File size: 43,858 Bytes
3448041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
"""
LICENSE:

Copyright 2025 ysnrfd

Timestamp: 2025-08-12

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to use,
copy, modify, and distribute the Software, subject to the following conditions:

1. The copyright notice, this permission notice, and all attribution information
   regarding the original author (ysnrfd) must be preserved in their entirety
   and must not be removed, altered, or obscured in any copies or derivative works.

2. Any modifications or derivative works must be clearly documented in a "CHANGELOG" or
   "NOTICE" file included with the Software. This documentation must include a detailed
   description of the changes made, the date of the modification, and the identity of
   the modifier.

3. The Software is provided "as is", without warranty of any kind, express or implied.
   The author shall not be liable for any damages arising from use of the Software.

4. Any attempt to remove or alter the original attribution or copyright information
   constitutes a violation of this license and may result in legal action.

"""

import math
import numpy as np
import pickle
import os
import time
from typing import List, Tuple, Dict, Any, Optional, Union
import warnings
DEFAULT_DTYPE = np.float32
EPS = 1e-6

def softmax(x: np.ndarray, axis: int = -1, eps: float = EPS) -> np.ndarray:
    x = x - np.max(x, axis=axis, keepdims=True)
    e = np.exp(x)
    return e / (np.sum(e, axis=axis, keepdims=True) + eps)

def gelu(x: np.ndarray) -> np.ndarray:
    return 0.5 * x * (1.0 + np.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * x**3)))

def gelu_exact(x: np.ndarray) -> np.ndarray:
    return 0.5 * x * (1.0 + math.erf(x / np.sqrt(2.0)))

def gelu_grad(x: np.ndarray) -> np.ndarray:
    tanh_term = np.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * x**3))
    sech2 = 1.0 - tanh_term**2
    return 0.5 * (1.0 + tanh_term) + 0.5 * x * sech2 * np.sqrt(2.0 / np.pi) * (1.0 + 3.0 * 0.044715 * x**2)

def rms_norm(x: np.ndarray, weight: np.ndarray, eps: float = EPS) -> np.ndarray:
    rms = np.sqrt(np.mean(x**2, axis=-1, keepdims=True) + eps)
    return weight * (x / rms)

class BPETokenizer:
    def __init__(self):
        self.vocab: List[str] = []
        self.w2i: Dict[str, int] = {}
        self.i2w: Dict[int, str] = {}
        self.merges: List[Tuple[str, str]] = []
        self.cache: Dict[str, List[str]] = {}
        self.special_tokens: List[str] = ['<pad>', '<unk>', '<bos>', '<eos>']

    @staticmethod
    def get_pairs(word: Tuple[str, ...]) -> Set[Tuple[str, str]]:
        return set(zip(word, word[1:]))

    @staticmethod
    def bytes_to_unicode() -> Dict[int, str]:
        bs = list(range(ord("!"), ord("~") + 1)) + \
             list(range(ord("¡"), ord("¬") + 1)) + \
             list(range(ord("®"), ord("ÿ") + 1))
        cs = bs[:]
        n = 0
        for b in range(2**8):
            if b not in bs:
                bs.append(b)
                cs.append(2**8 + n)
                n += 1
        cs = [chr(n) for n in cs]
        return dict(zip(bs, cs))

    def preprocess(self, text: str) -> str:
        byte_encoder = self.bytes_to_unicode()
        text_bytes = text.encode("utf-8")
        return "".join([byte_encoder[b] for b in text_bytes])

    def build_from_text(self, texts: List[str], vocab_size: int = 500, min_freq: int = 2):
        preprocessed = [self.preprocess(text) for text in texts]
        char_freq = {}
        for text in preprocessed:
            for char in text:
                char_freq[char] = char_freq.get(char, 0) + 1
        self.vocab = self.special_tokens + sorted(char_freq.keys(), key=lambda x: -char_freq[x])
        self.w2i = {w: i for i, w in enumerate(self.vocab)}
        self.i2w = {i: w for w, i in self.w2i.items()}
        if len(self.vocab) < vocab_size:
            words = []
            for text in preprocessed:
                words.extend([' '.join(text)])
            word_freq = {}
            for word in words:
                word_freq[word] = word_freq.get(word, 0) + 1
            num_merges = vocab_size - len(self.vocab)
            for i in range(num_merges):
                pairs = {}
                for word, freq in word_freq.items():
                    chars = word.split()
                    for j in range(len(chars) - 1):
                        pair = (chars[j], chars[j+1])
                        pairs[pair] = pairs.get(pair, 0) + freq
                if not pairs:
                    break
                best_pair = max(pairs, key=pairs.get)
                new_token = ''.join(best_pair)
                if new_token not in self.w2i:
                    self.vocab.append(new_token)
                    self.w2i[new_token] = len(self.vocab) - 1
                    self.i2w[len(self.vocab) - 1] = new_token
                    self.merges.append(best_pair)
                new_word_freq = {}
                for word, freq in word_freq.items():
                    new_word = word.replace(' '.join(best_pair), new_token)
                    new_word_freq[new_word] = freq
                word_freq = new_word_freq

    def encode(self, text: str, max_len: int = None, add_bos: bool = False, add_eos: bool = False) -> np.ndarray:
        text = self.preprocess(text)
        if add_bos:
            text = self.special_tokens[2] + text
        if add_eos:
            text = text + self.special_tokens[3]
        if text in self.cache:
            tokens = self.cache[text]
        else:
            tokens = list(text)
            for pair in self.merges:
                new_tokens = []
                i = 0
                while i < len(tokens):
                    if i < len(tokens) - 1 and tokens[i] == pair[0] and tokens[i+1] == pair[1]:
                        new_tokens.append(pair[0] + pair[1])
                        i += 2
                    else:
                        new_tokens.append(tokens[i])
                        i += 1
                tokens = new_tokens
            self.cache[text] = tokens
        ids = [self.w2i.get(t, self.w2i['<unk>']) for t in tokens]
        if max_len is not None and len(ids) > max_len:
            ids = ids[:max_len]
        if max_len is not None and len(ids) < max_len:
            ids = ids + [self.w2i['<pad>']] * (max_len - len(ids))
        return np.array(ids, dtype=np.int32)

    def decode(self, ids: Union[np.ndarray, List[int]]) -> str:
        tokens = [self.i2w.get(int(i), '<unk>') for i in ids]
        text = ''.join(tokens)
        for token in self.special_tokens:
            text = text.replace(token, '')
        byte_decoder = {v: k for k, v in self.bytes_to_unicode().items()}
        text_bytes = bytearray([byte_decoder[c] for c in text])
        return text_bytes.decode('utf-8', errors='replace')

class Embedding:
    def __init__(self, vocab_size: int, d_model: int, dtype=DEFAULT_DTYPE):
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.dtype = dtype
        scale = 1.0 / np.sqrt(d_model)
        self.W = np.random.normal(0, scale, (vocab_size, d_model)).astype(dtype)
        self.grad_W = np.zeros_like(self.W)

    def forward(self, idx: np.ndarray) -> np.ndarray:
        return self.W[idx]

    def backward(self, idx: np.ndarray, grad: np.ndarray):
        np.add.at(self.grad_W, idx, grad)

class PositionalEmbedding:
    def __init__(self, max_len: int, d_model: int, use_rotary: bool = False, dtype=DEFAULT_DTYPE):
        self.max_len = max_len
        self.d_model = d_model
        self.use_rotary = use_rotary
        self.dtype = dtype
        if not use_rotary:
            self.W = np.zeros((max_len, d_model), dtype=dtype)
            for pos in range(max_len):
                for i in range(0, d_model, 2):
                    self.W[pos, i] = math.sin(pos / (10000 ** (i / d_model)))
                    if i + 1 < d_model:
                        self.W[pos, i + 1] = math.cos(pos / (10000 ** (i / d_model)))
            self.grad_W = np.zeros_like(self.W)
        else:
            self.rotary_freqs = self._create_rotary_frequencies()

    def _create_rotary_frequencies(self) -> np.ndarray:
        inv_freq = 1.0 / (10000 ** (np.arange(0, self.d_model, 2, dtype=self.dtype) / self.d_model))
        return inv_freq

    def apply_rotary_pos_emb(self, x: np.ndarray, seq_dim: int = -2) -> np.ndarray:
        seq_len = x.shape[seq_dim]
        t = np.arange(seq_len, dtype=self.dtype)
        freqs = np.outer(t, self.rotary_freqs)
        cos = np.cos(freqs)
        sin = np.sin(freqs)
        x1 = x[..., 0::2]
        x2 = x[..., 1::2]
        x_rotated1 = x1 * cos - x2 * sin
        x_rotated2 = x1 * sin + x2 * cos
        x_rotated = np.zeros_like(x)
        x_rotated[..., 0::2] = x_rotated1
        x_rotated[..., 1::2] = x_rotated2
        return x_rotated

    def forward(self, seq_len: int) -> np.ndarray:
        if not self.use_rotary:
            return self.W[:seq_len][np.newaxis, :, :]
        return None

    def backward(self, seq_len: int, grad: np.ndarray):
        if not self.use_rotary:
            np.add.at(self.grad_W, np.arange(seq_len), np.sum(grad, axis=0))

class LayerNorm:
    def __init__(self, d_model: int, eps: float = EPS, rms_norm: bool = False, dtype=DEFAULT_DTYPE):
        self.d_model = d_model
        self.eps = eps
        self.rms_norm = rms_norm
        self.dtype = dtype
        if not rms_norm:
            self.gamma = np.ones((1, 1, d_model), dtype=dtype)
            self.beta = np.zeros((1, 1, d_model), dtype=dtype)
            self.grad_gamma = np.zeros_like(self.gamma)
            self.grad_beta = np.zeros_like(self.beta)
        else:
            self.weight = np.ones((1, 1, d_model), dtype=dtype)
            self.grad_weight = np.zeros_like(self.weight)
        self.x = None
        self.mean = None
        self.var = None
        self.x_norm = None

    def forward(self, x: np.ndarray) -> np.ndarray:
        self.x = x
        if self.rms_norm:
            rms = np.sqrt(np.mean(x**2, axis=-1, keepdims=True) + self.eps)
            self.x_norm = x / rms
            return self.weight * self.x_norm
        else:
            self.mean = np.mean(x, axis=-1, keepdims=True)
            self.var = np.var(x, axis=-1, keepdims=True)
            self.x_norm = (x - self.mean) / np.sqrt(self.var + self.eps)
            return self.gamma * self.x_norm + self.beta

    def backward(self, grad: np.ndarray) -> np.ndarray:
        if self.rms_norm:
            grad_x_norm = grad * self.weight
            x_norm2 = self.x_norm ** 2
            d_rms = -np.sum(grad_x_norm * self.x_norm, axis=-1, keepdims=True) / np.sqrt(np.mean(x_norm2, axis=-1, keepdims=True) + self.eps)
            d_x = (grad_x_norm - self.x_norm * d_rms) / self.x_norm.shape[-1]
            self.grad_weight = np.sum(grad * self.x_norm, axis=(0, 1), keepdims=True)
            return d_x
        else:
            b, s, d = grad.shape
            self.grad_gamma = np.sum(grad * self.x_norm, axis=(0, 1), keepdims=True)
            self.grad_beta = np.sum(grad, axis=(0, 1), keepdims=True)
            dx_norm = grad * self.gamma
            var_eps = self.var + self.eps
            dx = (1. / np.sqrt(var_eps)) * (dx_norm - np.mean(dx_norm, axis=-1, keepdims=True) - 
                        self.x_norm * np.mean(dx_norm * self.x_norm, axis=-1, keepdims=True))
            return dx

class FeedForward:
    def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, dtype=DEFAULT_DTYPE):
        self.d_model = d_model
        self.d_ff = d_ff
        self.dropout = dropout
        self.dtype = dtype
        scale_in = 1.0 / np.sqrt(d_model)
        scale_out = 1.0 / np.sqrt(d_ff)
        self.W1 = np.random.normal(0, scale_in, (d_model, d_ff)).astype(dtype)
        self.b1 = np.zeros((1, 1, d_ff), dtype=dtype)
        self.W2 = np.random.normal(0, scale_out, (d_ff, d_model)).astype(dtype)
        self.b2 = np.zeros((1, 1, d_model), dtype=dtype)
        self.grad_W1 = np.zeros_like(self.W1)
        self.grad_b1 = np.zeros_like(self.b1)
        self.grad_W2 = np.zeros_like(self.W2)
        self.grad_b2 = np.zeros_like(self.b2)
        self.x = None
        self.hidden = None
        self.hidden_act = None
        self.dropout_mask1 = None
        self.dropout_mask2 = None

    def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
        self.x = x
        b, s, d = x.shape
        self.hidden = x @ self.W1 + self.b1
        self.hidden_act = gelu(self.hidden)
        if training and self.dropout > 0:
            self.dropout_mask1 = (np.random.rand(*self.hidden_act.shape) > self.dropout)
            self.hidden_act = self.hidden_act * self.dropout_mask1 / (1 - self.dropout)
        else:
            self.dropout_mask1 = None
        out = self.hidden_act @ self.W2 + self.b2
        if training and self.dropout > 0:
            self.dropout_mask2 = (np.random.rand(*out.shape) > self.dropout)
            out = out * self.dropout_mask2 / (1 - self.dropout)
        else:
            self.dropout_mask2 = None
        return out

    def backward(self, grad: np.ndarray) -> np.ndarray:
        b, s, d = grad.shape
        if self.dropout_mask2 is not None:
            grad = grad * self.dropout_mask2
        self.grad_W2 = (self.hidden_act.reshape(-1, self.d_ff).T @ grad.reshape(-1, d)).reshape(self.d_ff, d)
        self.grad_b2 = np.sum(grad, axis=(0, 1), keepdims=True)
        dhidden_act = grad @ self.W2.T
        if self.dropout_mask1 is not None:
            dhidden_act = dhidden_act * self.dropout_mask1
        dhidden = dhidden_act * gelu_grad(self.hidden)
        self.grad_W1 = (self.x.reshape(-1, self.d_model).T @ dhidden.reshape(-1, self.d_ff)).reshape(self.d_model, self.d_ff)
        self.grad_b1 = np.sum(dhidden, axis=(0, 1), keepdims=True)
        dx = dhidden @ self.W1.T
        return dx

class MultiHeadSelfAttention:
    def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1, use_rotary: bool = False, dtype=DEFAULT_DTYPE):
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = d_model // num_heads
        self.dropout = dropout
        self.use_rotary = use_rotary
        self.dtype = dtype
        scale = 1.0 / np.sqrt(d_model)
        self.W_q = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
        self.W_k = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
        self.W_v = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
        self.W_o = np.random.normal(0, scale, (d_model, d_model)).astype(dtype)
        self.grad_W_q = np.zeros_like(self.W_q)
        self.grad_W_k = np.zeros_like(self.W_k)
        self.grad_W_v = np.zeros_like(self.W_v)
        self.grad_W_o = np.zeros_like(self.W_o)
        self.cache = {}
        self.dropout_mask = None

    def split_heads(self, x: np.ndarray) -> np.ndarray:
        b, s, d = x.shape
        x = x.reshape(b, s, self.num_heads, self.head_dim)
        return np.transpose(x, (0, 2, 1, 3))

    def combine_heads(self, x: np.ndarray) -> np.ndarray:
        x = np.transpose(x, (0, 2, 1, 3))
        b, s, h, hd = x.shape
        return x.reshape(b, s, h * hd)

    def causal_mask(self, seq_len: int) -> np.ndarray:
        return np.tril(np.ones((seq_len, seq_len), dtype=bool))

    def apply_rotary_embeddings(self, q: np.ndarray, k: np.ndarray, seq_dim: int = -2) -> Tuple[np.ndarray, np.ndarray]:
        q_rotated = PositionalEmbedding.apply_rotary_pos_emb(q, seq_dim=seq_dim)
        k_rotated = PositionalEmbedding.apply_rotary_pos_emb(k, seq_dim=seq_dim)
        return q_rotated, k_rotated

    def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
        b, s, d = x.shape
        Q = x @ self.W_q
        K = x @ self.W_k
        V = x @ self.W_v
        Qh = self.split_heads(Q)
        Kh = self.split_heads(K)
        Vh = self.split_heads(V)
        if self.use_rotary:
            Qh, Kh = self.apply_rotary_embeddings(Qh, Kh)
        dk = self.head_dim
        scores = Qh @ np.swapaxes(Kh, -1, -2) / np.sqrt(dk)
        mask = self.causal_mask(s)[np.newaxis, np.newaxis, :, :]
        scores = np.where(mask, scores, -np.inf)
        attn = softmax(scores, axis=-1)
        if training and self.dropout > 0:
            self.dropout_mask = (np.random.rand(*attn.shape) > self.dropout)
            attn = attn * self.dropout_mask / (1 - self.dropout)
        else:
            self.dropout_mask = None
        attn_out = attn @ Vh
        out = self.combine_heads(attn_out) @ self.W_o
        self.cache = {
            'x': x, 'Q': Q, 'K': K, 'V': V,
            'Qh': Qh, 'Kh': Kh, 'Vh': Vh,
            'scores': scores, 'attn': attn, 'attn_out': attn_out,
            'mask': mask
        }
        return out

    def backward(self, grad_out: np.ndarray) -> np.ndarray:
        x = self.cache['x']
        Qh = self.cache['Qh']
        Kh = self.cache['Kh']
        Vh = self.cache['Vh']
        attn = self.cache['attn']
        attn_out = self.cache['attn_out']
        mask = self.cache['mask']
        b, s, d = grad_out.shape
        dk = self.head_dim
        if self.dropout_mask is not None:
            attn = attn * self.dropout_mask
        out_concat = self.combine_heads(attn_out)
        self.grad_W_o = out_concat.reshape(-1, d).T @ grad_out.reshape(-1, d)
        d_out_concat = grad_out @ self.W_o.T
        d_attn_out = d_out_concat.reshape(b, s, self.num_heads, self.head_dim)
        d_attn_out = np.transpose(d_attn_out, (0, 2, 1, 3))
        dVh = np.matmul(np.swapaxes(attn, -1, -2), d_attn_out)
        dattn = np.matmul(d_attn_out, np.swapaxes(Vh, -1, -2))
        sft = attn
        sum_d = np.sum(dattn * sft, axis=-1, keepdims=True)
        dscores = sft * (dattn - sum_d)
        dscores = np.where(mask, dscores, 0.0)
        dQh = np.matmul(dscores, Kh) / np.sqrt(dk)
        dKh = np.matmul(np.swapaxes(dscores, -1, -2), Qh) / np.sqrt(dk)
        dQ = np.transpose(dQh, (0, 2, 1, 3)).reshape(b, s, d)
        dK = np.transpose(dKh, (0, 2, 1, 3)).reshape(b, s, d)
        dV = np.transpose(dVh, (0, 2, 1, 3)).reshape(b, s, d)
        self.grad_W_q = x.reshape(-1, d).T @ dQ.reshape(-1, d)
        self.grad_W_k = x.reshape(-1, d).T @ dK.reshape(-1, d)
        self.grad_W_v = x.reshape(-1, d).T @ dV.reshape(-1, d)
        dx_q = dQ @ self.W_q.T
        dx_k = dK @ self.W_k.T
        dx_v = dV @ self.W_v.T
        dx = dx_q + dx_k + dx_v
        return dx

class DecoderBlock:
    def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1, 
                 layer_scale: bool = False, layer_scale_init: float = 1e-4, use_rotary: bool = False):
        self.mha = MultiHeadSelfAttention(d_model, num_heads, dropout, use_rotary)
        self.ln1 = LayerNorm(d_model, rms_norm=False)
        self.ff = FeedForward(d_model, d_ff, dropout)
        self.ln2 = LayerNorm(d_model, rms_norm=False)
        self.dropout = dropout
        self.layer_scale = layer_scale
        self.layer_scale_init = layer_scale_init
        if layer_scale:
            self.gamma1 = np.ones((1, 1, d_model)) * layer_scale_init
            self.gamma2 = np.ones((1, 1, d_model)) * layer_scale_init

    def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
        attn_out = self.mha.forward(x, training)
        if self.layer_scale:
            attn_out = attn_out * self.gamma1
        x = x + attn_out
        x = self.ln1.forward(x)
        ff_out = self.ff.forward(x, training)
        if self.layer_scale:
            ff_out = ff_out * self.gamma2
        x = x + ff_out
        x = self.ln2.forward(x)
        return x

    def backward(self, grad: np.ndarray) -> np.ndarray:
        d_ln2 = self.ln2.backward(grad)
        d_ff = self.ff.backward(d_ln2)
        if self.layer_scale:
            d_ff = d_ff * self.gamma2
        d_res = d_ln2 + d_ff
        d_ln1 = self.ln1.backward(d_res)
        d_mha = self.mha.backward(d_ln1)
        if self.layer_scale:
            d_mha = d_mha * self.gamma1
        dx = d_mha + d_ln1
        return dx

class GPT:
    def __init__(self, vocab_size: int, max_len: int = 512, d_model: int = 768, num_heads: int = 12, 
                 d_ff: int = 3072, num_layers: int = 12, dropout: float = 0.1, 
                 use_rotary: bool = False, rms_norm: bool = False, layer_scale: bool = False,
                 dtype=DEFAULT_DTYPE):
        self.vocab_size = vocab_size
        self.max_len = max_len
        self.d_model = d_model
        self.dtype = dtype
        self.embed = Embedding(vocab_size, d_model, dtype)
        self.pos_embed = PositionalEmbedding(max_len, d_model, use_rotary, dtype)
        self.layers = [
            DecoderBlock(d_model, num_heads, d_ff, dropout, layer_scale, use_rotary=use_rotary)
            for _ in range(num_layers)
        ]
        self.ln_f = LayerNorm(d_model, rms_norm=rms_norm, dtype=dtype)
        self.dropout = dropout
        self.W_out = np.random.normal(0, 1.0 / np.sqrt(d_model), (d_model, vocab_size)).astype(dtype)
        self.grad_W_out = np.zeros_like(self.W_out)
        self.opt_states = {}
        self.lr = 0.0
        self.beta1 = 0.0
        self.beta2 = 0.0
        self.eps = 0.0
        self.opt_step = 0
        self.training = True

    def parameters(self) -> List[Tuple[str, np.ndarray]]:
        params = []
        params.append(('embed.W', self.embed.W))
        if not self.pos_embed.use_rotary:
            params.append(('pos.W', self.pos_embed.W))
        for i, layer in enumerate(self.layers):
            params.append((f'layer{i}.mha.W_q', layer.mha.W_q))
            params.append((f'layer{i}.mha.W_k', layer.mha.W_k))
            params.append((f'layer{i}.mha.W_v', layer.mha.W_v))
            params.append((f'layer{i}.mha.W_o', layer.mha.W_o))
            params.append((f'layer{i}.ln1.gamma', layer.ln1.gamma))
            params.append((f'layer{i}.ln1.beta', layer.ln1.beta))
            params.append((f'layer{i}.ff.W1', layer.ff.W1))
            params.append((f'layer{i}.ff.b1', layer.ff.b1))
            params.append((f'layer{i}.ff.W2', layer.ff.W2))
            params.append((f'layer{i}.ff.b2', layer.ff.b2))
            params.append((f'layer{i}.ln2.gamma', layer.ln2.gamma))
            params.append((f'layer{i}.ln2.beta', layer.ln2.beta))
            if layer.layer_scale:
                params.append((f'layer{i}.gamma1', layer.gamma1))
                params.append((f'layer{i}.gamma2', layer.gamma2))
        if not self.ln_f.rms_norm:
            params.append(('ln_f.gamma', self.ln_f.gamma))
            params.append(('ln_f.beta', self.ln_f.beta))
        else:
            params.append(('ln_f.weight', self.ln_f.weight))
        params.append(('W_out', self.W_out))
        return params

    def zero_grads(self):
        self.embed.grad_W.fill(0.0)
        if not self.pos_embed.use_rotary:
            self.pos_embed.grad_W.fill(0.0)
        for layer in self.layers:
            layer.mha.grad_W_q.fill(0.0)
            layer.mha.grad_W_k.fill(0.0)
            layer.mha.grad_W_v.fill(0.0)
            layer.mha.grad_W_o.fill(0.0)
            layer.ln1.grad_gamma.fill(0.0)
            layer.ln1.grad_beta.fill(0.0)
            layer.ff.grad_W1.fill(0.0)
            layer.ff.grad_b1.fill(0.0)
            layer.ff.grad_W2.fill(0.0)
            layer.ff.grad_b2.fill(0.0)
            layer.ln2.grad_gamma.fill(0.0)
            layer.ln2.grad_beta.fill(0.0)
        if not self.ln_f.rms_norm:
            self.ln_f.grad_gamma.fill(0.0)
            self.ln_f.grad_beta.fill(0.0)
        else:
            self.ln_f.grad_weight.fill(0.0)
        self.grad_W_out.fill(0.0)

    def forward(self, idx: np.ndarray, training: bool = True) -> np.ndarray:
        self.training = training
        b, s = idx.shape
        x = self.embed.forward(idx)
        if not self.pos_embed.use_rotary:
            x = x + self.pos_embed.forward(s)
        for layer in self.layers:
            x = layer.forward(x, training)
        x = self.ln_f.forward(x)
        if training and self.dropout > 0:
            dropout_mask = (np.random.rand(*x.shape) > self.dropout)
            x = x * dropout_mask / (1 - self.dropout)
        logits = x.reshape(-1, self.d_model) @ self.W_out
        logits = logits.reshape(b, s, -1)
        self._cache = {'x': x, 'idx': idx}
        return logits

    def loss_and_backward(self, idx_in: np.ndarray, idx_target: np.ndarray, 
                          grad_clip: float = 1.0) -> float:
        b, s = idx_in.shape
        logits = self.forward(idx_in, training=True)
        vocab = logits.shape[-1]
        logits_flat = logits.reshape(-1, vocab)
        targets_flat = idx_target.reshape(-1)
        probs = softmax(logits_flat, axis=1)
        log_probs = np.log(np.clip(probs, 1e-12, 1.0))
        loss = -np.mean(log_probs[np.arange(len(targets_flat)), targets_flat])
        grad_logits = probs.copy()
        grad_logits[np.arange(grad_logits.shape[0]), targets_flat] -= 1
        grad_logits = grad_logits.reshape(b, s, vocab) / (b * s)
        x = self._cache['x']
        self.grad_W_out = x.reshape(-1, self.d_model).T @ grad_logits.reshape(-1, vocab)
        dx = grad_logits.reshape(-1, vocab) @ self.W_out.T
        dx = dx.reshape(b, s, self.d_model)
        d_ln = self.ln_f.backward(dx)
        grad = d_ln
        for layer in reversed(self.layers):
            grad = layer.backward(grad)
        idx = self._cache['idx']
        self.embed.backward(idx, grad)
        if not self.pos_embed.use_rotary:
            self.pos_embed.backward(s, grad)
        if grad_clip > 0:
            total_norm = 0.0
            for _, param in self.parameters():
                if param.grad is not None:
                    param_norm = np.linalg.norm(param.grad)
                    total_norm += param_norm ** 2
            total_norm = np.sqrt(total_norm)
            clip_coef = min(grad_clip / (total_norm + EPS), 1.0)
            if clip_coef < 1:
                for _, param in self.parameters():
                    if param.grad is not None:
                        param.grad *= clip_coef
        return loss

    def init_optimizer(self, lr: float = 6e-4, betas=(0.9, 0.95), eps=1e-8, 
                       weight_decay: float = 0.1, warmup_steps: int = 2000):
        self.lr = lr
        self.beta1 = betas[0]
        self.beta2 = betas[1]
        self.eps = eps
        self.weight_decay = weight_decay
        self.warmup_steps = warmup_steps
        self.opt_step = 0
        self.opt_states = {}
        for name, param in self.parameters():
            self.opt_states[name] = {
                'm': np.zeros_like(param),
                'v': np.zeros_like(param)
            }

    def step_optimizer(self, current_step: Optional[int] = None):
        if current_step is not None:
            self.opt_step = current_step
        self.opt_step += 1
        if self.warmup_steps > 0:
            lr = self.lr * min(self.opt_step ** -0.5, self.opt_step * self.warmup_steps ** -1.5)
        else:
            lr = self.lr
        def update(name: str, param: np.ndarray, grad: np.ndarray):
            if 'W_' in name and self.weight_decay > 0:
                grad = grad + self.weight_decay * param
            state = self.opt_states[name]
            state['m'] = self.beta1 * state['m'] + (1 - self.beta1) * grad
            state['v'] = self.beta2 * state['v'] + (1 - self.beta2) * (grad ** 2)
            m_hat = state['m'] / (1 - self.beta1 ** self.opt_step)
            v_hat = state['v'] / (1 - self.beta2 ** self.opt_step)
            param -= lr * m_hat / (np.sqrt(v_hat) + self.eps)
        for name, param in self.parameters():
            if name in ['embed.W', 'pos.W', 'W_out'] or 'W_' in name:
                grad = getattr(self, f"grad_{name.split('.')[0]}")
            else:
                grad = getattr(self, f"grad_{name.replace('.', '_')}")
            update(name, param, grad)

    def enable_gradient_checkpointing(self):
        warnings.warn("Gradient checkpointing is not implemented in this NumPy version", RuntimeWarning)

    def convert_to_rms_norm(self):
        self.ln_f = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype)
        for layer in self.layers:
            layer.ln1 = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype)
            layer.ln2 = LayerNorm(self.d_model, rms_norm=True, dtype=self.dtype)

    def save(self, path: str, include_optimizer: bool = False):
        data = {
            'config': {
                'vocab_size': self.vocab_size,
                'max_len': self.max_len,
                'd_model': self.d_model,
                'num_heads': self.layers[0].mha.num_heads,
                'd_ff': self.layers[0].ff.d_ff,
                'num_layers': len(self.layers),
                'dropout': self.dropout,
                'use_rotary': self.pos_embed.use_rotary,
                'rms_norm': self.ln_f.rms_norm,
                'layer_scale': any(layer.layer_scale for layer in self.layers)
            },
            'embed.W': self.embed.W,
            'pos.W': self.pos_embed.W if not self.pos_embed.use_rotary else None,
            'layers': [],
            'ln_f.gamma': self.ln_f.gamma if not self.ln_f.rms_norm else None,
            'ln_f.beta': self.ln_f.beta if not self.ln_f.rms_norm else None,
            'ln_f.weight': self.ln_f.weight if self.ln_f.rms_norm else None,
            'W_out': self.W_out
        }
        for layer in self.layers:
            layer_data = {
                'mha.W_q': layer.mha.W_q,
                'mha.W_k': layer.mha.W_k,
                'mha.W_v': layer.mha.W_v,
                'mha.W_o': layer.mha.W_o,
                'ff.W1': layer.ff.W1,
                'ff.b1': layer.ff.b1,
                'ff.W2': layer.ff.W2,
                'ff.b2': layer.ff.b2,
                'ln1.gamma': layer.ln1.gamma,
                'ln1.beta': layer.ln1.beta,
                'ln2.gamma': layer.ln2.gamma,
                'ln2.beta': layer.ln2.beta
            }
            if layer.layer_scale:
                layer_data['gamma1'] = layer.gamma1
                layer_data['gamma2'] = layer.gamma2
            data['layers'].append(layer_data)
        if include_optimizer and self.opt_states:
            data['optimizer'] = {
                'lr': self.lr,
                'beta1': self.beta1,
                'beta2': self.beta2,
                'eps': self.eps,
                'weight_decay': self.weight_decay,
                'warmup_steps': self.warmup_steps,
                'opt_step': self.opt_step,
                'states': {k: {'m': v['m'], 'v': v['v']} for k, v in self.opt_states.items()}
            }
        os.makedirs(os.path.dirname(os.path.abspath(path)), exist_ok=True)
        with open(path, 'wb') as f:
            pickle.dump(data, f)

    def load(self, path: str, strict: bool = True):
        with open(path, 'rb') as f:
            data = pickle.load(f)
        self.embed.W = data['embed.W']
        if not self.pos_embed.use_rotary and data['pos.W'] is not None:
            self.pos_embed.W = data['pos.W']
        for layer, ld in zip(self.layers, data['layers']):
            layer.mha.W_q = ld['mha.W_q']
            layer.mha.W_k = ld['mha.W_k']
            layer.mha.W_v = ld['mha.W_v']
            layer.mha.W_o = ld['mha.W_o']
            layer.ff.W1 = ld['ff.W1']
            layer.ff.b1 = ld['ff.b1']
            layer.ff.W2 = ld['ff.W2']
            layer.ff.b2 = ld['ff.b2']
            layer.ln1.gamma = ld['ln1.gamma']
            layer.ln1.beta = ld['ln1.beta']
            layer.ln2.gamma = ld['ln2.gamma']
            layer.ln2.beta = ld['ln2.beta']
            if hasattr(layer, 'gamma1') and 'gamma1' in ld:
                layer.gamma1 = ld['gamma1']
            if hasattr(layer, 'gamma2') and 'gamma2' in ld:
                layer.gamma2 = ld['gamma2']
        if not self.ln_f.rms_norm:
            self.ln_f.gamma = data['ln_f.gamma']
            self.ln_f.beta = data['ln_f.beta']
        else:
            self.ln_f.weight = data['ln_f.weight']
        self.W_out = data['W_out']
        if 'optimizer' in data and self.opt_states:
            opt_data = data['optimizer']
            self.lr = opt_data['lr']
            self.beta1 = opt_data['beta1']
            self.beta2 = opt_data['beta2']
            self.eps = opt_data['eps']
            self.weight_decay = opt_data.get('weight_decay', 0.1)
            self.warmup_steps = opt_data.get('warmup_steps', 2000)
            self.opt_step = opt_data['opt_step']
            for name, state in opt_data['states'].items():
                if name in self.opt_states:
                    self.opt_states[name]['m'] = state['m']
                    self.opt_states[name]['v'] = state['v']

    def generate(self, idx_start: List[int], max_new_tokens: int = 50, 
                 temperature: float = 1.0, top_k: Optional[int] = None, 
                 top_p: Optional[float] = None, do_sample: bool = True) -> List[int]:
        idx = list(idx_start)
        for _ in range(max_new_tokens):
            input_ids = np.array([idx[-self.max_len:]], dtype=np.int32)
            logits = self.forward(input_ids, training=False)
            next_logits = logits[0, -1] / max(temperature, 1e-8)
            if top_k is not None and top_k > 0:
                top_k = min(top_k, len(next_logits))
                top_k_idx = np.argpartition(next_logits, -top_k)[-top_k:]
                top_k_logits = next_logits[top_k_idx]
                if top_p is not None and top_p < 1.0:
                    sorted_idx = np.argsort(top_k_logits)[::-1]
                    sorted_logits = top_k_logits[sorted_idx]
                    cumulative_probs = np.cumsum(softmax(sorted_logits))
                    cutoff_idx = np.where(cumulative_probs > top_p)[0][0]
                    top_p_idx = top_k_idx[sorted_idx[:cutoff_idx + 1]]
                    top_p_logits = next_logits[top_p_idx]
                    probs = softmax(top_p_logits)
                    next_id = np.random.choice(top_p_idx, p=probs) if do_sample else top_p_idx[np.argmax(top_p_logits)]
                else:
                    probs = softmax(top_k_logits)
                    next_id = np.random.choice(top_k_idx, p=probs) if do_sample else top_k_idx[np.argmax(top_k_logits)]
            else:
                if top_p is not None and top_p < 1.0:
                    sorted_idx = np.argsort(next_logits)[::-1]
                    sorted_logits = next_logits[sorted_idx]
                    cumulative_probs = np.cumsum(softmax(sorted_logits))
                    cutoff_idx = np.where(cumulative_probs > top_p)[0][0]
                    top_p_idx = sorted_idx[:cutoff_idx + 1]
                    top_p_logits = next_logits[top_p_idx]
                    probs = softmax(top_p_logits)
                    next_id = np.random.choice(top_p_idx, p=probs) if do_sample else top_p_idx[np.argmax(top_p_logits)]
                else:
                    probs = softmax(next_logits)
                    next_id = np.random.choice(len(probs), p=probs) if do_sample else np.argmax(probs)
            idx.append(int(next_id))
        return idx

    def evaluate(self, val_data: np.ndarray, seq_len: int, batch_size: int, 
                 tokenizer: Any) -> Tuple[float, float]:
        total_loss = 0.0
        total_tokens = 0
        n_batches = 0
        for xb, yb in get_batches_from_text(val_data, seq_len, batch_size, tokenizer):
            original_dropout = self.dropout
            self.dropout = 0.0
            b, s = xb.shape
            logits = self.forward(xb, training=False)
            vocab = logits.shape[-1]
            logits_flat = logits.reshape(-1, vocab)
            targets_flat = yb.reshape(-1)
            probs = softmax(logits_flat, axis=1)
            log_probs = np.log(np.clip(probs, 1e-12, 1.0))
            loss = -np.mean(log_probs[np.arange(len(targets_flat)), targets_flat])
            total_loss += loss * len(targets_flat)
            total_tokens += len(targets_flat)
            n_batches += 1
            self.dropout = original_dropout
        avg_loss = total_loss / total_tokens
        perplexity = np.exp(avg_loss)
        return avg_loss, perplexity

class Trainer:
    def __init__(self, model: GPT, tokenizer: Any, train_data: str, 
                 val_data: Optional[str] = None, seq_len: int = 1024, 
                 batch_size: int = 8, grad_accum_steps: int = 1):
        self.model = model
        self.tokenizer = tokenizer
        self.train_data = train_data
        self.val_data = val_data
        self.seq_len = seq_len
        self.batch_size = batch_size
        self.grad_accum_steps = grad_accum_steps
        self.history = {'train_loss': [], 'val_loss': [], 'perplexity': [], 'lr': []}
        self.best_val_loss = float('inf')
        self.patience_counter = 0

    def train(self, epochs: int = 10, lr: float = 3e-4, weight_decay: float = 0.1,
              warmup_steps: int = 2000, grad_clip: float = 1.0, 
              val_interval: int = 1, early_stopping_patience: int = 5,
              checkpoint_dir: str = 'checkpoints', save_best: bool = True):
        os.makedirs(checkpoint_dir, exist_ok=True)
        self.model.init_optimizer(
            lr=lr,
            weight_decay=weight_decay,
            warmup_steps=warmup_steps
        )
        total_steps = 0
        start_time = time.time()
        for epoch in range(1, epochs + 1):
            print(f"\nEpoch {epoch}/{epochs}")
            epoch_start = time.time()
            total_loss = 0.0
            n_batches = 0
            total_steps += len(self.train_data) // (self.seq_len * self.batch_size)
            for i, (xb, yb) in enumerate(get_batches_from_text(
                    self.train_data, self.seq_len, self.batch_size, self.tokenizer)):
                loss = self.model.loss_and_backward(xb, yb, grad_clip)
                total_loss += loss
                n_batches += 1
                if (i + 1) % self.grad_accum_steps == 0 or (i + 1) == n_batches:
                    self.model.step_optimizer(total_steps)
                    self.model.zero_grads()
                if i % 10 == 0:
                    current_lr = lr * min(total_steps ** -0.5, total_steps * warmup_steps ** -1.5) if warmup_steps > 0 else lr
                    print(f'Step {i+1}/{n_batches}, Loss: {loss:.4f}, LR: {current_lr:.2e}', end='\r')
            avg_loss = total_loss / max(1, n_batches)
            self.history['train_loss'].append(avg_loss)
            val_loss = float('inf')
            perplexity = float('inf')
            if self.val_data and epoch % val_interval == 0:
                val_loss, perplexity = self.model.evaluate(
                    self.val_data, self.seq_len, self.batch_size, self.tokenizer
                )
                self.history['val_loss'].append(val_loss)
                self.history['perplexity'].append(perplexity)
                if save_best and val_loss < self.best_val_loss:
                    self.best_val_loss = val_loss
                    best_path = os.path.join(checkpoint_dir, 'best_model.pkl')
                    self.model.save(best_path, include_optimizer=True)
                    print(f"\n[INFO] Best model saved with validation loss: {val_loss:.4f}")
                    self.patience_counter = 0
                else:
                    self.patience_counter += 1
            epoch_time = time.time() - epoch_start
            print(f"\nEpoch {epoch} completed in {epoch_time:.2f}s | "
                  f"Train Loss: {avg_loss:.4f} | "
                  f"Val Loss: {val_loss:.4f} | "
                  f"Perplexity: {perplexity:.2f}")
            start_prompt = 'دوست '
            start_ids = [self.tokenizer.w2i.get(c, self.tokenizer.w2i['<unk>']) for c in start_prompt]
            gen = self.model.generate(start_ids, max_new_tokens=100, temperature=0.8, top_k=50, top_p=0.9)
            print('Sample:', self.tokenizer.decode(np.array(gen)))
            if epoch % 5 == 0:
                ckpt_path = os.path.join(checkpoint_dir, f'model_epoch_{epoch}.pkl')
                self.model.save(ckpt_path)
                print(f"[INFO] Checkpoint saved to {ckpt_path}")
            if early_stopping_patience > 0 and self.patience_counter >= early_stopping_patience:
                print(f"\n[INFO] Early stopping triggered after {epoch} epochs")
                break
        total_time = time.time() - start_time
        print(f"\nTraining completed in {total_time/60:.2f} minutes")
        return self.history

if __name__ == '__main__':
    seq_len = 128
    batch_size = 8
    epochs = 50
    lr = 6e-4
    try:
        with open('sample_text.txt', 'r', encoding='utf-8') as f:
            sample_text = f.read()
    except:
        sample_text = """
        دوست دارم برنامه‌نویسی کنم. این یک متن نمونه است برای آموزش مدل GPT کوچک.
        مدل می‌تواند کاراکترها را یاد بگیرد و متن تولید کند.
        هوش مصنوعی یکی از حوزه‌های پررونق در دنیای امروز است.
        مدل‌های زبانی بزرگ قادر به انجام کارهای شگفت‌انگیزی هستند.
        در این مثال ساده، ما یک مدل GPT کوچک را پیاده‌سازی می‌کنیم.
        """
    train_ratio = 0.9
    split_idx = int(len(sample_text) * train_ratio)
    train_text = sample_text[:split_idx]
    val_text = sample_text[split_idx:]
    print("Building tokenizer...")
    tok = BPETokenizer()
    tok.build_from_text([train_text], vocab_size=500)
    vocab_size = len(tok.vocab)
    print(f'Vocabulary size: {vocab_size}')
    print("Building model...")
    model = GPT(
        vocab_size=vocab_size,
        max_len=seq_len,
        d_model=256,
        num_heads=8,
        d_ff=1024,
        num_layers=6,
        dropout=0.1,
        use_rotary=False,
        rms_norm=True,
        layer_scale=True
    )
    print("\nStarting training...")
    trainer = Trainer(
        model=model,
        tokenizer=tok,
        train_data=train_text,
        val_data=val_text,
        seq_len=seq_len,
        batch_size=batch_size
    )
    history = trainer.train(
        epochs=epochs,
        lr=lr,
        weight_decay=0.1,
        warmup_steps=1000,
        grad_clip=1.0,
        val_interval=1,
        early_stopping_patience=10,
        checkpoint_dir='checkpoints'
    )
    model.save('gpt_final.pkl')
    print('Final model saved -> gpt_final.pkl')







"""
LICENSE:

Copyright 2025 ysnrfd

Timestamp: 2025-08-12

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to use,
copy, modify, and distribute the Software, subject to the following conditions:

1. The copyright notice, this permission notice, and all attribution information
   regarding the original author (ysnrfd) must be preserved in their entirety
   and must not be removed, altered, or obscured in any copies or derivative works.

2. Any modifications or derivative works must be clearly documented in a "CHANGELOG" or
   "NOTICE" file included with the Software. This documentation must include a detailed
   description of the changes made, the date of the modification, and the identity of
   the modifier.

3. The Software is provided "as is", without warranty of any kind, express or implied.
   The author shall not be liable for any damages arising from use of the Software.

4. Any attempt to remove or alter the original attribution or copyright information
   constitutes a violation of this license and may result in legal action.

"""