Fields.inverse_class.inverse :::: 'a \<Rightarrow> 'a Complex_Transcendental.Arcsin :::: complex \<Rightarrow> complex Deriv.has_field_derivative :::: ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool Groups.one_class.one :::: 'a Complex.complex.Re :::: complex \<Rightarrow> real Groups.abs_class.abs :::: 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a Complex.complex.Im :::: complex \<Rightarrow> real ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}" where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool" (infix "(has'_field'_derivative)" 50) where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F" class one = fixes one :: 'a ("1") codatatype complex = Complex (Re: real) (Im: real) class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>") class zero = fixes zero :: 'a ("0") codatatype complex = Complex (Re: real) (Im: real)
###output (?H1 x_1 = ?H2 \<Longrightarrow> ?H3 (?H4 x_1) < ?H5) \<Longrightarrow> ?H6 ?H7 (?H8 (?H9 (?H7 x_1))) (?H10 x_1)###end
Analysis/Homotopy
Homotopy.continuous_on_components_gen
lemma continuous_on_components_gen: fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" assumes "\<And>C. C \<in> components S \<Longrightarrow> openin (top_of_set S) C \<and> continuous_on C f" shows "continuous_on S f"
(\<And>C. C \<in> components ?S \<Longrightarrow> openin (top_of_set ?S) C \<and> continuous_on C ?f) \<Longrightarrow> continuous_on ?S ?f
(\<And>y_0. y_0 \<in> ?H1 x_1 \<Longrightarrow> ?H2 (?H3 x_1) y_0 \<and> ?H4 y_0 x_2) \<Longrightarrow> ?H4 x_1 x_2
[ "Topological_Spaces.continuous_on", "Abstract_Topology.top_of_set", "Abstract_Topology.topology.openin", "Connected.components" ]
[ "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> 'a topology", "'a topology \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> 'a set set" ]
[ "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"", "abbreviation top_of_set :: \"'a::topological_space set \\<Rightarrow> 'a topology\"\n where \"top_of_set \\<equiv> subtopology (topology open)\"" ]
template
###lemma (\<And>C. C \<in> components ?S \<Longrightarrow> openin (top_of_set ?S) C \<and> continuous_on C ?f) \<Longrightarrow> continuous_on ?S ?f ###symbols Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Abstract_Topology.top_of_set :::: 'a set \<Rightarrow> 'a topology Abstract_Topology.topology.openin :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> bool Connected.components :::: 'a set \<Rightarrow> 'a set set ###defs definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" abbreviation top_of_set :: "'a::topological_space set \<Rightarrow> 'a topology" where "top_of_set \<equiv> subtopology (topology open)"
###output (\<And>y_0. y_0 \<in> ?H1 x_1 \<Longrightarrow> ?H2 (?H3 x_1) y_0 \<and> ?H4 y_0 x_2) \<Longrightarrow> ?H4 x_1 x_2###end
Homology/Homology_Groups
Homology_Groups.hom_relboundary
lemma hom_relboundary: "hom_relboundary p X S T c \<in> carrier (relative_homology_group (p-1) (subtopology X S) T)"
hom_relboundary ?p ?X ?S ?T ?c \<in> carrier (relative_homology_group (?p - 1) (subtopology ?X ?S) ?T)
?H1 x_1 x_2 x_3 x_4 x_5 \<in> ?H2 (?H3 (?H4 x_1 ?H5) (?H6 x_2 x_3) x_4)
[ "Abstract_Topology.subtopology", "Groups.one_class.one", "Groups.minus_class.minus", "Homology_Groups.relative_homology_group", "Congruence.partial_object.carrier", "Homology_Groups.hom_relboundary" ]
[ "'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a topology", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "int \\<Rightarrow> 'a topology \\<Rightarrow> 'a set \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a) \\<Rightarrow>\\<^sub>0 int) set monoid", "('a, 'b) partial_object_scheme \\<Rightarrow> 'a set", "int \\<Rightarrow> 'a topology \\<Rightarrow> 'a set \\<Rightarrow> 'a set \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a) \\<Rightarrow>\\<^sub>0 int) set \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a) \\<Rightarrow>\\<^sub>0 int) set" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition relative_homology_group :: \"int \\<Rightarrow> 'a topology \\<Rightarrow> 'a set \\<Rightarrow> ('a chain) set monoid\"\n where\n \"relative_homology_group p X S \\<equiv>\n if p < 0 then singleton_group undefined else\n (relcycle_group (nat p) X S) Mod (singular_relboundary_set (nat p) X S)\"", "definition hom_relboundary :: \"[int,'a topology,'a set,'a set,'a chain set] \\<Rightarrow> 'a chain set\"\n where\n \"hom_relboundary p X S T =\n hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id \\<circ>\n hom_boundary p X S\"" ]
template
###lemma hom_relboundary ?p ?X ?S ?T ?c \<in> carrier (relative_homology_group (?p - 1) (subtopology ?X ?S) ?T) ###symbols Abstract_Topology.subtopology :::: 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology Groups.one_class.one :::: 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Homology_Groups.relative_homology_group :::: int \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow>\<^sub>0 int) set monoid Congruence.partial_object.carrier :::: ('a, 'b) partial_object_scheme \<Rightarrow> 'a set Homology_Groups.hom_relboundary :::: int \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow>\<^sub>0 int) set \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a) \<Rightarrow>\<^sub>0 int) set ###defs class one = fixes one :: 'a ("1") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition relative_homology_group :: "int \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> ('a chain) set monoid" where "relative_homology_group p X S \<equiv> if p < 0 then singleton_group undefined else (relcycle_group (nat p) X S) Mod (singular_relboundary_set (nat p) X S)" definition hom_relboundary :: "[int,'a topology,'a set,'a set,'a chain set] \<Rightarrow> 'a chain set" where "hom_relboundary p X S T = hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id \<circ> hom_boundary p X S"
###output ?H1 x_1 x_2 x_3 x_4 x_5 \<in> ?H2 (?H3 (?H4 x_1 ?H5) (?H6 x_2 x_3) x_4)###end
IMP/Compiler2
Compiler2.succs_shift
lemma succs_shift: "(p - n \<in> succs P 0) = (p \<in> succs P n)"
(?p - ?n \<in> succs ?P 0) = (?p \<in> succs ?P ?n)
(?H1 x_1 x_2 \<in> ?H2 x_3 ?H3) = (x_1 \<in> ?H2 x_3 x_2)
[ "Groups.zero_class.zero", "Compiler2.succs", "Groups.minus_class.minus" ]
[ "'a", "instr list \\<Rightarrow> int \\<Rightarrow> int set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition succs :: \"instr list \\<Rightarrow> int \\<Rightarrow> int set\" where\n\"succs P n = {s. \\<exists>i::int. 0 \\<le> i \\<and> i < size P \\<and> s \\<in> isuccs (P!!i) (n+i)}\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
template
###lemma (?p - ?n \<in> succs ?P 0) = (?p \<in> succs ?P ?n) ###symbols Groups.zero_class.zero :::: 'a Compiler2.succs :::: instr list \<Rightarrow> int \<Rightarrow> int set Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class zero = fixes zero :: 'a ("0") definition succs :: "instr list \<Rightarrow> int \<Rightarrow> int set" where "succs P n = {s. \<exists>i::int. 0 \<le> i \<and> i < size P \<and> s \<in> isuccs (P!!i) (n+i)}" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output (?H1 x_1 x_2 \<in> ?H2 x_3 ?H3) = (x_1 \<in> ?H2 x_3 x_2)###end
Library/AList
AList.clearjunk_restrict
lemma clearjunk_restrict: "clearjunk (restrict A al) = restrict A (clearjunk al)"
AList.clearjunk (AList.restrict ?A ?al) = AList.restrict ?A (AList.clearjunk ?al)
?H1 (?H2 x_1 x_2) = ?H2 x_1 (?H1 x_2)
[ "AList.restrict", "AList.clearjunk" ]
[ "'a set \\<Rightarrow> ('a \\<times> 'b) list \\<Rightarrow> ('a \\<times> 'b) list", "('a \\<times> 'b) list \\<Rightarrow> ('a \\<times> 'b) list" ]
[ "definition restrict :: \"'key set \\<Rightarrow> ('key \\<times> 'val) list \\<Rightarrow> ('key \\<times> 'val) list\"\n where restrict_eq: \"restrict A = filter (\\<lambda>(k, v). k \\<in> A)\"", "function clearjunk :: \"('key \\<times> 'val) list \\<Rightarrow> ('key \\<times> 'val) list\"\n where\n \"clearjunk [] = []\"\n | \"clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)\"" ]
template
###lemma AList.clearjunk (AList.restrict ?A ?al) = AList.restrict ?A (AList.clearjunk ?al) ###symbols AList.restrict :::: 'a set \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list AList.clearjunk :::: ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list ###defs definition restrict :: "'key set \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where restrict_eq: "restrict A = filter (\<lambda>(k, v). k \<in> A)" function clearjunk :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" where "clearjunk [] = []" | "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)"
###output ?H1 (?H2 x_1 x_2) = ?H2 x_1 (?H1 x_2)###end
Computational_Algebra/Formal_Power_Series
Formal_Power_Series.fps_mult_left_const_nth
lemma fps_mult_left_const_nth [simp]: "(fps_const (c::'a::{comm_monoid_add,mult_zero}) * f)$n = c* f$n"
fps_nth (fps_const ?c * ?f) ?n = ?c * fps_nth ?f ?n
?H1 (?H2 (?H3 x_1) x_2) x_3 = ?H2 x_1 (?H1 x_2 x_3)
[ "Formal_Power_Series.fps_const", "Groups.times_class.times", "Formal_Power_Series.fps.fps_nth" ]
[ "'a \\<Rightarrow> 'a fps", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a fps \\<Rightarrow> nat \\<Rightarrow> 'a" ]
[ "definition \"fps_const c = Abs_fps (\\<lambda>n. if n = 0 then c else 0)\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)" ]
template
###lemma fps_nth (fps_const ?c * ?f) ?n = ?c * fps_nth ?f ?n ###symbols Formal_Power_Series.fps_const :::: 'a \<Rightarrow> 'a fps Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Formal_Power_Series.fps.fps_nth :::: 'a fps \<Rightarrow> nat \<Rightarrow> 'a ###defs definition "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70)
###output ?H1 (?H2 (?H3 x_1) x_2) x_3 = ?H2 x_1 (?H1 x_2 x_3)###end
Metis_Examples/Binary_Tree
Binary_Tree.depth_bt_map
lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t"
depth (bt_map ?f ?t) = depth ?t
?H1 (?H2 x_1 x_2) = ?H1 x_2
[ "Binary_Tree.bt_map", "Binary_Tree.depth" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a bt \\<Rightarrow> 'b bt", "'a bt \\<Rightarrow> nat" ]
[ "primrec bt_map :: \"('a => 'b) => ('a bt => 'b bt)\" where\n \"bt_map f Lf = Lf\"\n| \"bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)\"", "primrec depth :: \"'a bt => nat\" where\n \"depth Lf = 0\"\n| \"depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))\"" ]
template
###lemma depth (bt_map ?f ?t) = depth ?t ###symbols Binary_Tree.bt_map :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a bt \<Rightarrow> 'b bt Binary_Tree.depth :::: 'a bt \<Rightarrow> nat ###defs primrec bt_map :: "('a => 'b) => ('a bt => 'b bt)" where "bt_map f Lf = Lf" | "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)" primrec depth :: "'a bt => nat" where "depth Lf = 0" | "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))"
###output ?H1 (?H2 x_1 x_2) = ?H1 x_2###end
Homology/Simplices
Simplices.simplicial_chain_sum
lemma simplicial_chain_sum: "(\<And>i. i \<in> I \<Longrightarrow> simplicial_chain p S (f i)) \<Longrightarrow> simplicial_chain p S (sum f I)"
(\<And>i. i \<in> ?I \<Longrightarrow> simplicial_chain ?p ?S (?f i)) \<Longrightarrow> simplicial_chain ?p ?S (sum ?f ?I)
(\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 x_2 x_3 (x_4 y_0)) \<Longrightarrow> ?H1 x_2 x_3 (?H2 x_4 x_1)
[ "Groups_Big.comm_monoid_add_class.sum", "Simplices.simplicial_chain" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "nat \\<Rightarrow> ('a \\<Rightarrow> real) set \\<Rightarrow> (((nat \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> real) \\<Rightarrow>\\<^sub>0 'b) \\<Rightarrow> bool" ]
[ "definition simplicial_chain\n where \"simplicial_chain p S c \\<equiv> Poly_Mapping.keys c \\<subseteq> Collect (simplicial_simplex p S)\"" ]
template
###lemma (\<And>i. i \<in> ?I \<Longrightarrow> simplicial_chain ?p ?S (?f i)) \<Longrightarrow> simplicial_chain ?p ?S (sum ?f ?I) ###symbols Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Simplices.simplicial_chain :::: nat \<Rightarrow> ('a \<Rightarrow> real) set \<Rightarrow> (((nat \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> real) \<Rightarrow>\<^sub>0 'b) \<Rightarrow> bool ###defs definition simplicial_chain where "simplicial_chain p S c \<equiv> Poly_Mapping.keys c \<subseteq> Collect (simplicial_simplex p S)"
###output (\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 x_2 x_3 (x_4 y_0)) \<Longrightarrow> ?H1 x_2 x_3 (?H2 x_4 x_1)###end
Nominal/Examples/SN
SN.fresh_ty
lemma fresh_ty: fixes a ::"name" and \<tau> ::"ty" shows "a\<sharp>\<tau>"
?a \<sharp> ?\<tau>
?H1 x_1 x_2
[ "Nominal.fresh" ]
[ "'a \\<Rightarrow> 'b \\<Rightarrow> bool" ]
[ "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"" ]
template
###lemma ?a \<sharp> ?\<tau> ###symbols Nominal.fresh :::: 'a \<Rightarrow> 'b \<Rightarrow> bool ###defs definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x"
###output ?H1 x_1 x_2###end
Fun
Fun.monotone_on_empty
lemma monotone_on_empty[simp]: "monotone_on {} orda ordb f"
monotone_on {} ?orda ?ordb ?f
?H1 ?H2 x_1 x_2 x_3
[ "Set.empty", "Fun.monotone_on" ]
[ "'a set", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition monotone_on :: \"'a set \\<Rightarrow> ('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool\"\n where \"monotone_on A orda ordb f \\<longleftrightarrow> (\\<forall>x\\<in>A. \\<forall>y\\<in>A. orda x y \\<longrightarrow> ordb (f x) (f y))\"" ]
template
###lemma monotone_on {} ?orda ?ordb ?f ###symbols Set.empty :::: 'a set Fun.monotone_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition monotone_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where "monotone_on A orda ordb f \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. orda x y \<longrightarrow> ordb (f x) (f y))"
###output ?H1 ?H2 x_1 x_2 x_3###end
Quotient_Examples/Lift_FSet
Lift_FSet.abs_fset_eq_iff
lemma abs_fset_eq_iff: "abs_fset xs = abs_fset ys \<longleftrightarrow> list_eq xs ys"
(abs_fset ?xs = abs_fset ?ys) = list_eq ?xs ?ys
(?H1 x_1 = ?H1 x_2) = ?H2 x_1 x_2
[ "Lift_FSet.list_eq", "Lift_FSet.abs_fset" ]
[ "'a list \\<Rightarrow> 'a list \\<Rightarrow> bool", "'a list \\<Rightarrow> 'a fset" ]
[ "definition list_eq :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> bool\"\n where [simp]: \"list_eq xs ys \\<longleftrightarrow> set xs = set ys\"" ]
template
###lemma (abs_fset ?xs = abs_fset ?ys) = list_eq ?xs ?ys ###symbols Lift_FSet.list_eq :::: 'a list \<Rightarrow> 'a list \<Rightarrow> bool Lift_FSet.abs_fset :::: 'a list \<Rightarrow> 'a fset ###defs definition list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where [simp]: "list_eq xs ys \<longleftrightarrow> set xs = set ys"
###output (?H1 x_1 = ?H1 x_2) = ?H2 x_1 x_2###end
Bali/DefiniteAssignmentCorrect
DefiniteAssignmentCorrect.Body_no_jump
lemma Body_no_jump: assumes eval: "G\<turnstile>s0 \<midarrow>Body D c-\<succ>v\<rightarrow>s1" and jump: "abrupt s0 \<noteq> Some (Jump j)" shows "abrupt s1 \<noteq> Some (Jump j)"
?G\<turnstile> ?s0.0 \<midarrow>Body ?D ?c-\<succ> ?v\<rightarrow> ?s1.0 \<Longrightarrow> fst ?s0.0 \<noteq> Some (Jump ?j) \<Longrightarrow> fst ?s1.0 \<noteq> Some (Jump ?j)
\<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4) x_5 x_6; ?H3 x_2 \<noteq> ?H4 (?H5 x_7)\<rbrakk> \<Longrightarrow> ?H3 x_6 \<noteq> ?H4 (?H5 x_7)
[ "Term.abrupt.Jump", "Option.option.Some", "Product_Type.prod.fst", "Term.expr.Body", "Eval.eval'" ]
[ "jump \\<Rightarrow> abrupt", "'a \\<Rightarrow> 'a option", "'a \\<times> 'b \\<Rightarrow> 'a", "qtname \\<Rightarrow> stmt \\<Rightarrow> expr", "prog \\<Rightarrow> state \\<Rightarrow> expr \\<Rightarrow> val \\<Rightarrow> state \\<Rightarrow> bool" ]
[ "datatype abrupt \\<comment> \\<open>abrupt completion\\<close> \n = Xcpt xcpt \\<comment> \\<open>exception\\<close>\n | Jump jump \\<comment> \\<open>break, continue, return\\<close>\n | Error error \\<comment> \\<open>runtime errors, we wan't to detect and proof absent\n in welltyped programms\\<close>", "datatype 'a option =\n None\n | Some (the: 'a)", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"" ]
template
###lemma ?G\<turnstile> ?s0.0 \<midarrow>Body ?D ?c-\<succ> ?v\<rightarrow> ?s1.0 \<Longrightarrow> fst ?s0.0 \<noteq> Some (Jump ?j) \<Longrightarrow> fst ?s1.0 \<noteq> Some (Jump ?j) ###symbols Term.abrupt.Jump :::: jump \<Rightarrow> abrupt Option.option.Some :::: 'a \<Rightarrow> 'a option Product_Type.prod.fst :::: 'a \<times> 'b \<Rightarrow> 'a Term.expr.Body :::: qtname \<Rightarrow> stmt \<Rightarrow> expr Eval.eval' :::: prog \<Rightarrow> state \<Rightarrow> expr \<Rightarrow> val \<Rightarrow> state \<Rightarrow> bool ###defs datatype abrupt \<comment> \<open>abrupt completion\<close> = Xcpt xcpt \<comment> \<open>exception\<close> | Jump jump \<comment> \<open>break, continue, return\<close> | Error error \<comment> \<open>runtime errors, we wan't to detect and proof absent in welltyped programms\<close> datatype 'a option = None | Some (the: 'a) definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}"
###output \<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4) x_5 x_6; ?H3 x_2 \<noteq> ?H4 (?H5 x_7)\<rbrakk> \<Longrightarrow> ?H3 x_6 \<noteq> ?H4 (?H5 x_7)###end
Library/Word
Word.unat_mod_distrib
lemma unat_mod_distrib: \<open>unat (v mod w) = unat v mod unat w\<close>
unat (?v mod ?w) = unat ?v mod unat ?w
?H1 (?H2 x_1 x_2) = ?H2 (?H1 x_1) (?H1 x_2)
[ "Rings.modulo_class.modulo", "Word.unat" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a word \\<Rightarrow> nat" ]
[ "class modulo = dvd + divide +\n fixes modulo :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"mod\" 70)", "abbreviation unat :: \\<open>'a::len word \\<Rightarrow> nat\\<close>\n where \\<open>unat \\<equiv> unsigned\\<close>" ]
template
###lemma unat (?v mod ?w) = unat ?v mod unat ?w ###symbols Rings.modulo_class.modulo :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Word.unat :::: 'a word \<Rightarrow> nat ###defs class modulo = dvd + divide + fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) abbreviation unat :: \<open>'a::len word \<Rightarrow> nat\<close> where \<open>unat \<equiv> unsigned\<close>
###output ?H1 (?H2 x_1 x_2) = ?H2 (?H1 x_1) (?H1 x_2)###end
Bali/WellForm
WellForm.wf_prog_hidesD
lemma wf_prog_hidesD: assumes hides: "G \<turnstile>new hides old" and wf: "wf_prog G" shows "accmodi old \<le> accmodi new \<and> is_static old"
?G\<turnstile> ?new hides ?old \<Longrightarrow> wf_prog ?G \<Longrightarrow> accmodi ?old \<le> accmodi ?new \<and> is_static ?old
\<lbrakk> ?H1 x_1 x_2 x_3; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 x_3 \<le> ?H3 x_2 \<and> ?H4 x_3
[ "DeclConcepts.has_static_class.is_static", "DeclConcepts.has_accmodi_class.accmodi", "WellForm.wf_prog", "DeclConcepts.hides" ]
[ "'a \\<Rightarrow> bool", "'a \\<Rightarrow> acc_modi", "prog \\<Rightarrow> bool", "prog \\<Rightarrow> qtname \\<times> mdecl \\<Rightarrow> qtname \\<times> mdecl \\<Rightarrow> bool" ]
[ "class has_static =\n fixes is_static :: \"'a \\<Rightarrow> bool\"", "class has_accmodi =\n fixes accmodi:: \"'a \\<Rightarrow> acc_modi\"", "definition\n wf_prog :: \"prog \\<Rightarrow> bool\" where\n \"wf_prog G = (let is = ifaces G; cs = classes G in\n ObjectC \\<in> set cs \\<and> \n (\\<forall> m\\<in>set Object_mdecls. accmodi m \\<noteq> Package) \\<and>\n (\\<forall>xn. SXcptC xn \\<in> set cs) \\<and>\n (\\<forall>i\\<in>set is. wf_idecl G i) \\<and> unique is \\<and>\n (\\<forall>c\\<in>set cs. wf_cdecl G c) \\<and> unique cs)\"", "definition\n hides :: \"prog \\<Rightarrow> (qtname \\<times> mdecl) \\<Rightarrow> (qtname \\<times> mdecl) \\<Rightarrow> bool\" (\"_\\<turnstile> _ hides _\" [61,61,61] 60)\nwhere \n \"G\\<turnstile>new hides old =\n (is_static new \\<and> msig new = msig old \\<and>\n G\\<turnstile>(declclass new) \\<prec>\\<^sub>C (declclass old) \\<and>\n G\\<turnstile>Method new declared_in (declclass new) \\<and>\n G\\<turnstile>Method old declared_in (declclass old) \\<and> \n G\\<turnstile>Method old inheritable_in pid (declclass new))\"" ]
template
###lemma ?G\<turnstile> ?new hides ?old \<Longrightarrow> wf_prog ?G \<Longrightarrow> accmodi ?old \<le> accmodi ?new \<and> is_static ?old ###symbols DeclConcepts.has_static_class.is_static :::: 'a \<Rightarrow> bool DeclConcepts.has_accmodi_class.accmodi :::: 'a \<Rightarrow> acc_modi WellForm.wf_prog :::: prog \<Rightarrow> bool DeclConcepts.hides :::: prog \<Rightarrow> qtname \<times> mdecl \<Rightarrow> qtname \<times> mdecl \<Rightarrow> bool ###defs class has_static = fixes is_static :: "'a \<Rightarrow> bool" class has_accmodi = fixes accmodi:: "'a \<Rightarrow> acc_modi" definition wf_prog :: "prog \<Rightarrow> bool" where "wf_prog G = (let is = ifaces G; cs = classes G in ObjectC \<in> set cs \<and> (\<forall> m\<in>set Object_mdecls. accmodi m \<noteq> Package) \<and> (\<forall>xn. SXcptC xn \<in> set cs) \<and> (\<forall>i\<in>set is. wf_idecl G i) \<and> unique is \<and> (\<forall>c\<in>set cs. wf_cdecl G c) \<and> unique cs)" definition hides :: "prog \<Rightarrow> (qtname \<times> mdecl) \<Rightarrow> (qtname \<times> mdecl) \<Rightarrow> bool" ("_\<turnstile> _ hides _" [61,61,61] 60) where "G\<turnstile>new hides old = (is_static new \<and> msig new = msig old \<and> G\<turnstile>(declclass new) \<prec>\<^sub>C (declclass old) \<and> G\<turnstile>Method new declared_in (declclass new) \<and> G\<turnstile>Method old declared_in (declclass old) \<and> G\<turnstile>Method old inheritable_in pid (declclass new))"
###output \<lbrakk> ?H1 x_1 x_2 x_3; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 x_3 \<le> ?H3 x_2 \<and> ?H4 x_3###end
Analysis/Uniform_Limit
Uniform_Limit.uniform_lim_mult
lemma uniform_lim_mult: fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_algebra" assumes f: "uniform_limit S f l F" and g: "uniform_limit S g m F" and l: "bounded (l ` S)" and m: "bounded (m ` S)" shows "uniform_limit S (\<lambda>a b. f a b * g a b) (\<lambda>a. l a * m a) F"
uniform_limit ?S ?f ?l ?F \<Longrightarrow> uniform_limit ?S ?g ?m ?F \<Longrightarrow> bounded (?l ` ?S) \<Longrightarrow> bounded (?m ` ?S) \<Longrightarrow> uniform_limit ?S (\<lambda>a b. ?f a b * ?g a b) (\<lambda>a. ?l a * ?m a) ?F
\<lbrakk> ?H1 x_1 x_2 x_3 x_4; ?H1 x_1 x_5 x_6 x_4; ?H2 (?H3 x_3 x_1); ?H2 (?H3 x_6 x_1)\<rbrakk> \<Longrightarrow> ?H1 x_1 (\<lambda>y_0 y_1. ?H4 (x_2 y_0 y_1) (x_5 y_0 y_1)) (\<lambda>y_2. ?H4 (x_3 y_2) (x_6 y_2)) x_4
[ "Groups.times_class.times", "Set.image", "Elementary_Metric_Spaces.metric_space_class.bounded", "Uniform_Limit.uniform_limit" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> bool", "'a set \\<Rightarrow> ('b \\<Rightarrow> 'a \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'c) \\<Rightarrow> 'b filter \\<Rightarrow> bool" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"" ]
template
###lemma uniform_limit ?S ?f ?l ?F \<Longrightarrow> uniform_limit ?S ?g ?m ?F \<Longrightarrow> bounded (?l ` ?S) \<Longrightarrow> bounded (?m ` ?S) \<Longrightarrow> uniform_limit ?S (\<lambda>a b. ?f a b * ?g a b) (\<lambda>a. ?l a * ?m a) ?F ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Elementary_Metric_Spaces.metric_space_class.bounded :::: 'a set \<Rightarrow> bool Uniform_Limit.uniform_limit :::: 'a set \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'c) \<Rightarrow> 'b filter \<Rightarrow> bool ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}"
###output \<lbrakk> ?H1 x_1 x_2 x_3 x_4; ?H1 x_1 x_5 x_6 x_4; ?H2 (?H3 x_3 x_1); ?H2 (?H3 x_6 x_1)\<rbrakk> \<Longrightarrow> ?H1 x_1 (\<lambda>y_0 y_1. ?H4 (x_2 y_0 y_1) (x_5 y_0 y_1)) (\<lambda>y_2. ?H4 (x_3 y_2) (x_6 y_2)) x_4###end
Analysis/Elementary_Normed_Spaces
Elementary_Normed_Spaces.complete_isometric_image
lemma complete_isometric_image: assumes "0 < e" and s: "subspace s" and f: "bounded_linear f" and normf: "\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and cs: "complete s" shows "complete (f ` s)"
0 < ?e \<Longrightarrow> subspace ?s \<Longrightarrow> bounded_linear ?f \<Longrightarrow> \<forall>x\<in> ?s. ?e * norm x \<le> norm (?f x) \<Longrightarrow> complete ?s \<Longrightarrow> complete (?f ` ?s)
\<lbrakk> ?H1 < x_1; ?H2 x_2; ?H3 x_3; \<forall>y_0\<in>x_2. ?H4 x_1 (?H5 y_0) \<le> ?H5 (x_3 y_0); ?H6 x_2\<rbrakk> \<Longrightarrow> ?H6 (?H7 x_3 x_2)
[ "Set.image", "Topological_Spaces.uniform_space_class.complete", "Real_Vector_Spaces.norm_class.norm", "Groups.times_class.times", "Real_Vector_Spaces.bounded_linear", "Real_Vector_Spaces.subspace", "Groups.zero_class.zero" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> bool", "'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a set \\<Rightarrow> bool", "'a" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "class uniform_space = open_uniformity +\n assumes uniformity_refl: \"eventually E uniformity \\<Longrightarrow> E (x, x)\"\n and uniformity_sym: \"eventually E uniformity \\<Longrightarrow> eventually (\\<lambda>(x, y). E (y, x)) uniformity\"\n and uniformity_trans:\n \"eventually E uniformity \\<Longrightarrow>\n \\<exists>D. eventually D uniformity \\<and> (\\<forall>x y z. D (x, y) \\<longrightarrow> D (y, z) \\<longrightarrow> E (x, z))\"\nbegin", "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma 0 < ?e \<Longrightarrow> subspace ?s \<Longrightarrow> bounded_linear ?f \<Longrightarrow> \<forall>x\<in> ?s. ?e * norm x \<le> norm (?f x) \<Longrightarrow> complete ?s \<Longrightarrow> complete (?f ` ?s) ###symbols Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Topological_Spaces.uniform_space_class.complete :::: 'a set \<Rightarrow> bool Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Real_Vector_Spaces.bounded_linear :::: ('a \<Rightarrow> 'b) \<Rightarrow> bool Real_Vector_Spaces.subspace :::: 'a set \<Rightarrow> bool Groups.zero_class.zero :::: 'a ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" class uniform_space = open_uniformity + assumes uniformity_refl: "eventually E uniformity \<Longrightarrow> E (x, x)" and uniformity_sym: "eventually E uniformity \<Longrightarrow> eventually (\<lambda>(x, y). E (y, x)) uniformity" and uniformity_trans: "eventually E uniformity \<Longrightarrow> \<exists>D. eventually D uniformity \<and> (\<forall>x y z. D (x, y) \<longrightarrow> D (y, z) \<longrightarrow> E (x, z))" begin class norm = fixes norm :: "'a \<Rightarrow> real" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class zero = fixes zero :: 'a ("0")
###output \<lbrakk> ?H1 < x_1; ?H2 x_2; ?H3 x_3; \<forall>y_0\<in>x_2. ?H4 x_1 (?H5 y_0) \<le> ?H5 (x_3 y_0); ?H6 x_2\<rbrakk> \<Longrightarrow> ?H6 (?H7 x_3 x_2)###end
Analysis/Bochner_Integration
Bochner_Integration.integrable_zero
lemma integrable_zero[simp, intro]: "integrable M (\<lambda>x. 0)"
integrable ?M (\<lambda>x. 0:: ?'b)
?H1 x_1 (\<lambda>y_0. ?H2)
[ "Groups.zero_class.zero", "Bochner_Integration.integrable" ]
[ "'a", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "inductive integrable for M f where\n \"has_bochner_integral M f x \\<Longrightarrow> integrable M f\"" ]
template
###lemma integrable ?M (\<lambda>x. 0:: ?'b) ###symbols Groups.zero_class.zero :::: 'a Bochner_Integration.integrable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs class zero = fixes zero :: 'a ("0") inductive integrable for M f where "has_bochner_integral M f x \<Longrightarrow> integrable M f"
###output ?H1 x_1 (\<lambda>y_0. ?H2)###end
Analysis/Bochner_Integration
Bochner_Integration.integral_mono
lemma integral_mono: fixes f :: "'a \<Rightarrow> real" shows "integrable M f \<Longrightarrow> integrable M g \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x \<le> g x) \<Longrightarrow> integral\<^sup>L M f \<le> integral\<^sup>L M g"
integrable ?M ?f \<Longrightarrow> integrable ?M ?g \<Longrightarrow> (\<And>x. x \<in> space ?M \<Longrightarrow> ?f x \<le> ?g x) \<Longrightarrow> integral\<^sup>L ?M ?f \<le> integral\<^sup>L ?M ?g
\<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3; \<And>y_0. y_0 \<in> ?H2 x_1 \<Longrightarrow> x_2 y_0 \<le> x_3 y_0\<rbrakk> \<Longrightarrow> ?H3 x_1 x_2 \<le> ?H3 x_1 x_3
[ "Bochner_Integration.lebesgue_integral", "Sigma_Algebra.space", "Bochner_Integration.integrable" ]
[ "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'b", "'a measure \\<Rightarrow> 'a set", "'a measure \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "inductive integrable for M f where\n \"has_bochner_integral M f x \\<Longrightarrow> integrable M f\"" ]
template
###lemma integrable ?M ?f \<Longrightarrow> integrable ?M ?g \<Longrightarrow> (\<And>x. x \<in> space ?M \<Longrightarrow> ?f x \<le> ?g x) \<Longrightarrow> integral\<^sup>L ?M ?f \<le> integral\<^sup>L ?M ?g ###symbols Bochner_Integration.lebesgue_integral :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b Sigma_Algebra.space :::: 'a measure \<Rightarrow> 'a set Bochner_Integration.integrable :::: 'a measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs inductive integrable for M f where "has_bochner_integral M f x \<Longrightarrow> integrable M f"
###output \<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3; \<And>y_0. y_0 \<in> ?H2 x_1 \<Longrightarrow> x_2 y_0 \<le> x_3 y_0\<rbrakk> \<Longrightarrow> ?H3 x_1 x_2 \<le> ?H3 x_1 x_3###end
Data_Structures/Braun_Tree
Braun_Tree.even_of_intvl_intvl
lemma even_of_intvl_intvl: fixes S :: "nat set" assumes "S = {m..n} \<inter> {i. even i}" shows "\<exists>m' n'. S = (\<lambda>i. i * 2) ` {m'..n'}"
?S = { ?m.. ?n} \<inter> Collect even \<Longrightarrow> \<exists>m' n'. ?S = (\<lambda>i. i * 2) ` {m'..n'}
x_1 = ?H1 (?H2 x_2 x_3) (?H3 ?H4) \<Longrightarrow> \<exists>y_0 y_1. x_1 = ?H5 (\<lambda>y_2. ?H6 y_2 (?H7 (?H8 ?H9))) (?H2 y_0 y_1)
[ "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Groups.times_class.times", "Set.image", "Parity.semiring_parity_class.even", "Set.Collect", "Set_Interval.ord_class.atLeastAtMost", "Set.inter" ]
[ "num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "class semiring_parity = comm_semiring_1 + semiring_modulo +\n assumes mod_2_eq_odd: \\<open>a mod 2 = of_bool (\\<not> 2 dvd a)\\<close>\n and odd_one [simp]: \\<open>\\<not> 2 dvd 1\\<close>\n and even_half_succ_eq [simp]: \\<open>2 dvd a \\<Longrightarrow> (1 + a) div 2 = a div 2\\<close>\nbegin", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"" ]
template
###lemma ?S = { ?m.. ?n} \<inter> Collect even \<Longrightarrow> \<exists>m' n'. ?S = (\<lambda>i. i * 2) ` {m'..n'} ###symbols Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set Parity.semiring_parity_class.even :::: 'a \<Rightarrow> bool Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" class semiring_parity = comm_semiring_1 + semiring_modulo + assumes mod_2_eq_odd: \<open>a mod 2 = of_bool (\<not> 2 dvd a)\<close> and odd_one [simp]: \<open>\<not> 2 dvd 1\<close> and even_half_succ_eq [simp]: \<open>2 dvd a \<Longrightarrow> (1 + a) div 2 = a div 2\<close> begin abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf"
###output x_1 = ?H1 (?H2 x_2 x_3) (?H3 ?H4) \<Longrightarrow> \<exists>y_0 y_1. x_1 = ?H5 (\<lambda>y_2. ?H6 y_2 (?H7 (?H8 ?H9))) (?H2 y_0 y_1)###end
Analysis/Measure_Space
Measure_Space.emeasure_restrict_space
lemma emeasure_restrict_space: assumes "\<Omega> \<inter> space M \<in> sets M" "A \<subseteq> \<Omega>" shows "emeasure (restrict_space M \<Omega>) A = emeasure M A"
?\<Omega> \<inter> space ?M \<in> sets ?M \<Longrightarrow> ?A \<subseteq> ?\<Omega> \<Longrightarrow> emeasure (restrict_space ?M ?\<Omega>) ?A = emeasure ?M ?A
\<lbrakk> ?H1 x_1 (?H2 x_2) \<in> ?H3 x_2; ?H4 x_3 x_1\<rbrakk> \<Longrightarrow> ?H5 (?H6 x_2 x_1) x_3 = ?H5 x_2 x_3
[ "Sigma_Algebra.restrict_space", "Sigma_Algebra.emeasure", "Set.subset_eq", "Sigma_Algebra.sets", "Sigma_Algebra.space", "Set.inter" ]
[ "'a measure \\<Rightarrow> 'a set \\<Rightarrow> 'a measure", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ennreal", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a measure \\<Rightarrow> 'a set set", "'a measure \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set" ]
[ "definition restrict_space :: \"'a measure \\<Rightarrow> 'a set \\<Rightarrow> 'a measure\" where\n \"restrict_space M \\<Omega> = measure_of (\\<Omega> \\<inter> space M) (((\\<inter>) \\<Omega>) ` sets M) (emeasure M)\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"" ]
template
###lemma ?\<Omega> \<inter> space ?M \<in> sets ?M \<Longrightarrow> ?A \<subseteq> ?\<Omega> \<Longrightarrow> emeasure (restrict_space ?M ?\<Omega>) ?A = emeasure ?M ?A ###symbols Sigma_Algebra.restrict_space :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> 'a measure Sigma_Algebra.emeasure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set Sigma_Algebra.space :::: 'a measure \<Rightarrow> 'a set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set ###defs definition restrict_space :: "'a measure \<Rightarrow> 'a set \<Rightarrow> 'a measure" where "restrict_space M \<Omega> = measure_of (\<Omega> \<inter> space M) (((\<inter>) \<Omega>) ` sets M) (emeasure M)" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf"
###output \<lbrakk> ?H1 x_1 (?H2 x_2) \<in> ?H3 x_2; ?H4 x_3 x_1\<rbrakk> \<Longrightarrow> ?H5 (?H6 x_2 x_1) x_3 = ?H5 x_2 x_3###end
NanoJava/Example
Example.init_locs_Nat_add
lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
init_locs Nat add ?s = ?s
?H1 ?H2 ?H3 x_1 = x_1
[ "Example.add", "Example.N", "State.init_locs" ]
[ "mname", "cname", "cname \\<Rightarrow> mname \\<Rightarrow> state \\<Rightarrow> state" ]
[ "definition init_locs :: \"cname => mname => state => state\" where\n \"init_locs C m s \\<equiv> s (| locals := locals s ++ \n init_vars (map_of (lcl (the (method C m)))) |)\"" ]
template
###lemma init_locs Nat add ?s = ?s ###symbols Example.add :::: mname Example.N :::: cname State.init_locs :::: cname \<Rightarrow> mname \<Rightarrow> state \<Rightarrow> state ###defs definition init_locs :: "cname => mname => state => state" where "init_locs C m s \<equiv> s (| locals := locals s ++ init_vars (map_of (lcl (the (method C m)))) |)"
###output ?H1 ?H2 ?H3 x_1 = x_1###end
Transfer
Transfer.right_unique_OO
lemma right_unique_OO: "\<lbrakk>right_unique A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A OO B)"
right_unique ?A \<Longrightarrow> right_unique ?B \<Longrightarrow> right_unique (?A OO ?B)
\<lbrakk> ?H1 x_1; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_1 x_2)
[ "Relation.relcompp", "Transfer.right_unique" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'c \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "definition right_unique :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> bool\"\n where \"right_unique R \\<longleftrightarrow> (\\<forall>x y z. R x y \\<longrightarrow> R x z \\<longrightarrow> y = z)\"" ]
template
###lemma right_unique ?A \<Longrightarrow> right_unique ?B \<Longrightarrow> right_unique (?A OO ?B) ###symbols Relation.relcompp :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> bool Transfer.right_unique :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool ###defs definition right_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where "right_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z)"
###output \<lbrakk> ?H1 x_1; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_1 x_2)###end
Auth/Smartcard/EventSC
EventSC.knows_subset_knows_Says
lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)"
knows ?A ?evs \<subseteq> knows ?A (Says ?A' ?B ?X # ?evs)
?H1 (?H2 x_1 x_2) (?H2 x_1 (?H3 (?H4 x_3 x_4 x_5) x_2))
[ "EventSC.event.Says", "List.list.Cons", "EventSC.knows", "Set.subset_eq" ]
[ "agent \\<Rightarrow> agent \\<Rightarrow> msg \\<Rightarrow> event", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "agent \\<Rightarrow> event list \\<Rightarrow> msg set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
template
###lemma knows ?A ?evs \<subseteq> knows ?A (Says ?A' ?B ?X # ?evs) ###symbols EventSC.event.Says :::: agent \<Rightarrow> agent \<Rightarrow> msg \<Rightarrow> event List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list EventSC.knows :::: agent \<Rightarrow> event list \<Rightarrow> msg set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?H1 (?H2 x_1 x_2) (?H2 x_1 (?H3 (?H4 x_3 x_4 x_5) x_2))###end
Filter
Filter.eventually_frequently_simps(1)
null
(\<exists>\<^sub>F x in ?F. ?P x \<and> ?C) = (frequently ?P ?F \<and> ?C)
?H1 (\<lambda>y_0. x_1 y_0 \<and> x_2) x_3 = (?H1 x_1 x_3 \<and> x_2)
[ "Filter.frequently" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "definition frequently :: \"('a \\<Rightarrow> bool) \\<Rightarrow> 'a filter \\<Rightarrow> bool\"\n where \"frequently P F \\<longleftrightarrow> \\<not> eventually (\\<lambda>x. \\<not> P x) F\"" ]
template
###lemma (\<exists>\<^sub>F x in ?F. ?P x \<and> ?C) = (frequently ?P ?F \<and> ?C) ###symbols Filter.frequently :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool ###defs definition frequently :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool" where "frequently P F \<longleftrightarrow> \<not> eventually (\<lambda>x. \<not> P x) F"
###output ?H1 (\<lambda>y_0. x_1 y_0 \<and> x_2) x_3 = (?H1 x_1 x_3 \<and> x_2)###end
HOLCF/Cfun
Cfun.ch2ch_Rep_cfun
lemma ch2ch_Rep_cfun [simp]: "chain F \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
chain ?F \<Longrightarrow> chain ?Y \<Longrightarrow> chain (\<lambda>i. ?F i\<cdot>(?Y i))
\<lbrakk> ?H1 x_1; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_0. ?H2 (x_1 y_0) (x_2 y_0))
[ "Cfun.cfun.Rep_cfun", "Porder.po_class.chain" ]
[ "('a \\<rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b", "(nat \\<Rightarrow> 'a) \\<Rightarrow> bool" ]
[ "class po = below +\n assumes below_refl [iff]: \"x \\<sqsubseteq> x\"\n assumes below_trans: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> z \\<Longrightarrow> x \\<sqsubseteq> z\"\n assumes below_antisym: \"x \\<sqsubseteq> y \\<Longrightarrow> y \\<sqsubseteq> x \\<Longrightarrow> x = y\"\nbegin" ]
template
###lemma chain ?F \<Longrightarrow> chain ?Y \<Longrightarrow> chain (\<lambda>i. ?F i\<cdot>(?Y i)) ###symbols Cfun.cfun.Rep_cfun :::: ('a \<rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Porder.po_class.chain :::: (nat \<Rightarrow> 'a) \<Rightarrow> bool ###defs class po = below + assumes below_refl [iff]: "x \<sqsubseteq> x" assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" begin
###output \<lbrakk> ?H1 x_1; ?H1 x_2\<rbrakk> \<Longrightarrow> ?H1 (\<lambda>y_0. ?H2 (x_1 y_0) (x_2 y_0))###end
Set
Set_Interval.image_int_atLeastAtMost
null
int ` { ?a.. ?b} = {int ?a..int ?b}
?H1 ?H2 (?H3 x_1 x_2) = ?H3 (?H2 x_1) (?H2 x_2)
[ "Set_Interval.ord_class.atLeastAtMost", "Int.int", "Set.image" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a set", "nat \\<Rightarrow> int", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set" ]
[ "abbreviation int :: \"nat \\<Rightarrow> int\"\n where \"int \\<equiv> of_nat\"", "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"" ]
template
###lemma int ` { ?a.. ?b} = {int ?a..int ?b} ###symbols Set_Interval.ord_class.atLeastAtMost :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a set Int.int :::: nat \<Rightarrow> int Set.image :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set ###defs abbreviation int :: "nat \<Rightarrow> int" where "int \<equiv> of_nat" definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}"
###output ?H1 ?H2 (?H3 x_1 x_2) = ?H3 (?H2 x_1) (?H2 x_2)###end
Library/Extended_Real
Extended_Real.continuous_on_iff_real
lemma continuous_on_iff_real: fixes f :: "'a::t2_space \<Rightarrow> ereal" assumes "\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" shows "continuous_on A f \<longleftrightarrow> continuous_on A (real_of_ereal \<circ> f)"
(\<And>x. x \<in> ?A \<Longrightarrow> \<bar> ?f x\<bar> \<noteq> \<infinity>) \<Longrightarrow> continuous_on ?A ?f = continuous_on ?A (real_of_ereal \<circ> ?f)
(\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 (x_2 y_0) \<noteq> ?H2) \<Longrightarrow> ?H3 x_1 x_2 = ?H3 x_1 (?H4 ?H5 x_2)
[ "Extended_Real.real_of_ereal", "Fun.comp", "Topological_Spaces.continuous_on", "Extended_Nat.infinity_class.infinity", "Groups.abs_class.abs" ]
[ "ereal \\<Rightarrow> real", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool", "'a", "'a \\<Rightarrow> 'a" ]
[ "function real_of_ereal :: \"ereal \\<Rightarrow> real\" where\n \"real_of_ereal (ereal r) = r\"\n| \"real_of_ereal \\<infinity> = 0\"\n| \"real_of_ereal (-\\<infinity>) = 0\"", "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"", "class infinity =\n fixes infinity :: \"'a\" (\"\\<infinity>\")", "class abs =\n fixes abs :: \"'a \\<Rightarrow> 'a\" (\"\\<bar>_\\<bar>\")" ]
template
###lemma (\<And>x. x \<in> ?A \<Longrightarrow> \<bar> ?f x\<bar> \<noteq> \<infinity>) \<Longrightarrow> continuous_on ?A ?f = continuous_on ?A (real_of_ereal \<circ> ?f) ###symbols Extended_Real.real_of_ereal :::: ereal \<Rightarrow> real Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Topological_Spaces.continuous_on :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool Extended_Nat.infinity_class.infinity :::: 'a Groups.abs_class.abs :::: 'a \<Rightarrow> 'a ###defs function real_of_ereal :: "ereal \<Rightarrow> real" where "real_of_ereal (ereal r) = r" | "real_of_ereal \<infinity> = 0" | "real_of_ereal (-\<infinity>) = 0" definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" class infinity = fixes infinity :: "'a" ("\<infinity>") class abs = fixes abs :: "'a \<Rightarrow> 'a" ("\<bar>_\<bar>")
###output (\<And>y_0. y_0 \<in> x_1 \<Longrightarrow> ?H1 (x_2 y_0) \<noteq> ?H2) \<Longrightarrow> ?H3 x_1 x_2 = ?H3 x_1 (?H4 ?H5 x_2)###end
Library/Finite_Map
Finite_Map.fmfilter_subset
lemma fmfilter_subset[simp]: "fmfilter P m \<subseteq>\<^sub>f m"
fmfilter ?P ?m \<subseteq>\<^sub>f ?m
?H1 (?H2 x_1 x_2) x_2
[ "Finite_Map.fmfilter", "Finite_Map.fmsubset" ]
[ "('a \\<Rightarrow> bool) \\<Rightarrow> ('a, 'b) fmap \\<Rightarrow> ('a, 'b) fmap", "('a, 'b) fmap \\<Rightarrow> ('a, 'b) fmap \\<Rightarrow> bool" ]
[]
template
###lemma fmfilter ?P ?m \<subseteq>\<^sub>f ?m ###symbols Finite_Map.fmfilter :::: ('a \<Rightarrow> bool) \<Rightarrow> ('a, 'b) fmap \<Rightarrow> ('a, 'b) fmap Finite_Map.fmsubset :::: ('a, 'b) fmap \<Rightarrow> ('a, 'b) fmap \<Rightarrow> bool ###defs
###output ?H1 (?H2 x_1 x_2) x_2###end
Analysis/Affine
Affine.sum_delta_notmem(3)
lemma sum_delta_notmem: assumes "x \<notin> s" shows "sum (\<lambda>y. if (y = x) then P x else Q y) s = sum Q s" and "sum (\<lambda>y. if (x = y) then P x else Q y) s = sum Q s" and "sum (\<lambda>y. if (y = x) then P y else Q y) s = sum Q s" and "sum (\<lambda>y. if (x = y) then P y else Q y) s = sum Q s"
?x \<notin> ?s \<Longrightarrow> (\<Sum>y\<in> ?s. if y = ?x then ?P y else ?Q y) = sum ?Q ?s
?H1 x_1 x_2 \<Longrightarrow> ?H2 (\<lambda>y_0. if y_0 = x_1 then x_3 y_0 else x_4 y_0) x_2 = ?H2 x_4 x_2
[ "Groups_Big.comm_monoid_add_class.sum", "Set.not_member" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>" ]
template
###lemma ?x \<notin> ?s \<Longrightarrow> (\<Sum>y\<in> ?s. if y = ?x then ?P y else ?Q y) = sum ?Q ?s ###symbols Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool ###defs abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close>
###output ?H1 x_1 x_2 \<Longrightarrow> ?H2 (\<lambda>y_0. if y_0 = x_1 then x_3 y_0 else x_4 y_0) x_2 = ?H2 x_4 x_2###end
Real_Asymp/Multiseries_Expansion
Multiseries_Expansion.lcoeff_gbinomial_series
lemma lcoeff_gbinomial_series [simp]: "lcoeff (gbinomial_series abort x) n = (x gchoose n)"
lcoeff (gbinomial_series ?abort ?x) ?n = ?x gchoose ?n
?H1 (?H2 x_1 x_2) x_3 = ?H3 x_2 x_3
[ "Binomial.gbinomial", "Multiseries_Expansion.gbinomial_series", "Multiseries_Expansion.lcoeff" ]
[ "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "bool \\<Rightarrow> real \\<Rightarrow> real msllist", "'a msllist \\<Rightarrow> nat \\<Rightarrow> 'a" ]
[ "definition gbinomial :: \"'a::{semidom_divide,semiring_char_0} \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixl \"gchoose\" 65)\n where gbinomial_prod_rev: \"a gchoose k = prod (\\<lambda>i. a - of_nat i) {0..<k} div fact k\"", "definition gbinomial_series :: \"bool \\<Rightarrow> real \\<Rightarrow> real msllist\" where\n \"gbinomial_series abort x = gbinomial_series_aux abort x 0 1\"", "fun lcoeff where\n \"lcoeff MSLNil n = 0\"\n| \"lcoeff (MSLCons x xs) 0 = x\"\n| \"lcoeff (MSLCons x xs) (Suc n) = lcoeff xs n\"" ]
template
###lemma lcoeff (gbinomial_series ?abort ?x) ?n = ?x gchoose ?n ###symbols Binomial.gbinomial :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Multiseries_Expansion.gbinomial_series :::: bool \<Rightarrow> real \<Rightarrow> real msllist Multiseries_Expansion.lcoeff :::: 'a msllist \<Rightarrow> nat \<Rightarrow> 'a ###defs definition gbinomial :: "'a::{semidom_divide,semiring_char_0} \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65) where gbinomial_prod_rev: "a gchoose k = prod (\<lambda>i. a - of_nat i) {0..<k} div fact k" definition gbinomial_series :: "bool \<Rightarrow> real \<Rightarrow> real msllist" where "gbinomial_series abort x = gbinomial_series_aux abort x 0 1" fun lcoeff where "lcoeff MSLNil n = 0" | "lcoeff (MSLCons x xs) 0 = x" | "lcoeff (MSLCons x xs) (Suc n) = lcoeff xs n"
###output ?H1 (?H2 x_1 x_2) x_3 = ?H3 x_2 x_3###end
Isar_Examples/Group
Groups.field_simps(41)
null
?c < (0:: ?'a) \<Longrightarrow> (?a \<le> - (?b / ?c)) = (- ?b \<le> ?a * ?c)
x_1 < ?H1 \<Longrightarrow> (x_2 \<le> ?H2 (?H3 x_3 x_1)) = (?H2 x_3 \<le> ?H4 x_2 x_1)
[ "Groups.times_class.times", "Fields.inverse_class.inverse_divide", "Groups.uminus_class.uminus", "Groups.zero_class.zero" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a", "'a" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma ?c < (0:: ?'a) \<Longrightarrow> (?a \<le> - (?b / ?c)) = (- ?b \<le> ?a * ?c) ###symbols Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Groups.zero_class.zero :::: 'a ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) class zero = fixes zero :: 'a ("0")
###output x_1 < ?H1 \<Longrightarrow> (x_2 \<le> ?H2 (?H3 x_3 x_1)) = (?H2 x_3 \<le> ?H4 x_2 x_1)###end
Number_Theory/Cong
Cong.cong_square
lemma cong_square: "prime p \<Longrightarrow> 0 < a \<Longrightarrow> [a * a = 1] (mod p) \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)" for a p :: "'a :: {normalization_semidom, linordered_idom, unique_euclidean_ring}"
prime ?p \<Longrightarrow> (0:: ?'a) < ?a \<Longrightarrow> [ ?a * ?a = 1:: ?'a] (mod ?p) \<Longrightarrow> [ ?a = 1:: ?'a] (mod ?p) \<or> [ ?a = - (1:: ?'a)] (mod ?p)
\<lbrakk> ?H1 x_1; ?H2 < x_2; ?H3 (?H4 x_2 x_2) ?H5 x_1\<rbrakk> \<Longrightarrow> ?H3 x_2 ?H5 x_1 \<or> ?H3 x_2 (?H6 ?H5) x_1
[ "Groups.uminus_class.uminus", "Groups.one_class.one", "Groups.times_class.times", "Cong.unique_euclidean_semiring_class.cong", "Groups.zero_class.zero", "Factorial_Ring.normalization_semidom_class.prime" ]
[ "'a \\<Rightarrow> 'a", "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool", "'a", "'a \\<Rightarrow> bool" ]
[ "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "class one =\n fixes one :: 'a (\"1\")", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class zero =\n fixes zero :: 'a (\"0\")" ]
template
###lemma prime ?p \<Longrightarrow> (0:: ?'a) < ?a \<Longrightarrow> [ ?a * ?a = 1:: ?'a] (mod ?p) \<Longrightarrow> [ ?a = 1:: ?'a] (mod ?p) \<or> [ ?a = - (1:: ?'a)] (mod ?p) ###symbols Groups.uminus_class.uminus :::: 'a \<Rightarrow> 'a Groups.one_class.one :::: 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Cong.unique_euclidean_semiring_class.cong :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool Groups.zero_class.zero :::: 'a Factorial_Ring.normalization_semidom_class.prime :::: 'a \<Rightarrow> bool ###defs class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) class one = fixes one :: 'a ("1") class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class zero = fixes zero :: 'a ("0")
###output \<lbrakk> ?H1 x_1; ?H2 < x_2; ?H3 (?H4 x_2 x_2) ?H5 x_1\<rbrakk> \<Longrightarrow> ?H3 x_2 ?H5 x_1 \<or> ?H3 x_2 (?H6 ?H5) x_1###end