Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- config.json +30 -0
- generation_config.json +13 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +405 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +1294 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "</think>": 151668,
         | 
| 3 | 
            +
              "</tool_call>": 151658,
         | 
| 4 | 
            +
              "</tool_response>": 151666,
         | 
| 5 | 
            +
              "<think>": 151667,
         | 
| 6 | 
            +
              "<tool_call>": 151657,
         | 
| 7 | 
            +
              "<tool_response>": 151665,
         | 
| 8 | 
            +
              "<|box_end|>": 151649,
         | 
| 9 | 
            +
              "<|box_start|>": 151648,
         | 
| 10 | 
            +
              "<|endoftext|>": 151643,
         | 
| 11 | 
            +
              "<|file_sep|>": 151664,
         | 
| 12 | 
            +
              "<|fim_middle|>": 151660,
         | 
| 13 | 
            +
              "<|fim_pad|>": 151662,
         | 
| 14 | 
            +
              "<|fim_prefix|>": 151659,
         | 
| 15 | 
            +
              "<|fim_suffix|>": 151661,
         | 
| 16 | 
            +
              "<|im_end|>": 151645,
         | 
| 17 | 
            +
              "<|im_start|>": 151644,
         | 
| 18 | 
            +
              "<|image_pad|>": 151655,
         | 
| 19 | 
            +
              "<|object_ref_end|>": 151647,
         | 
| 20 | 
            +
              "<|object_ref_start|>": 151646,
         | 
| 21 | 
            +
              "<|quad_end|>": 151651,
         | 
| 22 | 
            +
              "<|quad_start|>": 151650,
         | 
| 23 | 
            +
              "<|repo_name|>": 151663,
         | 
| 24 | 
            +
              "<|video_pad|>": 151656,
         | 
| 25 | 
            +
              "<|vision_end|>": 151653,
         | 
| 26 | 
            +
              "<|vision_pad|>": 151654,
         | 
| 27 | 
            +
              "<|vision_start|>": 151652
         | 
| 28 | 
            +
            }
         | 
    	
        chat_template.jinja
    ADDED
    
    | @@ -0,0 +1,89 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {%- if tools %}
         | 
| 2 | 
            +
                {{- '<|im_start|>system\n' }}
         | 
| 3 | 
            +
                {%- if messages[0].role == 'system' %}
         | 
| 4 | 
            +
                    {{- messages[0].content + '\n\n' }}
         | 
| 5 | 
            +
                {%- endif %}
         | 
| 6 | 
            +
                {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
         | 
| 7 | 
            +
                {%- for tool in tools %}
         | 
| 8 | 
            +
                    {{- "\n" }}
         | 
| 9 | 
            +
                    {{- tool | tojson }}
         | 
| 10 | 
            +
                {%- endfor %}
         | 
| 11 | 
            +
                {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
         | 
| 12 | 
            +
            {%- else %}
         | 
| 13 | 
            +
                {%- if messages[0].role == 'system' %}
         | 
| 14 | 
            +
                    {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
         | 
| 15 | 
            +
                {%- endif %}
         | 
| 16 | 
            +
            {%- endif %}
         | 
| 17 | 
            +
            {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
         | 
| 18 | 
            +
            {%- for message in messages[::-1] %}
         | 
| 19 | 
            +
                {%- set index = (messages|length - 1) - loop.index0 %}
         | 
| 20 | 
            +
                {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
         | 
| 21 | 
            +
                    {%- set ns.multi_step_tool = false %}
         | 
| 22 | 
            +
                    {%- set ns.last_query_index = index %}
         | 
| 23 | 
            +
                {%- endif %}
         | 
| 24 | 
            +
            {%- endfor %}
         | 
| 25 | 
            +
            {%- for message in messages %}
         | 
| 26 | 
            +
                {%- if message.content is string %}
         | 
| 27 | 
            +
                    {%- set content = message.content %}
         | 
| 28 | 
            +
                {%- else %}
         | 
| 29 | 
            +
                    {%- set content = '' %}
         | 
| 30 | 
            +
                {%- endif %}
         | 
| 31 | 
            +
                {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
         | 
| 32 | 
            +
                    {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
         | 
| 33 | 
            +
                {%- elif message.role == "assistant" %}
         | 
| 34 | 
            +
                    {%- set reasoning_content = '' %}
         | 
| 35 | 
            +
                    {%- if message.reasoning_content is string %}
         | 
| 36 | 
            +
                        {%- set reasoning_content = message.reasoning_content %}
         | 
| 37 | 
            +
                    {%- else %}
         | 
| 38 | 
            +
                        {%- if '</think>' in content %}
         | 
| 39 | 
            +
                            {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
         | 
| 40 | 
            +
                            {%- set content = content.split('</think>')[-1].lstrip('\n') %}
         | 
| 41 | 
            +
                        {%- endif %}
         | 
| 42 | 
            +
                    {%- endif %}
         | 
| 43 | 
            +
                    {%- if loop.index0 > ns.last_query_index %}
         | 
| 44 | 
            +
                        {%- if loop.last or (not loop.last and reasoning_content) %}
         | 
| 45 | 
            +
                            {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
         | 
| 46 | 
            +
                        {%- else %}
         | 
| 47 | 
            +
                            {{- '<|im_start|>' + message.role + '\n' + content }}
         | 
| 48 | 
            +
                        {%- endif %}
         | 
| 49 | 
            +
                    {%- else %}
         | 
| 50 | 
            +
                        {{- '<|im_start|>' + message.role + '\n' + content }}
         | 
| 51 | 
            +
                    {%- endif %}
         | 
| 52 | 
            +
                    {%- if message.tool_calls %}
         | 
| 53 | 
            +
                        {%- for tool_call in message.tool_calls %}
         | 
| 54 | 
            +
                            {%- if (loop.first and content) or (not loop.first) %}
         | 
| 55 | 
            +
                                {{- '\n' }}
         | 
| 56 | 
            +
                            {%- endif %}
         | 
| 57 | 
            +
                            {%- if tool_call.function %}
         | 
| 58 | 
            +
                                {%- set tool_call = tool_call.function %}
         | 
| 59 | 
            +
                            {%- endif %}
         | 
| 60 | 
            +
                            {{- '<tool_call>\n{"name": "' }}
         | 
| 61 | 
            +
                            {{- tool_call.name }}
         | 
| 62 | 
            +
                            {{- '", "arguments": ' }}
         | 
| 63 | 
            +
                            {%- if tool_call.arguments is string %}
         | 
| 64 | 
            +
                                {{- tool_call.arguments }}
         | 
| 65 | 
            +
                            {%- else %}
         | 
| 66 | 
            +
                                {{- tool_call.arguments | tojson }}
         | 
| 67 | 
            +
                            {%- endif %}
         | 
| 68 | 
            +
                            {{- '}\n</tool_call>' }}
         | 
| 69 | 
            +
                        {%- endfor %}
         | 
| 70 | 
            +
                    {%- endif %}
         | 
| 71 | 
            +
                    {{- '<|im_end|>\n' }}
         | 
| 72 | 
            +
                {%- elif message.role == "tool" %}
         | 
| 73 | 
            +
                    {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
         | 
| 74 | 
            +
                        {{- '<|im_start|>user' }}
         | 
| 75 | 
            +
                    {%- endif %}
         | 
| 76 | 
            +
                    {{- '\n<tool_response>\n' }}
         | 
| 77 | 
            +
                    {{- content }}
         | 
| 78 | 
            +
                    {{- '\n</tool_response>' }}
         | 
| 79 | 
            +
                    {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
         | 
| 80 | 
            +
                        {{- '<|im_end|>\n' }}
         | 
| 81 | 
            +
                    {%- endif %}
         | 
| 82 | 
            +
                {%- endif %}
         | 
| 83 | 
            +
            {%- endfor %}
         | 
| 84 | 
            +
            {%- if add_generation_prompt %}
         | 
| 85 | 
            +
                {{- '<|im_start|>assistant\n' }}
         | 
| 86 | 
            +
                {%- if enable_thinking is defined and enable_thinking is false %}
         | 
| 87 | 
            +
                    {{- '<think>\n\n</think>\n\n' }}
         | 
| 88 | 
            +
                {%- endif %}
         | 
| 89 | 
            +
            {%- endif %}
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "Qwen3ForCausalLM"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "attention_bias": false,
         | 
| 6 | 
            +
              "attention_dropout": 0.0,
         | 
| 7 | 
            +
              "bos_token_id": 151643,
         | 
| 8 | 
            +
              "eos_token_id": 151645,
         | 
| 9 | 
            +
              "head_dim": 128,
         | 
| 10 | 
            +
              "hidden_act": "silu",
         | 
| 11 | 
            +
              "hidden_size": 2560,
         | 
| 12 | 
            +
              "initializer_range": 0.02,
         | 
| 13 | 
            +
              "intermediate_size": 9728,
         | 
| 14 | 
            +
              "max_position_embeddings": 40960,
         | 
| 15 | 
            +
              "max_window_layers": 36,
         | 
| 16 | 
            +
              "model_type": "qwen3",
         | 
| 17 | 
            +
              "num_attention_heads": 32,
         | 
| 18 | 
            +
              "num_hidden_layers": 36,
         | 
| 19 | 
            +
              "num_key_value_heads": 8,
         | 
| 20 | 
            +
              "rms_norm_eps": 1e-06,
         | 
| 21 | 
            +
              "rope_scaling": null,
         | 
| 22 | 
            +
              "rope_theta": 1000000,
         | 
| 23 | 
            +
              "sliding_window": null,
         | 
| 24 | 
            +
              "tie_word_embeddings": true,
         | 
| 25 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 26 | 
            +
              "transformers_version": "4.52.4",
         | 
| 27 | 
            +
              "use_cache": false,
         | 
| 28 | 
            +
              "use_sliding_window": false,
         | 
| 29 | 
            +
              "vocab_size": 151936
         | 
| 30 | 
            +
            }
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,13 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token_id": 151643,
         | 
| 3 | 
            +
              "do_sample": true,
         | 
| 4 | 
            +
              "eos_token_id": [
         | 
| 5 | 
            +
                151645,
         | 
| 6 | 
            +
                151643
         | 
| 7 | 
            +
              ],
         | 
| 8 | 
            +
              "pad_token_id": 151643,
         | 
| 9 | 
            +
              "temperature": 0.6,
         | 
| 10 | 
            +
              "top_k": 20,
         | 
| 11 | 
            +
              "top_p": 0.95,
         | 
| 12 | 
            +
              "transformers_version": "4.52.4"
         | 
| 13 | 
            +
            }
         | 
    	
        latest
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            global_step179
         | 
    	
        merges.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        model-00001-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3e2425215597484c88d1ed9575e711402c9cc3bf813103ba11743cfd1d4da3db
         | 
| 3 | 
            +
            size 4967215360
         | 
    	
        model-00002-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7469bcaedf2118d7fc31f6a8cb4617af75100f26ce4e3906f6589d4b83d4de06
         | 
| 3 | 
            +
            size 3077766632
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,405 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 8044936192
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
         | 
| 7 | 
            +
                "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 8 | 
            +
                "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 9 | 
            +
                "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 10 | 
            +
                "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 11 | 
            +
                "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 12 | 
            +
                "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 13 | 
            +
                "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 14 | 
            +
                "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 15 | 
            +
                "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 16 | 
            +
                "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 17 | 
            +
                "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 18 | 
            +
                "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 19 | 
            +
                "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 20 | 
            +
                "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 21 | 
            +
                "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 22 | 
            +
                "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 23 | 
            +
                "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 24 | 
            +
                "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 25 | 
            +
                "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 26 | 
            +
                "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 27 | 
            +
                "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 28 | 
            +
                "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 29 | 
            +
                "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 30 | 
            +
                "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 31 | 
            +
                "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 32 | 
            +
                "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 33 | 
            +
                "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 34 | 
            +
                "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 35 | 
            +
                "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 36 | 
            +
                "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 37 | 
            +
                "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 38 | 
            +
                "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 39 | 
            +
                "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 40 | 
            +
                "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 41 | 
            +
                "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 42 | 
            +
                "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 43 | 
            +
                "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 44 | 
            +
                "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 45 | 
            +
                "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 46 | 
            +
                "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 47 | 
            +
                "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 48 | 
            +
                "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 49 | 
            +
                "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 50 | 
            +
                "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 51 | 
            +
                "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 52 | 
            +
                "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 53 | 
            +
                "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 54 | 
            +
                "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 55 | 
            +
                "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 56 | 
            +
                "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 57 | 
            +
                "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 58 | 
            +
                "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 59 | 
            +
                "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 60 | 
            +
                "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 61 | 
            +
                "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 62 | 
            +
                "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 63 | 
            +
                "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 64 | 
            +
                "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 65 | 
            +
                "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 66 | 
            +
                "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 67 | 
            +
                "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 68 | 
            +
                "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 69 | 
            +
                "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 70 | 
            +
                "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 71 | 
            +
                "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 72 | 
            +
                "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 73 | 
            +
                "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 74 | 
            +
                "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 75 | 
            +
                "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 76 | 
            +
                "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 77 | 
            +
                "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 78 | 
            +
                "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 79 | 
            +
                "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 80 | 
            +
                "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 81 | 
            +
                "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 82 | 
            +
                "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 83 | 
            +
                "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 84 | 
            +
                "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 85 | 
            +
                "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 86 | 
            +
                "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 87 | 
            +
                "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 88 | 
            +
                "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 89 | 
            +
                "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 90 | 
            +
                "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 91 | 
            +
                "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 92 | 
            +
                "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 93 | 
            +
                "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 94 | 
            +
                "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 95 | 
            +
                "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 96 | 
            +
                "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 97 | 
            +
                "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 98 | 
            +
                "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 99 | 
            +
                "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 100 | 
            +
                "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 101 | 
            +
                "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 102 | 
            +
                "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 103 | 
            +
                "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 104 | 
            +
                "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 105 | 
            +
                "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 106 | 
            +
                "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 107 | 
            +
                "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 108 | 
            +
                "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 109 | 
            +
                "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 110 | 
            +
                "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 111 | 
            +
                "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 112 | 
            +
                "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 113 | 
            +
                "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 114 | 
            +
                "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 115 | 
            +
                "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 116 | 
            +
                "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 117 | 
            +
                "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 118 | 
            +
                "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 119 | 
            +
                "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 120 | 
            +
                "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 121 | 
            +
                "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 122 | 
            +
                "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 123 | 
            +
                "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 124 | 
            +
                "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 125 | 
            +
                "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 126 | 
            +
                "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 127 | 
            +
                "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 128 | 
            +
                "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 129 | 
            +
                "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 130 | 
            +
                "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 131 | 
            +
                "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 132 | 
            +
                "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 133 | 
            +
                "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 134 | 
            +
                "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 135 | 
            +
                "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 136 | 
            +
                "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 137 | 
            +
                "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 138 | 
            +
                "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 139 | 
            +
                "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 140 | 
            +
                "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 141 | 
            +
                "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 142 | 
            +
                "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 143 | 
            +
                "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 144 | 
            +
                "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 145 | 
            +
                "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 146 | 
            +
                "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 147 | 
            +
                "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 148 | 
            +
                "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 149 | 
            +
                "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 150 | 
            +
                "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 151 | 
            +
                "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 152 | 
            +
                "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 153 | 
            +
                "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 154 | 
            +
                "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 155 | 
            +
                "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 156 | 
            +
                "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 157 | 
            +
                "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 158 | 
            +
                "model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 159 | 
            +
                "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 160 | 
            +
                "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 161 | 
            +
                "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 162 | 
            +
                "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 163 | 
            +
                "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 164 | 
            +
                "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 165 | 
            +
                "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 166 | 
            +
                "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 167 | 
            +
                "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 168 | 
            +
                "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 169 | 
            +
                "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 170 | 
            +
                "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 171 | 
            +
                "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 172 | 
            +
                "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 173 | 
            +
                "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 174 | 
            +
                "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 175 | 
            +
                "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 176 | 
            +
                "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 177 | 
            +
                "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 178 | 
            +
                "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 179 | 
            +
                "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 180 | 
            +
                "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 181 | 
            +
                "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 182 | 
            +
                "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 183 | 
            +
                "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 184 | 
            +
                "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 185 | 
            +
                "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 186 | 
            +
                "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 187 | 
            +
                "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 188 | 
            +
                "model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 189 | 
            +
                "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 190 | 
            +
                "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 191 | 
            +
                "model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 192 | 
            +
                "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 193 | 
            +
                "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 194 | 
            +
                "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 195 | 
            +
                "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 196 | 
            +
                "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 197 | 
            +
                "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 198 | 
            +
                "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 199 | 
            +
                "model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 200 | 
            +
                "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 201 | 
            +
                "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 202 | 
            +
                "model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 203 | 
            +
                "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 204 | 
            +
                "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 205 | 
            +
                "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 206 | 
            +
                "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 207 | 
            +
                "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 208 | 
            +
                "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 209 | 
            +
                "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 210 | 
            +
                "model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 211 | 
            +
                "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 212 | 
            +
                "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 213 | 
            +
                "model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 214 | 
            +
                "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 215 | 
            +
                "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 216 | 
            +
                "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 217 | 
            +
                "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 218 | 
            +
                "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 219 | 
            +
                "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 220 | 
            +
                "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 221 | 
            +
                "model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 222 | 
            +
                "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 223 | 
            +
                "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 224 | 
            +
                "model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 225 | 
            +
                "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 226 | 
            +
                "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 227 | 
            +
                "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 228 | 
            +
                "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 229 | 
            +
                "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 230 | 
            +
                "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 231 | 
            +
                "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 232 | 
            +
                "model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 233 | 
            +
                "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 234 | 
            +
                "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 235 | 
            +
                "model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 236 | 
            +
                "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 237 | 
            +
                "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 238 | 
            +
                "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 239 | 
            +
                "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 240 | 
            +
                "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 241 | 
            +
                "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 242 | 
            +
                "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 243 | 
            +
                "model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 244 | 
            +
                "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 245 | 
            +
                "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 246 | 
            +
                "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 247 | 
            +
                "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 248 | 
            +
                "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 249 | 
            +
                "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 250 | 
            +
                "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 251 | 
            +
                "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 252 | 
            +
                "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 253 | 
            +
                "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 254 | 
            +
                "model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 255 | 
            +
                "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 256 | 
            +
                "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 257 | 
            +
                "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 258 | 
            +
                "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 259 | 
            +
                "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 260 | 
            +
                "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 261 | 
            +
                "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 262 | 
            +
                "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 263 | 
            +
                "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 264 | 
            +
                "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 265 | 
            +
                "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 266 | 
            +
                "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 267 | 
            +
                "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 268 | 
            +
                "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 269 | 
            +
                "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 270 | 
            +
                "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 271 | 
            +
                "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 272 | 
            +
                "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 273 | 
            +
                "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 274 | 
            +
                "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 275 | 
            +
                "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 276 | 
            +
                "model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 277 | 
            +
                "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 278 | 
            +
                "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 279 | 
            +
                "model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 280 | 
            +
                "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 281 | 
            +
                "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 282 | 
            +
                "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 283 | 
            +
                "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 284 | 
            +
                "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 285 | 
            +
                "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 286 | 
            +
                "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 287 | 
            +
                "model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 288 | 
            +
                "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 289 | 
            +
                "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 290 | 
            +
                "model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 291 | 
            +
                "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 292 | 
            +
                "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 293 | 
            +
                "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 294 | 
            +
                "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 295 | 
            +
                "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 296 | 
            +
                "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 297 | 
            +
                "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 298 | 
            +
                "model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 299 | 
            +
                "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 300 | 
            +
                "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 301 | 
            +
                "model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 302 | 
            +
                "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 303 | 
            +
                "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 304 | 
            +
                "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 305 | 
            +
                "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 306 | 
            +
                "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 307 | 
            +
                "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 308 | 
            +
                "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 309 | 
            +
                "model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 310 | 
            +
                "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 311 | 
            +
                "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 312 | 
            +
                "model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 313 | 
            +
                "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 314 | 
            +
                "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 315 | 
            +
                "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 316 | 
            +
                "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 317 | 
            +
                "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 318 | 
            +
                "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 319 | 
            +
                "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 320 | 
            +
                "model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 321 | 
            +
                "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 322 | 
            +
                "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 323 | 
            +
                "model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 324 | 
            +
                "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 325 | 
            +
                "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 326 | 
            +
                "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 327 | 
            +
                "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 328 | 
            +
                "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 329 | 
            +
                "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 330 | 
            +
                "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 331 | 
            +
                "model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 332 | 
            +
                "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 333 | 
            +
                "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 334 | 
            +
                "model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 335 | 
            +
                "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 336 | 
            +
                "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 337 | 
            +
                "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 338 | 
            +
                "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 339 | 
            +
                "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 340 | 
            +
                "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 341 | 
            +
                "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 342 | 
            +
                "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 343 | 
            +
                "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 344 | 
            +
                "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 345 | 
            +
                "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 346 | 
            +
                "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 347 | 
            +
                "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 348 | 
            +
                "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 349 | 
            +
                "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 350 | 
            +
                "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 351 | 
            +
                "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 352 | 
            +
                "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 353 | 
            +
                "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 354 | 
            +
                "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 355 | 
            +
                "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 356 | 
            +
                "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 357 | 
            +
                "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 358 | 
            +
                "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 359 | 
            +
                "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 360 | 
            +
                "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 361 | 
            +
                "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 362 | 
            +
                "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 363 | 
            +
                "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 364 | 
            +
                "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 365 | 
            +
                "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 366 | 
            +
                "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 367 | 
            +
                "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 368 | 
            +
                "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 369 | 
            +
                "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 370 | 
            +
                "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 371 | 
            +
                "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 372 | 
            +
                "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 373 | 
            +
                "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 374 | 
            +
                "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 375 | 
            +
                "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 376 | 
            +
                "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 377 | 
            +
                "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 378 | 
            +
                "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 379 | 
            +
                "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 380 | 
            +
                "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 381 | 
            +
                "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 382 | 
            +
                "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 383 | 
            +
                "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 384 | 
            +
                "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 385 | 
            +
                "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 386 | 
            +
                "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 387 | 
            +
                "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 388 | 
            +
                "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 389 | 
            +
                "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 390 | 
            +
                "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 391 | 
            +
                "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 392 | 
            +
                "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 393 | 
            +
                "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 394 | 
            +
                "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 395 | 
            +
                "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 396 | 
            +
                "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 397 | 
            +
                "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 398 | 
            +
                "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 399 | 
            +
                "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 400 | 
            +
                "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 401 | 
            +
                "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 402 | 
            +
                "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 403 | 
            +
                "model.norm.weight": "model-00002-of-00002.safetensors"
         | 
| 404 | 
            +
              }
         | 
| 405 | 
            +
            }
         | 
    	
        rng_state.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:835f869ea325fd6edf27b48b589309fb66641cb92b45f2fc13d1bb6e8814106c
         | 
| 3 | 
            +
            size 14244
         | 
    	
        scheduler.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:707c86685b9e1f735b18dc919713ae2cd51daab0a09a029c367289ebc04c3592
         | 
| 3 | 
            +
            size 1064
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|im_start|>",
         | 
| 4 | 
            +
                "<|im_end|>",
         | 
| 5 | 
            +
                "<|object_ref_start|>",
         | 
| 6 | 
            +
                "<|object_ref_end|>",
         | 
| 7 | 
            +
                "<|box_start|>",
         | 
| 8 | 
            +
                "<|box_end|>",
         | 
| 9 | 
            +
                "<|quad_start|>",
         | 
| 10 | 
            +
                "<|quad_end|>",
         | 
| 11 | 
            +
                "<|vision_start|>",
         | 
| 12 | 
            +
                "<|vision_end|>",
         | 
| 13 | 
            +
                "<|vision_pad|>",
         | 
| 14 | 
            +
                "<|image_pad|>",
         | 
| 15 | 
            +
                "<|video_pad|>"
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "eos_token": {
         | 
| 18 | 
            +
                "content": "<|im_end|>",
         | 
| 19 | 
            +
                "lstrip": false,
         | 
| 20 | 
            +
                "normalized": false,
         | 
| 21 | 
            +
                "rstrip": false,
         | 
| 22 | 
            +
                "single_word": false
         | 
| 23 | 
            +
              },
         | 
| 24 | 
            +
              "pad_token": {
         | 
| 25 | 
            +
                "content": "<|endoftext|>",
         | 
| 26 | 
            +
                "lstrip": false,
         | 
| 27 | 
            +
                "normalized": false,
         | 
| 28 | 
            +
                "rstrip": false,
         | 
| 29 | 
            +
                "single_word": false
         | 
| 30 | 
            +
              }
         | 
| 31 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
         | 
| 3 | 
            +
            size 11422654
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,240 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": false,
         | 
| 3 | 
            +
              "add_prefix_space": false,
         | 
| 4 | 
            +
              "added_tokens_decoder": {
         | 
| 5 | 
            +
                "151643": {
         | 
| 6 | 
            +
                  "content": "<|endoftext|>",
         | 
| 7 | 
            +
                  "lstrip": false,
         | 
| 8 | 
            +
                  "normalized": false,
         | 
| 9 | 
            +
                  "rstrip": false,
         | 
| 10 | 
            +
                  "single_word": false,
         | 
| 11 | 
            +
                  "special": true
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "151644": {
         | 
| 14 | 
            +
                  "content": "<|im_start|>",
         | 
| 15 | 
            +
                  "lstrip": false,
         | 
| 16 | 
            +
                  "normalized": false,
         | 
| 17 | 
            +
                  "rstrip": false,
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "special": true
         | 
| 20 | 
            +
                },
         | 
| 21 | 
            +
                "151645": {
         | 
| 22 | 
            +
                  "content": "<|im_end|>",
         | 
| 23 | 
            +
                  "lstrip": false,
         | 
| 24 | 
            +
                  "normalized": false,
         | 
| 25 | 
            +
                  "rstrip": false,
         | 
| 26 | 
            +
                  "single_word": false,
         | 
| 27 | 
            +
                  "special": true
         | 
| 28 | 
            +
                },
         | 
| 29 | 
            +
                "151646": {
         | 
| 30 | 
            +
                  "content": "<|object_ref_start|>",
         | 
| 31 | 
            +
                  "lstrip": false,
         | 
| 32 | 
            +
                  "normalized": false,
         | 
| 33 | 
            +
                  "rstrip": false,
         | 
| 34 | 
            +
                  "single_word": false,
         | 
| 35 | 
            +
                  "special": true
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "151647": {
         | 
| 38 | 
            +
                  "content": "<|object_ref_end|>",
         | 
| 39 | 
            +
                  "lstrip": false,
         | 
| 40 | 
            +
                  "normalized": false,
         | 
| 41 | 
            +
                  "rstrip": false,
         | 
| 42 | 
            +
                  "single_word": false,
         | 
| 43 | 
            +
                  "special": true
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "151648": {
         | 
| 46 | 
            +
                  "content": "<|box_start|>",
         | 
| 47 | 
            +
                  "lstrip": false,
         | 
| 48 | 
            +
                  "normalized": false,
         | 
| 49 | 
            +
                  "rstrip": false,
         | 
| 50 | 
            +
                  "single_word": false,
         | 
| 51 | 
            +
                  "special": true
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                "151649": {
         | 
| 54 | 
            +
                  "content": "<|box_end|>",
         | 
| 55 | 
            +
                  "lstrip": false,
         | 
| 56 | 
            +
                  "normalized": false,
         | 
| 57 | 
            +
                  "rstrip": false,
         | 
| 58 | 
            +
                  "single_word": false,
         | 
| 59 | 
            +
                  "special": true
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "151650": {
         | 
| 62 | 
            +
                  "content": "<|quad_start|>",
         | 
| 63 | 
            +
                  "lstrip": false,
         | 
| 64 | 
            +
                  "normalized": false,
         | 
| 65 | 
            +
                  "rstrip": false,
         | 
| 66 | 
            +
                  "single_word": false,
         | 
| 67 | 
            +
                  "special": true
         | 
| 68 | 
            +
                },
         | 
| 69 | 
            +
                "151651": {
         | 
| 70 | 
            +
                  "content": "<|quad_end|>",
         | 
| 71 | 
            +
                  "lstrip": false,
         | 
| 72 | 
            +
                  "normalized": false,
         | 
| 73 | 
            +
                  "rstrip": false,
         | 
| 74 | 
            +
                  "single_word": false,
         | 
| 75 | 
            +
                  "special": true
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                "151652": {
         | 
| 78 | 
            +
                  "content": "<|vision_start|>",
         | 
| 79 | 
            +
                  "lstrip": false,
         | 
| 80 | 
            +
                  "normalized": false,
         | 
| 81 | 
            +
                  "rstrip": false,
         | 
| 82 | 
            +
                  "single_word": false,
         | 
| 83 | 
            +
                  "special": true
         | 
| 84 | 
            +
                },
         | 
| 85 | 
            +
                "151653": {
         | 
| 86 | 
            +
                  "content": "<|vision_end|>",
         | 
| 87 | 
            +
                  "lstrip": false,
         | 
| 88 | 
            +
                  "normalized": false,
         | 
| 89 | 
            +
                  "rstrip": false,
         | 
| 90 | 
            +
                  "single_word": false,
         | 
| 91 | 
            +
                  "special": true
         | 
| 92 | 
            +
                },
         | 
| 93 | 
            +
                "151654": {
         | 
| 94 | 
            +
                  "content": "<|vision_pad|>",
         | 
| 95 | 
            +
                  "lstrip": false,
         | 
| 96 | 
            +
                  "normalized": false,
         | 
| 97 | 
            +
                  "rstrip": false,
         | 
| 98 | 
            +
                  "single_word": false,
         | 
| 99 | 
            +
                  "special": true
         | 
| 100 | 
            +
                },
         | 
| 101 | 
            +
                "151655": {
         | 
| 102 | 
            +
                  "content": "<|image_pad|>",
         | 
| 103 | 
            +
                  "lstrip": false,
         | 
| 104 | 
            +
                  "normalized": false,
         | 
| 105 | 
            +
                  "rstrip": false,
         | 
| 106 | 
            +
                  "single_word": false,
         | 
| 107 | 
            +
                  "special": true
         | 
| 108 | 
            +
                },
         | 
| 109 | 
            +
                "151656": {
         | 
| 110 | 
            +
                  "content": "<|video_pad|>",
         | 
| 111 | 
            +
                  "lstrip": false,
         | 
| 112 | 
            +
                  "normalized": false,
         | 
| 113 | 
            +
                  "rstrip": false,
         | 
| 114 | 
            +
                  "single_word": false,
         | 
| 115 | 
            +
                  "special": true
         | 
| 116 | 
            +
                },
         | 
| 117 | 
            +
                "151657": {
         | 
| 118 | 
            +
                  "content": "<tool_call>",
         | 
| 119 | 
            +
                  "lstrip": false,
         | 
| 120 | 
            +
                  "normalized": false,
         | 
| 121 | 
            +
                  "rstrip": false,
         | 
| 122 | 
            +
                  "single_word": false,
         | 
| 123 | 
            +
                  "special": false
         | 
| 124 | 
            +
                },
         | 
| 125 | 
            +
                "151658": {
         | 
| 126 | 
            +
                  "content": "</tool_call>",
         | 
| 127 | 
            +
                  "lstrip": false,
         | 
| 128 | 
            +
                  "normalized": false,
         | 
| 129 | 
            +
                  "rstrip": false,
         | 
| 130 | 
            +
                  "single_word": false,
         | 
| 131 | 
            +
                  "special": false
         | 
| 132 | 
            +
                },
         | 
| 133 | 
            +
                "151659": {
         | 
| 134 | 
            +
                  "content": "<|fim_prefix|>",
         | 
| 135 | 
            +
                  "lstrip": false,
         | 
| 136 | 
            +
                  "normalized": false,
         | 
| 137 | 
            +
                  "rstrip": false,
         | 
| 138 | 
            +
                  "single_word": false,
         | 
| 139 | 
            +
                  "special": false
         | 
| 140 | 
            +
                },
         | 
| 141 | 
            +
                "151660": {
         | 
| 142 | 
            +
                  "content": "<|fim_middle|>",
         | 
| 143 | 
            +
                  "lstrip": false,
         | 
| 144 | 
            +
                  "normalized": false,
         | 
| 145 | 
            +
                  "rstrip": false,
         | 
| 146 | 
            +
                  "single_word": false,
         | 
| 147 | 
            +
                  "special": false
         | 
| 148 | 
            +
                },
         | 
| 149 | 
            +
                "151661": {
         | 
| 150 | 
            +
                  "content": "<|fim_suffix|>",
         | 
| 151 | 
            +
                  "lstrip": false,
         | 
| 152 | 
            +
                  "normalized": false,
         | 
| 153 | 
            +
                  "rstrip": false,
         | 
| 154 | 
            +
                  "single_word": false,
         | 
| 155 | 
            +
                  "special": false
         | 
| 156 | 
            +
                },
         | 
| 157 | 
            +
                "151662": {
         | 
| 158 | 
            +
                  "content": "<|fim_pad|>",
         | 
| 159 | 
            +
                  "lstrip": false,
         | 
| 160 | 
            +
                  "normalized": false,
         | 
| 161 | 
            +
                  "rstrip": false,
         | 
| 162 | 
            +
                  "single_word": false,
         | 
| 163 | 
            +
                  "special": false
         | 
| 164 | 
            +
                },
         | 
| 165 | 
            +
                "151663": {
         | 
| 166 | 
            +
                  "content": "<|repo_name|>",
         | 
| 167 | 
            +
                  "lstrip": false,
         | 
| 168 | 
            +
                  "normalized": false,
         | 
| 169 | 
            +
                  "rstrip": false,
         | 
| 170 | 
            +
                  "single_word": false,
         | 
| 171 | 
            +
                  "special": false
         | 
| 172 | 
            +
                },
         | 
| 173 | 
            +
                "151664": {
         | 
| 174 | 
            +
                  "content": "<|file_sep|>",
         | 
| 175 | 
            +
                  "lstrip": false,
         | 
| 176 | 
            +
                  "normalized": false,
         | 
| 177 | 
            +
                  "rstrip": false,
         | 
| 178 | 
            +
                  "single_word": false,
         | 
| 179 | 
            +
                  "special": false
         | 
| 180 | 
            +
                },
         | 
| 181 | 
            +
                "151665": {
         | 
| 182 | 
            +
                  "content": "<tool_response>",
         | 
| 183 | 
            +
                  "lstrip": false,
         | 
| 184 | 
            +
                  "normalized": false,
         | 
| 185 | 
            +
                  "rstrip": false,
         | 
| 186 | 
            +
                  "single_word": false,
         | 
| 187 | 
            +
                  "special": false
         | 
| 188 | 
            +
                },
         | 
| 189 | 
            +
                "151666": {
         | 
| 190 | 
            +
                  "content": "</tool_response>",
         | 
| 191 | 
            +
                  "lstrip": false,
         | 
| 192 | 
            +
                  "normalized": false,
         | 
| 193 | 
            +
                  "rstrip": false,
         | 
| 194 | 
            +
                  "single_word": false,
         | 
| 195 | 
            +
                  "special": false
         | 
| 196 | 
            +
                },
         | 
| 197 | 
            +
                "151667": {
         | 
| 198 | 
            +
                  "content": "<think>",
         | 
| 199 | 
            +
                  "lstrip": false,
         | 
| 200 | 
            +
                  "normalized": false,
         | 
| 201 | 
            +
                  "rstrip": false,
         | 
| 202 | 
            +
                  "single_word": false,
         | 
| 203 | 
            +
                  "special": false
         | 
| 204 | 
            +
                },
         | 
| 205 | 
            +
                "151668": {
         | 
| 206 | 
            +
                  "content": "</think>",
         | 
| 207 | 
            +
                  "lstrip": false,
         | 
| 208 | 
            +
                  "normalized": false,
         | 
| 209 | 
            +
                  "rstrip": false,
         | 
| 210 | 
            +
                  "single_word": false,
         | 
| 211 | 
            +
                  "special": false
         | 
| 212 | 
            +
                }
         | 
| 213 | 
            +
              },
         | 
| 214 | 
            +
              "additional_special_tokens": [
         | 
| 215 | 
            +
                "<|im_start|>",
         | 
| 216 | 
            +
                "<|im_end|>",
         | 
| 217 | 
            +
                "<|object_ref_start|>",
         | 
| 218 | 
            +
                "<|object_ref_end|>",
         | 
| 219 | 
            +
                "<|box_start|>",
         | 
| 220 | 
            +
                "<|box_end|>",
         | 
| 221 | 
            +
                "<|quad_start|>",
         | 
| 222 | 
            +
                "<|quad_end|>",
         | 
| 223 | 
            +
                "<|vision_start|>",
         | 
| 224 | 
            +
                "<|vision_end|>",
         | 
| 225 | 
            +
                "<|vision_pad|>",
         | 
| 226 | 
            +
                "<|image_pad|>",
         | 
| 227 | 
            +
                "<|video_pad|>"
         | 
| 228 | 
            +
              ],
         | 
| 229 | 
            +
              "bos_token": null,
         | 
| 230 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 231 | 
            +
              "eos_token": "<|im_end|>",
         | 
| 232 | 
            +
              "errors": "replace",
         | 
| 233 | 
            +
              "extra_special_tokens": {},
         | 
| 234 | 
            +
              "model_max_length": 131072,
         | 
| 235 | 
            +
              "pad_token": "<|endoftext|>",
         | 
| 236 | 
            +
              "padding_side": "right",
         | 
| 237 | 
            +
              "split_special_tokens": false,
         | 
| 238 | 
            +
              "tokenizer_class": "Qwen2Tokenizer",
         | 
| 239 | 
            +
              "unk_token": null
         | 
| 240 | 
            +
            }
         | 
    	
        trainer_state.json
    ADDED
    
    | @@ -0,0 +1,1294 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "best_global_step": null,
         | 
| 3 | 
            +
              "best_metric": null,
         | 
| 4 | 
            +
              "best_model_checkpoint": null,
         | 
| 5 | 
            +
              "epoch": 1.0,
         | 
| 6 | 
            +
              "eval_steps": 500,
         | 
| 7 | 
            +
              "global_step": 180,
         | 
| 8 | 
            +
              "is_hyper_param_search": false,
         | 
| 9 | 
            +
              "is_local_process_zero": true,
         | 
| 10 | 
            +
              "is_world_process_zero": true,
         | 
| 11 | 
            +
              "log_history": [
         | 
| 12 | 
            +
                {
         | 
| 13 | 
            +
                  "epoch": 0.0055768560474032764,
         | 
| 14 | 
            +
                  "grad_norm": 46.09545673843412,
         | 
| 15 | 
            +
                  "learning_rate": 0.0,
         | 
| 16 | 
            +
                  "loss": 1.7007,
         | 
| 17 | 
            +
                  "step": 1
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                {
         | 
| 20 | 
            +
                  "epoch": 0.011153712094806553,
         | 
| 21 | 
            +
                  "grad_norm": 44.46037462061874,
         | 
| 22 | 
            +
                  "learning_rate": 2.7777777777777776e-07,
         | 
| 23 | 
            +
                  "loss": 1.6776,
         | 
| 24 | 
            +
                  "step": 2
         | 
| 25 | 
            +
                },
         | 
| 26 | 
            +
                {
         | 
| 27 | 
            +
                  "epoch": 0.01673056814220983,
         | 
| 28 | 
            +
                  "grad_norm": 40.73202594632966,
         | 
| 29 | 
            +
                  "learning_rate": 5.555555555555555e-07,
         | 
| 30 | 
            +
                  "loss": 1.5002,
         | 
| 31 | 
            +
                  "step": 3
         | 
| 32 | 
            +
                },
         | 
| 33 | 
            +
                {
         | 
| 34 | 
            +
                  "epoch": 0.022307424189613106,
         | 
| 35 | 
            +
                  "grad_norm": 42.88149317876023,
         | 
| 36 | 
            +
                  "learning_rate": 8.333333333333333e-07,
         | 
| 37 | 
            +
                  "loss": 1.6238,
         | 
| 38 | 
            +
                  "step": 4
         | 
| 39 | 
            +
                },
         | 
| 40 | 
            +
                {
         | 
| 41 | 
            +
                  "epoch": 0.027884280237016383,
         | 
| 42 | 
            +
                  "grad_norm": 42.513311455243326,
         | 
| 43 | 
            +
                  "learning_rate": 1.111111111111111e-06,
         | 
| 44 | 
            +
                  "loss": 1.678,
         | 
| 45 | 
            +
                  "step": 5
         | 
| 46 | 
            +
                },
         | 
| 47 | 
            +
                {
         | 
| 48 | 
            +
                  "epoch": 0.03346113628441966,
         | 
| 49 | 
            +
                  "grad_norm": 43.24081118630191,
         | 
| 50 | 
            +
                  "learning_rate": 1.3888888888888892e-06,
         | 
| 51 | 
            +
                  "loss": 1.7263,
         | 
| 52 | 
            +
                  "step": 6
         | 
| 53 | 
            +
                },
         | 
| 54 | 
            +
                {
         | 
| 55 | 
            +
                  "epoch": 0.03903799233182294,
         | 
| 56 | 
            +
                  "grad_norm": 25.77384950516741,
         | 
| 57 | 
            +
                  "learning_rate": 1.6666666666666667e-06,
         | 
| 58 | 
            +
                  "loss": 1.272,
         | 
| 59 | 
            +
                  "step": 7
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                {
         | 
| 62 | 
            +
                  "epoch": 0.04461484837922621,
         | 
| 63 | 
            +
                  "grad_norm": 24.137113597713526,
         | 
| 64 | 
            +
                  "learning_rate": 1.944444444444445e-06,
         | 
| 65 | 
            +
                  "loss": 1.1886,
         | 
| 66 | 
            +
                  "step": 8
         | 
| 67 | 
            +
                },
         | 
| 68 | 
            +
                {
         | 
| 69 | 
            +
                  "epoch": 0.050191704426629485,
         | 
| 70 | 
            +
                  "grad_norm": 11.629783818575346,
         | 
| 71 | 
            +
                  "learning_rate": 2.222222222222222e-06,
         | 
| 72 | 
            +
                  "loss": 1.2781,
         | 
| 73 | 
            +
                  "step": 9
         | 
| 74 | 
            +
                },
         | 
| 75 | 
            +
                {
         | 
| 76 | 
            +
                  "epoch": 0.055768560474032766,
         | 
| 77 | 
            +
                  "grad_norm": 8.00658343314912,
         | 
| 78 | 
            +
                  "learning_rate": 2.5e-06,
         | 
| 79 | 
            +
                  "loss": 1.0554,
         | 
| 80 | 
            +
                  "step": 10
         | 
| 81 | 
            +
                },
         | 
| 82 | 
            +
                {
         | 
| 83 | 
            +
                  "epoch": 0.06134541652143604,
         | 
| 84 | 
            +
                  "grad_norm": 7.16421136479377,
         | 
| 85 | 
            +
                  "learning_rate": 2.7777777777777783e-06,
         | 
| 86 | 
            +
                  "loss": 1.172,
         | 
| 87 | 
            +
                  "step": 11
         | 
| 88 | 
            +
                },
         | 
| 89 | 
            +
                {
         | 
| 90 | 
            +
                  "epoch": 0.06692227256883931,
         | 
| 91 | 
            +
                  "grad_norm": 4.137822360489128,
         | 
| 92 | 
            +
                  "learning_rate": 3.055555555555556e-06,
         | 
| 93 | 
            +
                  "loss": 1.0006,
         | 
| 94 | 
            +
                  "step": 12
         | 
| 95 | 
            +
                },
         | 
| 96 | 
            +
                {
         | 
| 97 | 
            +
                  "epoch": 0.0724991286162426,
         | 
| 98 | 
            +
                  "grad_norm": 2.9965048555106204,
         | 
| 99 | 
            +
                  "learning_rate": 3.3333333333333333e-06,
         | 
| 100 | 
            +
                  "loss": 0.8589,
         | 
| 101 | 
            +
                  "step": 13
         | 
| 102 | 
            +
                },
         | 
| 103 | 
            +
                {
         | 
| 104 | 
            +
                  "epoch": 0.07807598466364588,
         | 
| 105 | 
            +
                  "grad_norm": 3.1452698509974435,
         | 
| 106 | 
            +
                  "learning_rate": 3.6111111111111115e-06,
         | 
| 107 | 
            +
                  "loss": 1.0973,
         | 
| 108 | 
            +
                  "step": 14
         | 
| 109 | 
            +
                },
         | 
| 110 | 
            +
                {
         | 
| 111 | 
            +
                  "epoch": 0.08365284071104914,
         | 
| 112 | 
            +
                  "grad_norm": 2.8688258039939702,
         | 
| 113 | 
            +
                  "learning_rate": 3.88888888888889e-06,
         | 
| 114 | 
            +
                  "loss": 1.2093,
         | 
| 115 | 
            +
                  "step": 15
         | 
| 116 | 
            +
                },
         | 
| 117 | 
            +
                {
         | 
| 118 | 
            +
                  "epoch": 0.08922969675845242,
         | 
| 119 | 
            +
                  "grad_norm": 2.0484453697226055,
         | 
| 120 | 
            +
                  "learning_rate": 4.166666666666667e-06,
         | 
| 121 | 
            +
                  "loss": 0.9244,
         | 
| 122 | 
            +
                  "step": 16
         | 
| 123 | 
            +
                },
         | 
| 124 | 
            +
                {
         | 
| 125 | 
            +
                  "epoch": 0.0948065528058557,
         | 
| 126 | 
            +
                  "grad_norm": 2.4395289504901303,
         | 
| 127 | 
            +
                  "learning_rate": 4.444444444444444e-06,
         | 
| 128 | 
            +
                  "loss": 0.9074,
         | 
| 129 | 
            +
                  "step": 17
         | 
| 130 | 
            +
                },
         | 
| 131 | 
            +
                {
         | 
| 132 | 
            +
                  "epoch": 0.10038340885325897,
         | 
| 133 | 
            +
                  "grad_norm": 3.3112350184991084,
         | 
| 134 | 
            +
                  "learning_rate": 4.722222222222222e-06,
         | 
| 135 | 
            +
                  "loss": 0.9056,
         | 
| 136 | 
            +
                  "step": 18
         | 
| 137 | 
            +
                },
         | 
| 138 | 
            +
                {
         | 
| 139 | 
            +
                  "epoch": 0.10596026490066225,
         | 
| 140 | 
            +
                  "grad_norm": 2.2238505337460017,
         | 
| 141 | 
            +
                  "learning_rate": 5e-06,
         | 
| 142 | 
            +
                  "loss": 0.9156,
         | 
| 143 | 
            +
                  "step": 19
         | 
| 144 | 
            +
                },
         | 
| 145 | 
            +
                {
         | 
| 146 | 
            +
                  "epoch": 0.11153712094806553,
         | 
| 147 | 
            +
                  "grad_norm": 1.6023122355959452,
         | 
| 148 | 
            +
                  "learning_rate": 4.999529926121254e-06,
         | 
| 149 | 
            +
                  "loss": 0.7145,
         | 
| 150 | 
            +
                  "step": 20
         | 
| 151 | 
            +
                },
         | 
| 152 | 
            +
                {
         | 
| 153 | 
            +
                  "epoch": 0.1171139769954688,
         | 
| 154 | 
            +
                  "grad_norm": 1.5747014721624342,
         | 
| 155 | 
            +
                  "learning_rate": 4.998119881260576e-06,
         | 
| 156 | 
            +
                  "loss": 0.9797,
         | 
| 157 | 
            +
                  "step": 21
         | 
| 158 | 
            +
                },
         | 
| 159 | 
            +
                {
         | 
| 160 | 
            +
                  "epoch": 0.12269083304287208,
         | 
| 161 | 
            +
                  "grad_norm": 1.3008124678483608,
         | 
| 162 | 
            +
                  "learning_rate": 4.995770395678171e-06,
         | 
| 163 | 
            +
                  "loss": 0.8005,
         | 
| 164 | 
            +
                  "step": 22
         | 
| 165 | 
            +
                },
         | 
| 166 | 
            +
                {
         | 
| 167 | 
            +
                  "epoch": 0.12826768909027536,
         | 
| 168 | 
            +
                  "grad_norm": 1.3341513132245302,
         | 
| 169 | 
            +
                  "learning_rate": 4.99248235291948e-06,
         | 
| 170 | 
            +
                  "loss": 0.9707,
         | 
| 171 | 
            +
                  "step": 23
         | 
| 172 | 
            +
                },
         | 
| 173 | 
            +
                {
         | 
| 174 | 
            +
                  "epoch": 0.13384454513767863,
         | 
| 175 | 
            +
                  "grad_norm": 1.2836163377989422,
         | 
| 176 | 
            +
                  "learning_rate": 4.9882569894829146e-06,
         | 
| 177 | 
            +
                  "loss": 0.8303,
         | 
| 178 | 
            +
                  "step": 24
         | 
| 179 | 
            +
                },
         | 
| 180 | 
            +
                {
         | 
| 181 | 
            +
                  "epoch": 0.13942140118508192,
         | 
| 182 | 
            +
                  "grad_norm": 1.5625132921969171,
         | 
| 183 | 
            +
                  "learning_rate": 4.983095894354858e-06,
         | 
| 184 | 
            +
                  "loss": 1.012,
         | 
| 185 | 
            +
                  "step": 25
         | 
| 186 | 
            +
                },
         | 
| 187 | 
            +
                {
         | 
| 188 | 
            +
                  "epoch": 0.1449982572324852,
         | 
| 189 | 
            +
                  "grad_norm": 1.3279470446330688,
         | 
| 190 | 
            +
                  "learning_rate": 4.977001008412113e-06,
         | 
| 191 | 
            +
                  "loss": 0.8311,
         | 
| 192 | 
            +
                  "step": 26
         | 
| 193 | 
            +
                },
         | 
| 194 | 
            +
                {
         | 
| 195 | 
            +
                  "epoch": 0.15057511327988846,
         | 
| 196 | 
            +
                  "grad_norm": 1.1984169005450507,
         | 
| 197 | 
            +
                  "learning_rate": 4.969974623692023e-06,
         | 
| 198 | 
            +
                  "loss": 0.701,
         | 
| 199 | 
            +
                  "step": 27
         | 
| 200 | 
            +
                },
         | 
| 201 | 
            +
                {
         | 
| 202 | 
            +
                  "epoch": 0.15615196932729175,
         | 
| 203 | 
            +
                  "grad_norm": 1.2333632916915551,
         | 
| 204 | 
            +
                  "learning_rate": 4.962019382530521e-06,
         | 
| 205 | 
            +
                  "loss": 0.8799,
         | 
| 206 | 
            +
                  "step": 28
         | 
| 207 | 
            +
                },
         | 
| 208 | 
            +
                {
         | 
| 209 | 
            +
                  "epoch": 0.16172882537469502,
         | 
| 210 | 
            +
                  "grad_norm": 1.1133972779802328,
         | 
| 211 | 
            +
                  "learning_rate": 4.953138276568462e-06,
         | 
| 212 | 
            +
                  "loss": 0.75,
         | 
| 213 | 
            +
                  "step": 29
         | 
| 214 | 
            +
                },
         | 
| 215 | 
            +
                {
         | 
| 216 | 
            +
                  "epoch": 0.16730568142209828,
         | 
| 217 | 
            +
                  "grad_norm": 1.0517214425691086,
         | 
| 218 | 
            +
                  "learning_rate": 4.943334645626589e-06,
         | 
| 219 | 
            +
                  "loss": 0.7046,
         | 
| 220 | 
            +
                  "step": 30
         | 
| 221 | 
            +
                },
         | 
| 222 | 
            +
                {
         | 
| 223 | 
            +
                  "epoch": 0.17288253746950158,
         | 
| 224 | 
            +
                  "grad_norm": 0.9434629605801058,
         | 
| 225 | 
            +
                  "learning_rate": 4.93261217644956e-06,
         | 
| 226 | 
            +
                  "loss": 0.6824,
         | 
| 227 | 
            +
                  "step": 31
         | 
| 228 | 
            +
                },
         | 
| 229 | 
            +
                {
         | 
| 230 | 
            +
                  "epoch": 0.17845939351690485,
         | 
| 231 | 
            +
                  "grad_norm": 1.1847049987820477,
         | 
| 232 | 
            +
                  "learning_rate": 4.9209749013195155e-06,
         | 
| 233 | 
            +
                  "loss": 0.8257,
         | 
| 234 | 
            +
                  "step": 32
         | 
| 235 | 
            +
                },
         | 
| 236 | 
            +
                {
         | 
| 237 | 
            +
                  "epoch": 0.1840362495643081,
         | 
| 238 | 
            +
                  "grad_norm": 1.0458338052848428,
         | 
| 239 | 
            +
                  "learning_rate": 4.908427196539701e-06,
         | 
| 240 | 
            +
                  "loss": 0.8103,
         | 
| 241 | 
            +
                  "step": 33
         | 
| 242 | 
            +
                },
         | 
| 243 | 
            +
                {
         | 
| 244 | 
            +
                  "epoch": 0.1896131056117114,
         | 
| 245 | 
            +
                  "grad_norm": 1.0107452620708213,
         | 
| 246 | 
            +
                  "learning_rate": 4.894973780788722e-06,
         | 
| 247 | 
            +
                  "loss": 0.8077,
         | 
| 248 | 
            +
                  "step": 34
         | 
| 249 | 
            +
                },
         | 
| 250 | 
            +
                {
         | 
| 251 | 
            +
                  "epoch": 0.19518996165911467,
         | 
| 252 | 
            +
                  "grad_norm": 1.0732542601644082,
         | 
| 253 | 
            +
                  "learning_rate": 4.8806197133460385e-06,
         | 
| 254 | 
            +
                  "loss": 0.83,
         | 
| 255 | 
            +
                  "step": 35
         | 
| 256 | 
            +
                },
         | 
| 257 | 
            +
                {
         | 
| 258 | 
            +
                  "epoch": 0.20076681770651794,
         | 
| 259 | 
            +
                  "grad_norm": 1.111873065908315,
         | 
| 260 | 
            +
                  "learning_rate": 4.865370392189377e-06,
         | 
| 261 | 
            +
                  "loss": 0.8261,
         | 
| 262 | 
            +
                  "step": 36
         | 
| 263 | 
            +
                },
         | 
| 264 | 
            +
                {
         | 
| 265 | 
            +
                  "epoch": 0.20634367375392124,
         | 
| 266 | 
            +
                  "grad_norm": 0.9469124459097857,
         | 
| 267 | 
            +
                  "learning_rate": 4.849231551964771e-06,
         | 
| 268 | 
            +
                  "loss": 0.7354,
         | 
| 269 | 
            +
                  "step": 37
         | 
| 270 | 
            +
                },
         | 
| 271 | 
            +
                {
         | 
| 272 | 
            +
                  "epoch": 0.2119205298013245,
         | 
| 273 | 
            +
                  "grad_norm": 0.9890209354758053,
         | 
| 274 | 
            +
                  "learning_rate": 4.832209261830002e-06,
         | 
| 275 | 
            +
                  "loss": 0.7614,
         | 
| 276 | 
            +
                  "step": 38
         | 
| 277 | 
            +
                },
         | 
| 278 | 
            +
                {
         | 
| 279 | 
            +
                  "epoch": 0.21749738584872777,
         | 
| 280 | 
            +
                  "grad_norm": 0.9617476508331165,
         | 
| 281 | 
            +
                  "learning_rate": 4.814309923172227e-06,
         | 
| 282 | 
            +
                  "loss": 0.6634,
         | 
| 283 | 
            +
                  "step": 39
         | 
| 284 | 
            +
                },
         | 
| 285 | 
            +
                {
         | 
| 286 | 
            +
                  "epoch": 0.22307424189613106,
         | 
| 287 | 
            +
                  "grad_norm": 0.8693853556809209,
         | 
| 288 | 
            +
                  "learning_rate": 4.7955402672006855e-06,
         | 
| 289 | 
            +
                  "loss": 0.6524,
         | 
| 290 | 
            +
                  "step": 40
         | 
| 291 | 
            +
                },
         | 
| 292 | 
            +
                {
         | 
| 293 | 
            +
                  "epoch": 0.22865109794353433,
         | 
| 294 | 
            +
                  "grad_norm": 1.1164427987030467,
         | 
| 295 | 
            +
                  "learning_rate": 4.775907352415367e-06,
         | 
| 296 | 
            +
                  "loss": 0.9437,
         | 
| 297 | 
            +
                  "step": 41
         | 
| 298 | 
            +
                },
         | 
| 299 | 
            +
                {
         | 
| 300 | 
            +
                  "epoch": 0.2342279539909376,
         | 
| 301 | 
            +
                  "grad_norm": 1.0342203325734225,
         | 
| 302 | 
            +
                  "learning_rate": 4.755418561952595e-06,
         | 
| 303 | 
            +
                  "loss": 0.7833,
         | 
| 304 | 
            +
                  "step": 42
         | 
| 305 | 
            +
                },
         | 
| 306 | 
            +
                {
         | 
| 307 | 
            +
                  "epoch": 0.2398048100383409,
         | 
| 308 | 
            +
                  "grad_norm": 1.0381130170634878,
         | 
| 309 | 
            +
                  "learning_rate": 4.734081600808531e-06,
         | 
| 310 | 
            +
                  "loss": 0.8537,
         | 
| 311 | 
            +
                  "step": 43
         | 
| 312 | 
            +
                },
         | 
| 313 | 
            +
                {
         | 
| 314 | 
            +
                  "epoch": 0.24538166608574416,
         | 
| 315 | 
            +
                  "grad_norm": 0.980064465437933,
         | 
| 316 | 
            +
                  "learning_rate": 4.711904492941644e-06,
         | 
| 317 | 
            +
                  "loss": 0.7711,
         | 
| 318 | 
            +
                  "step": 44
         | 
| 319 | 
            +
                },
         | 
| 320 | 
            +
                {
         | 
| 321 | 
            +
                  "epoch": 0.25095852213314745,
         | 
| 322 | 
            +
                  "grad_norm": 2.4464904323304255,
         | 
| 323 | 
            +
                  "learning_rate": 4.688895578255228e-06,
         | 
| 324 | 
            +
                  "loss": 0.8071,
         | 
| 325 | 
            +
                  "step": 45
         | 
| 326 | 
            +
                },
         | 
| 327 | 
            +
                {
         | 
| 328 | 
            +
                  "epoch": 0.2565353781805507,
         | 
| 329 | 
            +
                  "grad_norm": 0.9568068666237374,
         | 
| 330 | 
            +
                  "learning_rate": 4.665063509461098e-06,
         | 
| 331 | 
            +
                  "loss": 0.7486,
         | 
| 332 | 
            +
                  "step": 46
         | 
| 333 | 
            +
                },
         | 
| 334 | 
            +
                {
         | 
| 335 | 
            +
                  "epoch": 0.262112234227954,
         | 
| 336 | 
            +
                  "grad_norm": 0.9773834471749688,
         | 
| 337 | 
            +
                  "learning_rate": 4.640417248825667e-06,
         | 
| 338 | 
            +
                  "loss": 0.6626,
         | 
| 339 | 
            +
                  "step": 47
         | 
| 340 | 
            +
                },
         | 
| 341 | 
            +
                {
         | 
| 342 | 
            +
                  "epoch": 0.26768909027535726,
         | 
| 343 | 
            +
                  "grad_norm": 0.9467873226243072,
         | 
| 344 | 
            +
                  "learning_rate": 4.614966064799603e-06,
         | 
| 345 | 
            +
                  "loss": 0.7737,
         | 
| 346 | 
            +
                  "step": 48
         | 
| 347 | 
            +
                },
         | 
| 348 | 
            +
                {
         | 
| 349 | 
            +
                  "epoch": 0.2732659463227605,
         | 
| 350 | 
            +
                  "grad_norm": 0.929090416098371,
         | 
| 351 | 
            +
                  "learning_rate": 4.588719528532342e-06,
         | 
| 352 | 
            +
                  "loss": 0.7288,
         | 
| 353 | 
            +
                  "step": 49
         | 
| 354 | 
            +
                },
         | 
| 355 | 
            +
                {
         | 
| 356 | 
            +
                  "epoch": 0.27884280237016384,
         | 
| 357 | 
            +
                  "grad_norm": 0.9558116358409616,
         | 
| 358 | 
            +
                  "learning_rate": 4.561687510272767e-06,
         | 
| 359 | 
            +
                  "loss": 0.7173,
         | 
| 360 | 
            +
                  "step": 50
         | 
| 361 | 
            +
                },
         | 
| 362 | 
            +
                {
         | 
| 363 | 
            +
                  "epoch": 0.2844196584175671,
         | 
| 364 | 
            +
                  "grad_norm": 1.0358016086386252,
         | 
| 365 | 
            +
                  "learning_rate": 4.533880175657419e-06,
         | 
| 366 | 
            +
                  "loss": 0.8558,
         | 
| 367 | 
            +
                  "step": 51
         | 
| 368 | 
            +
                },
         | 
| 369 | 
            +
                {
         | 
| 370 | 
            +
                  "epoch": 0.2899965144649704,
         | 
| 371 | 
            +
                  "grad_norm": 0.9268356298097264,
         | 
| 372 | 
            +
                  "learning_rate": 4.50530798188761e-06,
         | 
| 373 | 
            +
                  "loss": 0.6913,
         | 
| 374 | 
            +
                  "step": 52
         | 
| 375 | 
            +
                },
         | 
| 376 | 
            +
                {
         | 
| 377 | 
            +
                  "epoch": 0.29557337051237365,
         | 
| 378 | 
            +
                  "grad_norm": 0.9026491423974176,
         | 
| 379 | 
            +
                  "learning_rate": 4.475981673796899e-06,
         | 
| 380 | 
            +
                  "loss": 0.6573,
         | 
| 381 | 
            +
                  "step": 53
         | 
| 382 | 
            +
                },
         | 
| 383 | 
            +
                {
         | 
| 384 | 
            +
                  "epoch": 0.3011502265597769,
         | 
| 385 | 
            +
                  "grad_norm": 0.9341984552378991,
         | 
| 386 | 
            +
                  "learning_rate": 4.445912279810401e-06,
         | 
| 387 | 
            +
                  "loss": 0.7178,
         | 
| 388 | 
            +
                  "step": 54
         | 
| 389 | 
            +
                },
         | 
| 390 | 
            +
                {
         | 
| 391 | 
            +
                  "epoch": 0.3067270826071802,
         | 
| 392 | 
            +
                  "grad_norm": 0.963698636099554,
         | 
| 393 | 
            +
                  "learning_rate": 4.415111107797445e-06,
         | 
| 394 | 
            +
                  "loss": 0.672,
         | 
| 395 | 
            +
                  "step": 55
         | 
| 396 | 
            +
                },
         | 
| 397 | 
            +
                {
         | 
| 398 | 
            +
                  "epoch": 0.3123039386545835,
         | 
| 399 | 
            +
                  "grad_norm": 1.0123866280188825,
         | 
| 400 | 
            +
                  "learning_rate": 4.3835897408191515e-06,
         | 
| 401 | 
            +
                  "loss": 0.7958,
         | 
| 402 | 
            +
                  "step": 56
         | 
| 403 | 
            +
                },
         | 
| 404 | 
            +
                {
         | 
| 405 | 
            +
                  "epoch": 0.31788079470198677,
         | 
| 406 | 
            +
                  "grad_norm": 1.0536090394015367,
         | 
| 407 | 
            +
                  "learning_rate": 4.351360032772512e-06,
         | 
| 408 | 
            +
                  "loss": 0.8384,
         | 
| 409 | 
            +
                  "step": 57
         | 
| 410 | 
            +
                },
         | 
| 411 | 
            +
                {
         | 
| 412 | 
            +
                  "epoch": 0.32345765074939004,
         | 
| 413 | 
            +
                  "grad_norm": 1.005997664037765,
         | 
| 414 | 
            +
                  "learning_rate": 4.318434103932622e-06,
         | 
| 415 | 
            +
                  "loss": 0.8511,
         | 
| 416 | 
            +
                  "step": 58
         | 
| 417 | 
            +
                },
         | 
| 418 | 
            +
                {
         | 
| 419 | 
            +
                  "epoch": 0.3290345067967933,
         | 
| 420 | 
            +
                  "grad_norm": 0.9082165011415732,
         | 
| 421 | 
            +
                  "learning_rate": 4.284824336394748e-06,
         | 
| 422 | 
            +
                  "loss": 0.6731,
         | 
| 423 | 
            +
                  "step": 59
         | 
| 424 | 
            +
                },
         | 
| 425 | 
            +
                {
         | 
| 426 | 
            +
                  "epoch": 0.33461136284419657,
         | 
| 427 | 
            +
                  "grad_norm": 0.9309889749980601,
         | 
| 428 | 
            +
                  "learning_rate": 4.250543369417921e-06,
         | 
| 429 | 
            +
                  "loss": 0.7276,
         | 
| 430 | 
            +
                  "step": 60
         | 
| 431 | 
            +
                },
         | 
| 432 | 
            +
                {
         | 
| 433 | 
            +
                  "epoch": 0.34018821889159984,
         | 
| 434 | 
            +
                  "grad_norm": 1.7819442287605565,
         | 
| 435 | 
            +
                  "learning_rate": 4.215604094671835e-06,
         | 
| 436 | 
            +
                  "loss": 0.7831,
         | 
| 437 | 
            +
                  "step": 61
         | 
| 438 | 
            +
                },
         | 
| 439 | 
            +
                {
         | 
| 440 | 
            +
                  "epoch": 0.34576507493900316,
         | 
| 441 | 
            +
                  "grad_norm": 0.9434498292744896,
         | 
| 442 | 
            +
                  "learning_rate": 4.180019651388807e-06,
         | 
| 443 | 
            +
                  "loss": 0.7503,
         | 
| 444 | 
            +
                  "step": 62
         | 
| 445 | 
            +
                },
         | 
| 446 | 
            +
                {
         | 
| 447 | 
            +
                  "epoch": 0.3513419309864064,
         | 
| 448 | 
            +
                  "grad_norm": 1.0424541071897502,
         | 
| 449 | 
            +
                  "learning_rate": 4.14380342142266e-06,
         | 
| 450 | 
            +
                  "loss": 0.9153,
         | 
| 451 | 
            +
                  "step": 63
         | 
| 452 | 
            +
                },
         | 
| 453 | 
            +
                {
         | 
| 454 | 
            +
                  "epoch": 0.3569187870338097,
         | 
| 455 | 
            +
                  "grad_norm": 0.9753148306326342,
         | 
| 456 | 
            +
                  "learning_rate": 4.106969024216348e-06,
         | 
| 457 | 
            +
                  "loss": 0.6555,
         | 
| 458 | 
            +
                  "step": 64
         | 
| 459 | 
            +
                },
         | 
| 460 | 
            +
                {
         | 
| 461 | 
            +
                  "epoch": 0.36249564308121296,
         | 
| 462 | 
            +
                  "grad_norm": 0.964467277240988,
         | 
| 463 | 
            +
                  "learning_rate": 4.069530311680247e-06,
         | 
| 464 | 
            +
                  "loss": 0.7372,
         | 
| 465 | 
            +
                  "step": 65
         | 
| 466 | 
            +
                },
         | 
| 467 | 
            +
                {
         | 
| 468 | 
            +
                  "epoch": 0.3680724991286162,
         | 
| 469 | 
            +
                  "grad_norm": 1.1418604292487458,
         | 
| 470 | 
            +
                  "learning_rate": 4.031501362983007e-06,
         | 
| 471 | 
            +
                  "loss": 0.7585,
         | 
| 472 | 
            +
                  "step": 66
         | 
| 473 | 
            +
                },
         | 
| 474 | 
            +
                {
         | 
| 475 | 
            +
                  "epoch": 0.3736493551760195,
         | 
| 476 | 
            +
                  "grad_norm": 0.9125259121774503,
         | 
| 477 | 
            +
                  "learning_rate": 3.992896479256966e-06,
         | 
| 478 | 
            +
                  "loss": 0.6934,
         | 
| 479 | 
            +
                  "step": 67
         | 
| 480 | 
            +
                },
         | 
| 481 | 
            +
                {
         | 
| 482 | 
            +
                  "epoch": 0.3792262112234228,
         | 
| 483 | 
            +
                  "grad_norm": 0.9183210408388318,
         | 
| 484 | 
            +
                  "learning_rate": 3.953730178220067e-06,
         | 
| 485 | 
            +
                  "loss": 0.6741,
         | 
| 486 | 
            +
                  "step": 68
         | 
| 487 | 
            +
                },
         | 
| 488 | 
            +
                {
         | 
| 489 | 
            +
                  "epoch": 0.3848030672708261,
         | 
| 490 | 
            +
                  "grad_norm": 0.9841348365534922,
         | 
| 491 | 
            +
                  "learning_rate": 3.914017188716347e-06,
         | 
| 492 | 
            +
                  "loss": 0.7713,
         | 
| 493 | 
            +
                  "step": 69
         | 
| 494 | 
            +
                },
         | 
| 495 | 
            +
                {
         | 
| 496 | 
            +
                  "epoch": 0.39037992331822935,
         | 
| 497 | 
            +
                  "grad_norm": 0.9397953829688301,
         | 
| 498 | 
            +
                  "learning_rate": 3.8737724451770155e-06,
         | 
| 499 | 
            +
                  "loss": 0.6898,
         | 
| 500 | 
            +
                  "step": 70
         | 
| 501 | 
            +
                },
         | 
| 502 | 
            +
                {
         | 
| 503 | 
            +
                  "epoch": 0.3959567793656326,
         | 
| 504 | 
            +
                  "grad_norm": 0.9360968357631917,
         | 
| 505 | 
            +
                  "learning_rate": 3.833011082004229e-06,
         | 
| 506 | 
            +
                  "loss": 0.7356,
         | 
| 507 | 
            +
                  "step": 71
         | 
| 508 | 
            +
                },
         | 
| 509 | 
            +
                {
         | 
| 510 | 
            +
                  "epoch": 0.4015336354130359,
         | 
| 511 | 
            +
                  "grad_norm": 1.0490874310335498,
         | 
| 512 | 
            +
                  "learning_rate": 3.7917484278796578e-06,
         | 
| 513 | 
            +
                  "loss": 0.8834,
         | 
| 514 | 
            +
                  "step": 72
         | 
| 515 | 
            +
                },
         | 
| 516 | 
            +
                {
         | 
| 517 | 
            +
                  "epoch": 0.40711049146043915,
         | 
| 518 | 
            +
                  "grad_norm": 0.8729992951101984,
         | 
| 519 | 
            +
                  "learning_rate": 3.7500000000000005e-06,
         | 
| 520 | 
            +
                  "loss": 0.6581,
         | 
| 521 | 
            +
                  "step": 73
         | 
| 522 | 
            +
                },
         | 
| 523 | 
            +
                {
         | 
| 524 | 
            +
                  "epoch": 0.4126873475078425,
         | 
| 525 | 
            +
                  "grad_norm": 0.8526096559762923,
         | 
| 526 | 
            +
                  "learning_rate": 3.7077814982415966e-06,
         | 
| 527 | 
            +
                  "loss": 0.6796,
         | 
| 528 | 
            +
                  "step": 74
         | 
| 529 | 
            +
                },
         | 
| 530 | 
            +
                {
         | 
| 531 | 
            +
                  "epoch": 0.41826420355524574,
         | 
| 532 | 
            +
                  "grad_norm": 0.9123193201559427,
         | 
| 533 | 
            +
                  "learning_rate": 3.665108799256348e-06,
         | 
| 534 | 
            +
                  "loss": 0.6747,
         | 
| 535 | 
            +
                  "step": 75
         | 
| 536 | 
            +
                },
         | 
| 537 | 
            +
                {
         | 
| 538 | 
            +
                  "epoch": 0.423841059602649,
         | 
| 539 | 
            +
                  "grad_norm": 0.8692473859121223,
         | 
| 540 | 
            +
                  "learning_rate": 3.621997950501156e-06,
         | 
| 541 | 
            +
                  "loss": 0.6573,
         | 
| 542 | 
            +
                  "step": 76
         | 
| 543 | 
            +
                },
         | 
| 544 | 
            +
                {
         | 
| 545 | 
            +
                  "epoch": 0.4294179156500523,
         | 
| 546 | 
            +
                  "grad_norm": 0.9141140630813748,
         | 
| 547 | 
            +
                  "learning_rate": 3.578465164203134e-06,
         | 
| 548 | 
            +
                  "loss": 0.6013,
         | 
| 549 | 
            +
                  "step": 77
         | 
| 550 | 
            +
                },
         | 
| 551 | 
            +
                {
         | 
| 552 | 
            +
                  "epoch": 0.43499477169745554,
         | 
| 553 | 
            +
                  "grad_norm": 1.0607296974506348,
         | 
| 554 | 
            +
                  "learning_rate": 3.5345268112628485e-06,
         | 
| 555 | 
            +
                  "loss": 0.897,
         | 
| 556 | 
            +
                  "step": 78
         | 
| 557 | 
            +
                },
         | 
| 558 | 
            +
                {
         | 
| 559 | 
            +
                  "epoch": 0.44057162774485886,
         | 
| 560 | 
            +
                  "grad_norm": 1.027907705537933,
         | 
| 561 | 
            +
                  "learning_rate": 3.4901994150978926e-06,
         | 
| 562 | 
            +
                  "loss": 0.8139,
         | 
| 563 | 
            +
                  "step": 79
         | 
| 564 | 
            +
                },
         | 
| 565 | 
            +
                {
         | 
| 566 | 
            +
                  "epoch": 0.44614848379226213,
         | 
| 567 | 
            +
                  "grad_norm": 0.8964908897959806,
         | 
| 568 | 
            +
                  "learning_rate": 3.4454996454291066e-06,
         | 
| 569 | 
            +
                  "loss": 0.682,
         | 
| 570 | 
            +
                  "step": 80
         | 
| 571 | 
            +
                },
         | 
| 572 | 
            +
                {
         | 
| 573 | 
            +
                  "epoch": 0.4517253398396654,
         | 
| 574 | 
            +
                  "grad_norm": 0.9696808820116304,
         | 
| 575 | 
            +
                  "learning_rate": 3.400444312011776e-06,
         | 
| 576 | 
            +
                  "loss": 0.7677,
         | 
| 577 | 
            +
                  "step": 81
         | 
| 578 | 
            +
                },
         | 
| 579 | 
            +
                {
         | 
| 580 | 
            +
                  "epoch": 0.45730219588706866,
         | 
| 581 | 
            +
                  "grad_norm": 0.9538347785493502,
         | 
| 582 | 
            +
                  "learning_rate": 3.3550503583141726e-06,
         | 
| 583 | 
            +
                  "loss": 0.7707,
         | 
| 584 | 
            +
                  "step": 82
         | 
| 585 | 
            +
                },
         | 
| 586 | 
            +
                {
         | 
| 587 | 
            +
                  "epoch": 0.46287905193447193,
         | 
| 588 | 
            +
                  "grad_norm": 0.8834434922285562,
         | 
| 589 | 
            +
                  "learning_rate": 3.3093348551458033e-06,
         | 
| 590 | 
            +
                  "loss": 0.7254,
         | 
| 591 | 
            +
                  "step": 83
         | 
| 592 | 
            +
                },
         | 
| 593 | 
            +
                {
         | 
| 594 | 
            +
                  "epoch": 0.4684559079818752,
         | 
| 595 | 
            +
                  "grad_norm": 0.9664583802329054,
         | 
| 596 | 
            +
                  "learning_rate": 3.2633149942377835e-06,
         | 
| 597 | 
            +
                  "loss": 0.6009,
         | 
| 598 | 
            +
                  "step": 84
         | 
| 599 | 
            +
                },
         | 
| 600 | 
            +
                {
         | 
| 601 | 
            +
                  "epoch": 0.4740327640292785,
         | 
| 602 | 
            +
                  "grad_norm": 0.9989900249921821,
         | 
| 603 | 
            +
                  "learning_rate": 3.217008081777726e-06,
         | 
| 604 | 
            +
                  "loss": 0.7277,
         | 
| 605 | 
            +
                  "step": 85
         | 
| 606 | 
            +
                },
         | 
| 607 | 
            +
                {
         | 
| 608 | 
            +
                  "epoch": 0.4796096200766818,
         | 
| 609 | 
            +
                  "grad_norm": 0.9641224372984417,
         | 
| 610 | 
            +
                  "learning_rate": 3.1704315319015936e-06,
         | 
| 611 | 
            +
                  "loss": 0.7693,
         | 
| 612 | 
            +
                  "step": 86
         | 
| 613 | 
            +
                },
         | 
| 614 | 
            +
                {
         | 
| 615 | 
            +
                  "epoch": 0.48518647612408505,
         | 
| 616 | 
            +
                  "grad_norm": 0.8563738741272415,
         | 
| 617 | 
            +
                  "learning_rate": 3.1236028601449534e-06,
         | 
| 618 | 
            +
                  "loss": 0.5502,
         | 
| 619 | 
            +
                  "step": 87
         | 
| 620 | 
            +
                },
         | 
| 621 | 
            +
                {
         | 
| 622 | 
            +
                  "epoch": 0.4907633321714883,
         | 
| 623 | 
            +
                  "grad_norm": 0.9814456923681252,
         | 
| 624 | 
            +
                  "learning_rate": 3.0765396768561005e-06,
         | 
| 625 | 
            +
                  "loss": 0.7591,
         | 
| 626 | 
            +
                  "step": 88
         | 
| 627 | 
            +
                },
         | 
| 628 | 
            +
                {
         | 
| 629 | 
            +
                  "epoch": 0.4963401882188916,
         | 
| 630 | 
            +
                  "grad_norm": 1.0031797145449588,
         | 
| 631 | 
            +
                  "learning_rate": 3.0292596805735275e-06,
         | 
| 632 | 
            +
                  "loss": 0.7336,
         | 
| 633 | 
            +
                  "step": 89
         | 
| 634 | 
            +
                },
         | 
| 635 | 
            +
                {
         | 
| 636 | 
            +
                  "epoch": 0.5019170442662949,
         | 
| 637 | 
            +
                  "grad_norm": 1.0307972932412588,
         | 
| 638 | 
            +
                  "learning_rate": 2.9817806513702247e-06,
         | 
| 639 | 
            +
                  "loss": 0.8728,
         | 
| 640 | 
            +
                  "step": 90
         | 
| 641 | 
            +
                },
         | 
| 642 | 
            +
                {
         | 
| 643 | 
            +
                  "epoch": 0.5074939003136981,
         | 
| 644 | 
            +
                  "grad_norm": 0.9121639360068265,
         | 
| 645 | 
            +
                  "learning_rate": 2.9341204441673267e-06,
         | 
| 646 | 
            +
                  "loss": 0.7234,
         | 
| 647 | 
            +
                  "step": 91
         | 
| 648 | 
            +
                },
         | 
| 649 | 
            +
                {
         | 
| 650 | 
            +
                  "epoch": 0.5130707563611014,
         | 
| 651 | 
            +
                  "grad_norm": 0.9266082791067043,
         | 
| 652 | 
            +
                  "learning_rate": 2.8862969820196017e-06,
         | 
| 653 | 
            +
                  "loss": 0.6637,
         | 
| 654 | 
            +
                  "step": 92
         | 
| 655 | 
            +
                },
         | 
| 656 | 
            +
                {
         | 
| 657 | 
            +
                  "epoch": 0.5186476124085047,
         | 
| 658 | 
            +
                  "grad_norm": 0.9817424775807924,
         | 
| 659 | 
            +
                  "learning_rate": 2.8383282493753282e-06,
         | 
| 660 | 
            +
                  "loss": 0.818,
         | 
| 661 | 
            +
                  "step": 93
         | 
| 662 | 
            +
                },
         | 
| 663 | 
            +
                {
         | 
| 664 | 
            +
                  "epoch": 0.524224468455908,
         | 
| 665 | 
            +
                  "grad_norm": 0.9290655450825701,
         | 
| 666 | 
            +
                  "learning_rate": 2.7902322853130758e-06,
         | 
| 667 | 
            +
                  "loss": 0.7372,
         | 
| 668 | 
            +
                  "step": 94
         | 
| 669 | 
            +
                },
         | 
| 670 | 
            +
                {
         | 
| 671 | 
            +
                  "epoch": 0.5298013245033113,
         | 
| 672 | 
            +
                  "grad_norm": 0.9630341129207757,
         | 
| 673 | 
            +
                  "learning_rate": 2.742027176757948e-06,
         | 
| 674 | 
            +
                  "loss": 0.786,
         | 
| 675 | 
            +
                  "step": 95
         | 
| 676 | 
            +
                },
         | 
| 677 | 
            +
                {
         | 
| 678 | 
            +
                  "epoch": 0.5353781805507145,
         | 
| 679 | 
            +
                  "grad_norm": 0.8736837998218376,
         | 
| 680 | 
            +
                  "learning_rate": 2.6937310516798276e-06,
         | 
| 681 | 
            +
                  "loss": 0.6546,
         | 
| 682 | 
            +
                  "step": 96
         | 
| 683 | 
            +
                },
         | 
| 684 | 
            +
                {
         | 
| 685 | 
            +
                  "epoch": 0.5409550365981178,
         | 
| 686 | 
            +
                  "grad_norm": 0.970695862336814,
         | 
| 687 | 
            +
                  "learning_rate": 2.6453620722761897e-06,
         | 
| 688 | 
            +
                  "loss": 0.6716,
         | 
| 689 | 
            +
                  "step": 97
         | 
| 690 | 
            +
                },
         | 
| 691 | 
            +
                {
         | 
| 692 | 
            +
                  "epoch": 0.546531892645521,
         | 
| 693 | 
            +
                  "grad_norm": 0.9311590205600201,
         | 
| 694 | 
            +
                  "learning_rate": 2.5969384281420425e-06,
         | 
| 695 | 
            +
                  "loss": 0.6955,
         | 
| 696 | 
            +
                  "step": 98
         | 
| 697 | 
            +
                },
         | 
| 698 | 
            +
                {
         | 
| 699 | 
            +
                  "epoch": 0.5521087486929244,
         | 
| 700 | 
            +
                  "grad_norm": 0.9022156745489164,
         | 
| 701 | 
            +
                  "learning_rate": 2.548478329429561e-06,
         | 
| 702 | 
            +
                  "loss": 0.6765,
         | 
| 703 | 
            +
                  "step": 99
         | 
| 704 | 
            +
                },
         | 
| 705 | 
            +
                {
         | 
| 706 | 
            +
                  "epoch": 0.5576856047403277,
         | 
| 707 | 
            +
                  "grad_norm": 0.9321595225209163,
         | 
| 708 | 
            +
                  "learning_rate": 2.5e-06,
         | 
| 709 | 
            +
                  "loss": 0.7459,
         | 
| 710 | 
            +
                  "step": 100
         | 
| 711 | 
            +
                },
         | 
| 712 | 
            +
                {
         | 
| 713 | 
            +
                  "epoch": 0.5632624607877309,
         | 
| 714 | 
            +
                  "grad_norm": 0.8642803835512484,
         | 
| 715 | 
            +
                  "learning_rate": 2.4515216705704396e-06,
         | 
| 716 | 
            +
                  "loss": 0.6295,
         | 
| 717 | 
            +
                  "step": 101
         | 
| 718 | 
            +
                },
         | 
| 719 | 
            +
                {
         | 
| 720 | 
            +
                  "epoch": 0.5688393168351342,
         | 
| 721 | 
            +
                  "grad_norm": 0.8770432551457372,
         | 
| 722 | 
            +
                  "learning_rate": 2.403061571857958e-06,
         | 
| 723 | 
            +
                  "loss": 0.5756,
         | 
| 724 | 
            +
                  "step": 102
         | 
| 725 | 
            +
                },
         | 
| 726 | 
            +
                {
         | 
| 727 | 
            +
                  "epoch": 0.5744161728825374,
         | 
| 728 | 
            +
                  "grad_norm": 0.986644075495802,
         | 
| 729 | 
            +
                  "learning_rate": 2.3546379277238107e-06,
         | 
| 730 | 
            +
                  "loss": 0.7433,
         | 
| 731 | 
            +
                  "step": 103
         | 
| 732 | 
            +
                },
         | 
| 733 | 
            +
                {
         | 
| 734 | 
            +
                  "epoch": 0.5799930289299408,
         | 
| 735 | 
            +
                  "grad_norm": 0.9151759455914666,
         | 
| 736 | 
            +
                  "learning_rate": 2.3062689483201732e-06,
         | 
| 737 | 
            +
                  "loss": 0.6835,
         | 
| 738 | 
            +
                  "step": 104
         | 
| 739 | 
            +
                },
         | 
| 740 | 
            +
                {
         | 
| 741 | 
            +
                  "epoch": 0.585569884977344,
         | 
| 742 | 
            +
                  "grad_norm": 1.0566592626672804,
         | 
| 743 | 
            +
                  "learning_rate": 2.2579728232420524e-06,
         | 
| 744 | 
            +
                  "loss": 0.7049,
         | 
| 745 | 
            +
                  "step": 105
         | 
| 746 | 
            +
                },
         | 
| 747 | 
            +
                {
         | 
| 748 | 
            +
                  "epoch": 0.5911467410247473,
         | 
| 749 | 
            +
                  "grad_norm": 0.8911833907323385,
         | 
| 750 | 
            +
                  "learning_rate": 2.2097677146869242e-06,
         | 
| 751 | 
            +
                  "loss": 0.6252,
         | 
| 752 | 
            +
                  "step": 106
         | 
| 753 | 
            +
                },
         | 
| 754 | 
            +
                {
         | 
| 755 | 
            +
                  "epoch": 0.5967235970721506,
         | 
| 756 | 
            +
                  "grad_norm": 3.583992947348307,
         | 
| 757 | 
            +
                  "learning_rate": 2.161671750624673e-06,
         | 
| 758 | 
            +
                  "loss": 0.7175,
         | 
| 759 | 
            +
                  "step": 107
         | 
| 760 | 
            +
                },
         | 
| 761 | 
            +
                {
         | 
| 762 | 
            +
                  "epoch": 0.6023004531195538,
         | 
| 763 | 
            +
                  "grad_norm": 0.8470926199178831,
         | 
| 764 | 
            +
                  "learning_rate": 2.113703017980399e-06,
         | 
| 765 | 
            +
                  "loss": 0.6039,
         | 
| 766 | 
            +
                  "step": 108
         | 
| 767 | 
            +
                },
         | 
| 768 | 
            +
                {
         | 
| 769 | 
            +
                  "epoch": 0.6078773091669571,
         | 
| 770 | 
            +
                  "grad_norm": 0.9202011923092919,
         | 
| 771 | 
            +
                  "learning_rate": 2.0658795558326745e-06,
         | 
| 772 | 
            +
                  "loss": 0.675,
         | 
| 773 | 
            +
                  "step": 109
         | 
| 774 | 
            +
                },
         | 
| 775 | 
            +
                {
         | 
| 776 | 
            +
                  "epoch": 0.6134541652143604,
         | 
| 777 | 
            +
                  "grad_norm": 0.991676719260929,
         | 
| 778 | 
            +
                  "learning_rate": 2.0182193486297757e-06,
         | 
| 779 | 
            +
                  "loss": 0.8416,
         | 
| 780 | 
            +
                  "step": 110
         | 
| 781 | 
            +
                },
         | 
| 782 | 
            +
                {
         | 
| 783 | 
            +
                  "epoch": 0.6190310212617637,
         | 
| 784 | 
            +
                  "grad_norm": 0.9920121314417771,
         | 
| 785 | 
            +
                  "learning_rate": 1.970740319426474e-06,
         | 
| 786 | 
            +
                  "loss": 0.7869,
         | 
| 787 | 
            +
                  "step": 111
         | 
| 788 | 
            +
                },
         | 
| 789 | 
            +
                {
         | 
| 790 | 
            +
                  "epoch": 0.624607877309167,
         | 
| 791 | 
            +
                  "grad_norm": 0.9147914111270489,
         | 
| 792 | 
            +
                  "learning_rate": 1.9234603231439e-06,
         | 
| 793 | 
            +
                  "loss": 0.6715,
         | 
| 794 | 
            +
                  "step": 112
         | 
| 795 | 
            +
                },
         | 
| 796 | 
            +
                {
         | 
| 797 | 
            +
                  "epoch": 0.6301847333565702,
         | 
| 798 | 
            +
                  "grad_norm": 0.9960901454429568,
         | 
| 799 | 
            +
                  "learning_rate": 1.876397139855047e-06,
         | 
| 800 | 
            +
                  "loss": 0.8459,
         | 
| 801 | 
            +
                  "step": 113
         | 
| 802 | 
            +
                },
         | 
| 803 | 
            +
                {
         | 
| 804 | 
            +
                  "epoch": 0.6357615894039735,
         | 
| 805 | 
            +
                  "grad_norm": 0.8398771049626784,
         | 
| 806 | 
            +
                  "learning_rate": 1.8295684680984064e-06,
         | 
| 807 | 
            +
                  "loss": 0.6327,
         | 
| 808 | 
            +
                  "step": 114
         | 
| 809 | 
            +
                },
         | 
| 810 | 
            +
                {
         | 
| 811 | 
            +
                  "epoch": 0.6413384454513767,
         | 
| 812 | 
            +
                  "grad_norm": 0.8848277584910325,
         | 
| 813 | 
            +
                  "learning_rate": 1.7829919182222752e-06,
         | 
| 814 | 
            +
                  "loss": 0.6674,
         | 
| 815 | 
            +
                  "step": 115
         | 
| 816 | 
            +
                },
         | 
| 817 | 
            +
                {
         | 
| 818 | 
            +
                  "epoch": 0.6469153014987801,
         | 
| 819 | 
            +
                  "grad_norm": 0.9599403253441103,
         | 
| 820 | 
            +
                  "learning_rate": 1.7366850057622176e-06,
         | 
| 821 | 
            +
                  "loss": 0.7381,
         | 
| 822 | 
            +
                  "step": 116
         | 
| 823 | 
            +
                },
         | 
| 824 | 
            +
                {
         | 
| 825 | 
            +
                  "epoch": 0.6524921575461834,
         | 
| 826 | 
            +
                  "grad_norm": 0.8633918886732347,
         | 
| 827 | 
            +
                  "learning_rate": 1.6906651448541977e-06,
         | 
| 828 | 
            +
                  "loss": 0.5713,
         | 
| 829 | 
            +
                  "step": 117
         | 
| 830 | 
            +
                },
         | 
| 831 | 
            +
                {
         | 
| 832 | 
            +
                  "epoch": 0.6580690135935866,
         | 
| 833 | 
            +
                  "grad_norm": 0.9564730887800509,
         | 
| 834 | 
            +
                  "learning_rate": 1.6449496416858285e-06,
         | 
| 835 | 
            +
                  "loss": 0.7964,
         | 
| 836 | 
            +
                  "step": 118
         | 
| 837 | 
            +
                },
         | 
| 838 | 
            +
                {
         | 
| 839 | 
            +
                  "epoch": 0.6636458696409899,
         | 
| 840 | 
            +
                  "grad_norm": 0.9220167090814314,
         | 
| 841 | 
            +
                  "learning_rate": 1.5995556879882246e-06,
         | 
| 842 | 
            +
                  "loss": 0.7074,
         | 
| 843 | 
            +
                  "step": 119
         | 
| 844 | 
            +
                },
         | 
| 845 | 
            +
                {
         | 
| 846 | 
            +
                  "epoch": 0.6692227256883931,
         | 
| 847 | 
            +
                  "grad_norm": 0.9412177200866909,
         | 
| 848 | 
            +
                  "learning_rate": 1.5545003545708942e-06,
         | 
| 849 | 
            +
                  "loss": 0.6798,
         | 
| 850 | 
            +
                  "step": 120
         | 
| 851 | 
            +
                },
         | 
| 852 | 
            +
                {
         | 
| 853 | 
            +
                  "epoch": 0.6747995817357965,
         | 
| 854 | 
            +
                  "grad_norm": 0.8799708797193134,
         | 
| 855 | 
            +
                  "learning_rate": 1.509800584902108e-06,
         | 
| 856 | 
            +
                  "loss": 0.636,
         | 
| 857 | 
            +
                  "step": 121
         | 
| 858 | 
            +
                },
         | 
| 859 | 
            +
                {
         | 
| 860 | 
            +
                  "epoch": 0.6803764377831997,
         | 
| 861 | 
            +
                  "grad_norm": 0.8746008313087483,
         | 
| 862 | 
            +
                  "learning_rate": 1.4654731887371524e-06,
         | 
| 863 | 
            +
                  "loss": 0.6517,
         | 
| 864 | 
            +
                  "step": 122
         | 
| 865 | 
            +
                },
         | 
| 866 | 
            +
                {
         | 
| 867 | 
            +
                  "epoch": 0.685953293830603,
         | 
| 868 | 
            +
                  "grad_norm": 0.8622866280586909,
         | 
| 869 | 
            +
                  "learning_rate": 1.421534835796867e-06,
         | 
| 870 | 
            +
                  "loss": 0.5685,
         | 
| 871 | 
            +
                  "step": 123
         | 
| 872 | 
            +
                },
         | 
| 873 | 
            +
                {
         | 
| 874 | 
            +
                  "epoch": 0.6915301498780063,
         | 
| 875 | 
            +
                  "grad_norm": 0.9161469277312331,
         | 
| 876 | 
            +
                  "learning_rate": 1.3780020494988447e-06,
         | 
| 877 | 
            +
                  "loss": 0.7142,
         | 
| 878 | 
            +
                  "step": 124
         | 
| 879 | 
            +
                },
         | 
| 880 | 
            +
                {
         | 
| 881 | 
            +
                  "epoch": 0.6971070059254095,
         | 
| 882 | 
            +
                  "grad_norm": 0.8834589774119394,
         | 
| 883 | 
            +
                  "learning_rate": 1.3348912007436538e-06,
         | 
| 884 | 
            +
                  "loss": 0.6794,
         | 
| 885 | 
            +
                  "step": 125
         | 
| 886 | 
            +
                },
         | 
| 887 | 
            +
                {
         | 
| 888 | 
            +
                  "epoch": 0.7026838619728129,
         | 
| 889 | 
            +
                  "grad_norm": 0.8420150113363432,
         | 
| 890 | 
            +
                  "learning_rate": 1.2922185017584038e-06,
         | 
| 891 | 
            +
                  "loss": 0.5548,
         | 
| 892 | 
            +
                  "step": 126
         | 
| 893 | 
            +
                },
         | 
| 894 | 
            +
                {
         | 
| 895 | 
            +
                  "epoch": 0.7082607180202161,
         | 
| 896 | 
            +
                  "grad_norm": 0.9186571271373966,
         | 
| 897 | 
            +
                  "learning_rate": 1.2500000000000007e-06,
         | 
| 898 | 
            +
                  "loss": 0.7093,
         | 
| 899 | 
            +
                  "step": 127
         | 
| 900 | 
            +
                },
         | 
| 901 | 
            +
                {
         | 
| 902 | 
            +
                  "epoch": 0.7138375740676194,
         | 
| 903 | 
            +
                  "grad_norm": 0.9024224044680166,
         | 
| 904 | 
            +
                  "learning_rate": 1.2082515721203429e-06,
         | 
| 905 | 
            +
                  "loss": 0.601,
         | 
| 906 | 
            +
                  "step": 128
         | 
| 907 | 
            +
                },
         | 
| 908 | 
            +
                {
         | 
| 909 | 
            +
                  "epoch": 0.7194144301150227,
         | 
| 910 | 
            +
                  "grad_norm": 0.8730115171814332,
         | 
| 911 | 
            +
                  "learning_rate": 1.1669889179957725e-06,
         | 
| 912 | 
            +
                  "loss": 0.6485,
         | 
| 913 | 
            +
                  "step": 129
         | 
| 914 | 
            +
                },
         | 
| 915 | 
            +
                {
         | 
| 916 | 
            +
                  "epoch": 0.7249912861624259,
         | 
| 917 | 
            +
                  "grad_norm": 2.560680193595368,
         | 
| 918 | 
            +
                  "learning_rate": 1.1262275548229852e-06,
         | 
| 919 | 
            +
                  "loss": 0.681,
         | 
| 920 | 
            +
                  "step": 130
         | 
| 921 | 
            +
                },
         | 
| 922 | 
            +
                {
         | 
| 923 | 
            +
                  "epoch": 0.7305681422098292,
         | 
| 924 | 
            +
                  "grad_norm": 0.8433376742578463,
         | 
| 925 | 
            +
                  "learning_rate": 1.085982811283654e-06,
         | 
| 926 | 
            +
                  "loss": 0.6025,
         | 
| 927 | 
            +
                  "step": 131
         | 
| 928 | 
            +
                },
         | 
| 929 | 
            +
                {
         | 
| 930 | 
            +
                  "epoch": 0.7361449982572325,
         | 
| 931 | 
            +
                  "grad_norm": 0.9000811460890688,
         | 
| 932 | 
            +
                  "learning_rate": 1.0462698217799333e-06,
         | 
| 933 | 
            +
                  "loss": 0.7098,
         | 
| 934 | 
            +
                  "step": 132
         | 
| 935 | 
            +
                },
         | 
| 936 | 
            +
                {
         | 
| 937 | 
            +
                  "epoch": 0.7417218543046358,
         | 
| 938 | 
            +
                  "grad_norm": 0.9015484414513791,
         | 
| 939 | 
            +
                  "learning_rate": 1.0071035207430352e-06,
         | 
| 940 | 
            +
                  "loss": 0.6939,
         | 
| 941 | 
            +
                  "step": 133
         | 
| 942 | 
            +
                },
         | 
| 943 | 
            +
                {
         | 
| 944 | 
            +
                  "epoch": 0.747298710352039,
         | 
| 945 | 
            +
                  "grad_norm": 0.924647234962446,
         | 
| 946 | 
            +
                  "learning_rate": 9.68498637016993e-07,
         | 
| 947 | 
            +
                  "loss": 0.7219,
         | 
| 948 | 
            +
                  "step": 134
         | 
| 949 | 
            +
                },
         | 
| 950 | 
            +
                {
         | 
| 951 | 
            +
                  "epoch": 0.7528755663994423,
         | 
| 952 | 
            +
                  "grad_norm": 0.9622683692067883,
         | 
| 953 | 
            +
                  "learning_rate": 9.304696883197542e-07,
         | 
| 954 | 
            +
                  "loss": 0.7445,
         | 
| 955 | 
            +
                  "step": 135
         | 
| 956 | 
            +
                },
         | 
| 957 | 
            +
                {
         | 
| 958 | 
            +
                  "epoch": 0.7584524224468456,
         | 
| 959 | 
            +
                  "grad_norm": 1.0018020723323282,
         | 
| 960 | 
            +
                  "learning_rate": 8.930309757836517e-07,
         | 
| 961 | 
            +
                  "loss": 0.7285,
         | 
| 962 | 
            +
                  "step": 136
         | 
| 963 | 
            +
                },
         | 
| 964 | 
            +
                {
         | 
| 965 | 
            +
                  "epoch": 0.7640292784942488,
         | 
| 966 | 
            +
                  "grad_norm": 1.0034101578791559,
         | 
| 967 | 
            +
                  "learning_rate": 8.561965785773413e-07,
         | 
| 968 | 
            +
                  "loss": 0.647,
         | 
| 969 | 
            +
                  "step": 137
         | 
| 970 | 
            +
                },
         | 
| 971 | 
            +
                {
         | 
| 972 | 
            +
                  "epoch": 0.7696061345416522,
         | 
| 973 | 
            +
                  "grad_norm": 0.865650213772322,
         | 
| 974 | 
            +
                  "learning_rate": 8.19980348611194e-07,
         | 
| 975 | 
            +
                  "loss": 0.6588,
         | 
| 976 | 
            +
                  "step": 138
         | 
| 977 | 
            +
                },
         | 
| 978 | 
            +
                {
         | 
| 979 | 
            +
                  "epoch": 0.7751829905890554,
         | 
| 980 | 
            +
                  "grad_norm": 0.9237880174335488,
         | 
| 981 | 
            +
                  "learning_rate": 7.843959053281663e-07,
         | 
| 982 | 
            +
                  "loss": 0.738,
         | 
| 983 | 
            +
                  "step": 139
         | 
| 984 | 
            +
                },
         | 
| 985 | 
            +
                {
         | 
| 986 | 
            +
                  "epoch": 0.7807598466364587,
         | 
| 987 | 
            +
                  "grad_norm": 0.992180072952141,
         | 
| 988 | 
            +
                  "learning_rate": 7.494566305820788e-07,
         | 
| 989 | 
            +
                  "loss": 0.7533,
         | 
| 990 | 
            +
                  "step": 140
         | 
| 991 | 
            +
                },
         | 
| 992 | 
            +
                {
         | 
| 993 | 
            +
                  "epoch": 0.786336702683862,
         | 
| 994 | 
            +
                  "grad_norm": 0.8845919723729968,
         | 
| 995 | 
            +
                  "learning_rate": 7.151756636052529e-07,
         | 
| 996 | 
            +
                  "loss": 0.6062,
         | 
| 997 | 
            +
                  "step": 141
         | 
| 998 | 
            +
                },
         | 
| 999 | 
            +
                {
         | 
| 1000 | 
            +
                  "epoch": 0.7919135587312652,
         | 
| 1001 | 
            +
                  "grad_norm": 0.9575278544789321,
         | 
| 1002 | 
            +
                  "learning_rate": 6.815658960673782e-07,
         | 
| 1003 | 
            +
                  "loss": 0.7661,
         | 
| 1004 | 
            +
                  "step": 142
         | 
| 1005 | 
            +
                },
         | 
| 1006 | 
            +
                {
         | 
| 1007 | 
            +
                  "epoch": 0.7974904147786686,
         | 
| 1008 | 
            +
                  "grad_norm": 1.060097465810906,
         | 
| 1009 | 
            +
                  "learning_rate": 6.48639967227489e-07,
         | 
| 1010 | 
            +
                  "loss": 0.7093,
         | 
| 1011 | 
            +
                  "step": 143
         | 
| 1012 | 
            +
                },
         | 
| 1013 | 
            +
                {
         | 
| 1014 | 
            +
                  "epoch": 0.8030672708260718,
         | 
| 1015 | 
            +
                  "grad_norm": 1.1137158210751135,
         | 
| 1016 | 
            +
                  "learning_rate": 6.164102591808482e-07,
         | 
| 1017 | 
            +
                  "loss": 0.6516,
         | 
| 1018 | 
            +
                  "step": 144
         | 
| 1019 | 
            +
                },
         | 
| 1020 | 
            +
                {
         | 
| 1021 | 
            +
                  "epoch": 0.8086441268734751,
         | 
| 1022 | 
            +
                  "grad_norm": 0.9467474421643487,
         | 
| 1023 | 
            +
                  "learning_rate": 5.848888922025553e-07,
         | 
| 1024 | 
            +
                  "loss": 0.7106,
         | 
| 1025 | 
            +
                  "step": 145
         | 
| 1026 | 
            +
                },
         | 
| 1027 | 
            +
                {
         | 
| 1028 | 
            +
                  "epoch": 0.8142209829208783,
         | 
| 1029 | 
            +
                  "grad_norm": 0.977712019438005,
         | 
| 1030 | 
            +
                  "learning_rate": 5.540877201896e-07,
         | 
| 1031 | 
            +
                  "loss": 0.6485,
         | 
| 1032 | 
            +
                  "step": 146
         | 
| 1033 | 
            +
                },
         | 
| 1034 | 
            +
                {
         | 
| 1035 | 
            +
                  "epoch": 0.8197978389682816,
         | 
| 1036 | 
            +
                  "grad_norm": 1.2725548643418227,
         | 
| 1037 | 
            +
                  "learning_rate": 5.240183262031021e-07,
         | 
| 1038 | 
            +
                  "loss": 0.7106,
         | 
| 1039 | 
            +
                  "step": 147
         | 
| 1040 | 
            +
                },
         | 
| 1041 | 
            +
                {
         | 
| 1042 | 
            +
                  "epoch": 0.825374695015685,
         | 
| 1043 | 
            +
                  "grad_norm": 0.9531375340902994,
         | 
| 1044 | 
            +
                  "learning_rate": 4.946920181123904e-07,
         | 
| 1045 | 
            +
                  "loss": 0.6352,
         | 
| 1046 | 
            +
                  "step": 148
         | 
| 1047 | 
            +
                },
         | 
| 1048 | 
            +
                {
         | 
| 1049 | 
            +
                  "epoch": 0.8309515510630882,
         | 
| 1050 | 
            +
                  "grad_norm": 0.8239496228158747,
         | 
| 1051 | 
            +
                  "learning_rate": 4.661198243425813e-07,
         | 
| 1052 | 
            +
                  "loss": 0.5812,
         | 
| 1053 | 
            +
                  "step": 149
         | 
| 1054 | 
            +
                },
         | 
| 1055 | 
            +
                {
         | 
| 1056 | 
            +
                  "epoch": 0.8365284071104915,
         | 
| 1057 | 
            +
                  "grad_norm": 1.4768742600927571,
         | 
| 1058 | 
            +
                  "learning_rate": 4.383124897272331e-07,
         | 
| 1059 | 
            +
                  "loss": 0.825,
         | 
| 1060 | 
            +
                  "step": 150
         | 
| 1061 | 
            +
                },
         | 
| 1062 | 
            +
                {
         | 
| 1063 | 
            +
                  "epoch": 0.8421052631578947,
         | 
| 1064 | 
            +
                  "grad_norm": 0.8936174846742114,
         | 
| 1065 | 
            +
                  "learning_rate": 4.1128047146765936e-07,
         | 
| 1066 | 
            +
                  "loss": 0.7137,
         | 
| 1067 | 
            +
                  "step": 151
         | 
| 1068 | 
            +
                },
         | 
| 1069 | 
            +
                {
         | 
| 1070 | 
            +
                  "epoch": 0.847682119205298,
         | 
| 1071 | 
            +
                  "grad_norm": 0.868290680328461,
         | 
| 1072 | 
            +
                  "learning_rate": 3.8503393520039734e-07,
         | 
| 1073 | 
            +
                  "loss": 0.646,
         | 
| 1074 | 
            +
                  "step": 152
         | 
| 1075 | 
            +
                },
         | 
| 1076 | 
            +
                {
         | 
| 1077 | 
            +
                  "epoch": 0.8532589752527013,
         | 
| 1078 | 
            +
                  "grad_norm": 0.9170777878398306,
         | 
| 1079 | 
            +
                  "learning_rate": 3.595827511743341e-07,
         | 
| 1080 | 
            +
                  "loss": 0.6338,
         | 
| 1081 | 
            +
                  "step": 153
         | 
| 1082 | 
            +
                },
         | 
| 1083 | 
            +
                {
         | 
| 1084 | 
            +
                  "epoch": 0.8588358313001045,
         | 
| 1085 | 
            +
                  "grad_norm": 0.8709479986895221,
         | 
| 1086 | 
            +
                  "learning_rate": 3.3493649053890325e-07,
         | 
| 1087 | 
            +
                  "loss": 0.6942,
         | 
| 1088 | 
            +
                  "step": 154
         | 
| 1089 | 
            +
                },
         | 
| 1090 | 
            +
                {
         | 
| 1091 | 
            +
                  "epoch": 0.8644126873475079,
         | 
| 1092 | 
            +
                  "grad_norm": 1.015273029250277,
         | 
| 1093 | 
            +
                  "learning_rate": 3.111044217447731e-07,
         | 
| 1094 | 
            +
                  "loss": 0.8455,
         | 
| 1095 | 
            +
                  "step": 155
         | 
| 1096 | 
            +
                },
         | 
| 1097 | 
            +
                {
         | 
| 1098 | 
            +
                  "epoch": 0.8699895433949111,
         | 
| 1099 | 
            +
                  "grad_norm": 1.8953728977728321,
         | 
| 1100 | 
            +
                  "learning_rate": 2.880955070583555e-07,
         | 
| 1101 | 
            +
                  "loss": 0.8089,
         | 
| 1102 | 
            +
                  "step": 156
         | 
| 1103 | 
            +
                },
         | 
| 1104 | 
            +
                {
         | 
| 1105 | 
            +
                  "epoch": 0.8755663994423144,
         | 
| 1106 | 
            +
                  "grad_norm": 1.0266628340926212,
         | 
| 1107 | 
            +
                  "learning_rate": 2.6591839919146963e-07,
         | 
| 1108 | 
            +
                  "loss": 0.6747,
         | 
| 1109 | 
            +
                  "step": 157
         | 
| 1110 | 
            +
                },
         | 
| 1111 | 
            +
                {
         | 
| 1112 | 
            +
                  "epoch": 0.8811432554897177,
         | 
| 1113 | 
            +
                  "grad_norm": 1.0638475327851682,
         | 
| 1114 | 
            +
                  "learning_rate": 2.445814380474057e-07,
         | 
| 1115 | 
            +
                  "loss": 0.6979,
         | 
| 1116 | 
            +
                  "step": 158
         | 
| 1117 | 
            +
                },
         | 
| 1118 | 
            +
                {
         | 
| 1119 | 
            +
                  "epoch": 0.8867201115371209,
         | 
| 1120 | 
            +
                  "grad_norm": 0.9287481759641896,
         | 
| 1121 | 
            +
                  "learning_rate": 2.240926475846336e-07,
         | 
| 1122 | 
            +
                  "loss": 0.7963,
         | 
| 1123 | 
            +
                  "step": 159
         | 
| 1124 | 
            +
                },
         | 
| 1125 | 
            +
                {
         | 
| 1126 | 
            +
                  "epoch": 0.8922969675845243,
         | 
| 1127 | 
            +
                  "grad_norm": 0.8785430203193436,
         | 
| 1128 | 
            +
                  "learning_rate": 2.044597327993153e-07,
         | 
| 1129 | 
            +
                  "loss": 0.6534,
         | 
| 1130 | 
            +
                  "step": 160
         | 
| 1131 | 
            +
                },
         | 
| 1132 | 
            +
                {
         | 
| 1133 | 
            +
                  "epoch": 0.8978738236319275,
         | 
| 1134 | 
            +
                  "grad_norm": 0.953415594296327,
         | 
| 1135 | 
            +
                  "learning_rate": 1.8569007682777417e-07,
         | 
| 1136 | 
            +
                  "loss": 0.7474,
         | 
| 1137 | 
            +
                  "step": 161
         | 
| 1138 | 
            +
                },
         | 
| 1139 | 
            +
                {
         | 
| 1140 | 
            +
                  "epoch": 0.9034506796793308,
         | 
| 1141 | 
            +
                  "grad_norm": 0.9294478803532011,
         | 
| 1142 | 
            +
                  "learning_rate": 1.6779073816999864e-07,
         | 
| 1143 | 
            +
                  "loss": 0.7906,
         | 
| 1144 | 
            +
                  "step": 162
         | 
| 1145 | 
            +
                },
         | 
| 1146 | 
            +
                {
         | 
| 1147 | 
            +
                  "epoch": 0.909027535726734,
         | 
| 1148 | 
            +
                  "grad_norm": 0.8384613909869523,
         | 
| 1149 | 
            +
                  "learning_rate": 1.507684480352292e-07,
         | 
| 1150 | 
            +
                  "loss": 0.6377,
         | 
| 1151 | 
            +
                  "step": 163
         | 
| 1152 | 
            +
                },
         | 
| 1153 | 
            +
                {
         | 
| 1154 | 
            +
                  "epoch": 0.9146043917741373,
         | 
| 1155 | 
            +
                  "grad_norm": 0.8835908163025235,
         | 
| 1156 | 
            +
                  "learning_rate": 1.3462960781062433e-07,
         | 
| 1157 | 
            +
                  "loss": 0.6392,
         | 
| 1158 | 
            +
                  "step": 164
         | 
| 1159 | 
            +
                },
         | 
| 1160 | 
            +
                {
         | 
| 1161 | 
            +
                  "epoch": 0.9201812478215406,
         | 
| 1162 | 
            +
                  "grad_norm": 0.8449058090284122,
         | 
| 1163 | 
            +
                  "learning_rate": 1.1938028665396172e-07,
         | 
| 1164 | 
            +
                  "loss": 0.5656,
         | 
| 1165 | 
            +
                  "step": 165
         | 
| 1166 | 
            +
                },
         | 
| 1167 | 
            +
                {
         | 
| 1168 | 
            +
                  "epoch": 0.9257581038689439,
         | 
| 1169 | 
            +
                  "grad_norm": 0.9392723321505706,
         | 
| 1170 | 
            +
                  "learning_rate": 1.0502621921127776e-07,
         | 
| 1171 | 
            +
                  "loss": 0.7239,
         | 
| 1172 | 
            +
                  "step": 166
         | 
| 1173 | 
            +
                },
         | 
| 1174 | 
            +
                {
         | 
| 1175 | 
            +
                  "epoch": 0.9313349599163472,
         | 
| 1176 | 
            +
                  "grad_norm": 0.8758199104024277,
         | 
| 1177 | 
            +
                  "learning_rate": 9.157280346029918e-08,
         | 
| 1178 | 
            +
                  "loss": 0.6666,
         | 
| 1179 | 
            +
                  "step": 167
         | 
| 1180 | 
            +
                },
         | 
| 1181 | 
            +
                {
         | 
| 1182 | 
            +
                  "epoch": 0.9369118159637504,
         | 
| 1183 | 
            +
                  "grad_norm": 0.8830370044979928,
         | 
| 1184 | 
            +
                  "learning_rate": 7.902509868048552e-08,
         | 
| 1185 | 
            +
                  "loss": 0.6846,
         | 
| 1186 | 
            +
                  "step": 168
         | 
| 1187 | 
            +
                },
         | 
| 1188 | 
            +
                {
         | 
| 1189 | 
            +
                  "epoch": 0.9424886720111537,
         | 
| 1190 | 
            +
                  "grad_norm": 0.8870739682602913,
         | 
| 1191 | 
            +
                  "learning_rate": 6.738782355044048e-08,
         | 
| 1192 | 
            +
                  "loss": 0.7071,
         | 
| 1193 | 
            +
                  "step": 169
         | 
| 1194 | 
            +
                },
         | 
| 1195 | 
            +
                {
         | 
| 1196 | 
            +
                  "epoch": 0.948065528058557,
         | 
| 1197 | 
            +
                  "grad_norm": 0.8732031194960946,
         | 
| 1198 | 
            +
                  "learning_rate": 5.6665354373411085e-08,
         | 
| 1199 | 
            +
                  "loss": 0.7037,
         | 
| 1200 | 
            +
                  "step": 170
         | 
| 1201 | 
            +
                },
         | 
| 1202 | 
            +
                {
         | 
| 1203 | 
            +
                  "epoch": 0.9536423841059603,
         | 
| 1204 | 
            +
                  "grad_norm": 0.9251119129299412,
         | 
| 1205 | 
            +
                  "learning_rate": 4.6861723431538273e-08,
         | 
| 1206 | 
            +
                  "loss": 0.6949,
         | 
| 1207 | 
            +
                  "step": 171
         | 
| 1208 | 
            +
                },
         | 
| 1209 | 
            +
                {
         | 
| 1210 | 
            +
                  "epoch": 0.9592192401533636,
         | 
| 1211 | 
            +
                  "grad_norm": 0.8254069704702977,
         | 
| 1212 | 
            +
                  "learning_rate": 3.798061746947995e-08,
         | 
| 1213 | 
            +
                  "loss": 0.5747,
         | 
| 1214 | 
            +
                  "step": 172
         | 
| 1215 | 
            +
                },
         | 
| 1216 | 
            +
                {
         | 
| 1217 | 
            +
                  "epoch": 0.9647960962007668,
         | 
| 1218 | 
            +
                  "grad_norm": 0.8556828230063313,
         | 
| 1219 | 
            +
                  "learning_rate": 3.0025376307977474e-08,
         | 
| 1220 | 
            +
                  "loss": 0.6367,
         | 
| 1221 | 
            +
                  "step": 173
         | 
| 1222 | 
            +
                },
         | 
| 1223 | 
            +
                {
         | 
| 1224 | 
            +
                  "epoch": 0.9703729522481701,
         | 
| 1225 | 
            +
                  "grad_norm": 0.8964787284563904,
         | 
| 1226 | 
            +
                  "learning_rate": 2.299899158788671e-08,
         | 
| 1227 | 
            +
                  "loss": 0.6943,
         | 
| 1228 | 
            +
                  "step": 174
         | 
| 1229 | 
            +
                },
         | 
| 1230 | 
            +
                {
         | 
| 1231 | 
            +
                  "epoch": 0.9759498082955733,
         | 
| 1232 | 
            +
                  "grad_norm": 0.8529908965639459,
         | 
| 1233 | 
            +
                  "learning_rate": 1.6904105645142443e-08,
         | 
| 1234 | 
            +
                  "loss": 0.6373,
         | 
| 1235 | 
            +
                  "step": 175
         | 
| 1236 | 
            +
                },
         | 
| 1237 | 
            +
                {
         | 
| 1238 | 
            +
                  "epoch": 0.9815266643429766,
         | 
| 1239 | 
            +
                  "grad_norm": 0.8934738534392561,
         | 
| 1240 | 
            +
                  "learning_rate": 1.1743010517085428e-08,
         | 
| 1241 | 
            +
                  "loss": 0.6968,
         | 
| 1242 | 
            +
                  "step": 176
         | 
| 1243 | 
            +
                },
         | 
| 1244 | 
            +
                {
         | 
| 1245 | 
            +
                  "epoch": 0.98710352039038,
         | 
| 1246 | 
            +
                  "grad_norm": 0.9302061985515149,
         | 
| 1247 | 
            +
                  "learning_rate": 7.517647080519941e-09,
         | 
| 1248 | 
            +
                  "loss": 0.7773,
         | 
| 1249 | 
            +
                  "step": 177
         | 
| 1250 | 
            +
                },
         | 
| 1251 | 
            +
                {
         | 
| 1252 | 
            +
                  "epoch": 0.9926803764377832,
         | 
| 1253 | 
            +
                  "grad_norm": 0.9858177539703182,
         | 
| 1254 | 
            +
                  "learning_rate": 4.229604321829561e-09,
         | 
| 1255 | 
            +
                  "loss": 0.7393,
         | 
| 1256 | 
            +
                  "step": 178
         | 
| 1257 | 
            +
                },
         | 
| 1258 | 
            +
                {
         | 
| 1259 | 
            +
                  "epoch": 0.9982572324851865,
         | 
| 1260 | 
            +
                  "grad_norm": 0.9326264974645483,
         | 
| 1261 | 
            +
                  "learning_rate": 1.8801187394248966e-09,
         | 
| 1262 | 
            +
                  "loss": 0.7246,
         | 
| 1263 | 
            +
                  "step": 179
         | 
| 1264 | 
            +
                },
         | 
| 1265 | 
            +
                {
         | 
| 1266 | 
            +
                  "epoch": 1.0,
         | 
| 1267 | 
            +
                  "grad_norm": 0.9326264974645483,
         | 
| 1268 | 
            +
                  "learning_rate": 4.700738787466463e-10,
         | 
| 1269 | 
            +
                  "loss": 0.9,
         | 
| 1270 | 
            +
                  "step": 180
         | 
| 1271 | 
            +
                }
         | 
| 1272 | 
            +
              ],
         | 
| 1273 | 
            +
              "logging_steps": 1,
         | 
| 1274 | 
            +
              "max_steps": 180,
         | 
| 1275 | 
            +
              "num_input_tokens_seen": 0,
         | 
| 1276 | 
            +
              "num_train_epochs": 1,
         | 
| 1277 | 
            +
              "save_steps": 500,
         | 
| 1278 | 
            +
              "stateful_callbacks": {
         | 
| 1279 | 
            +
                "TrainerControl": {
         | 
| 1280 | 
            +
                  "args": {
         | 
| 1281 | 
            +
                    "should_epoch_stop": false,
         | 
| 1282 | 
            +
                    "should_evaluate": false,
         | 
| 1283 | 
            +
                    "should_log": false,
         | 
| 1284 | 
            +
                    "should_save": true,
         | 
| 1285 | 
            +
                    "should_training_stop": true
         | 
| 1286 | 
            +
                  },
         | 
| 1287 | 
            +
                  "attributes": {}
         | 
| 1288 | 
            +
                }
         | 
| 1289 | 
            +
              },
         | 
| 1290 | 
            +
              "total_flos": 27643248377856.0,
         | 
| 1291 | 
            +
              "train_batch_size": 1,
         | 
| 1292 | 
            +
              "trial_name": null,
         | 
| 1293 | 
            +
              "trial_params": null
         | 
| 1294 | 
            +
            }
         | 
    	
        training_args.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e527706eb629c68e33b0663c67e6d43111ad105b3f92d26bc491f29fe51f24a0
         | 
| 3 | 
            +
            size 7480
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        zero_to_fp32.py
    ADDED
    
    | @@ -0,0 +1,760 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Copyright (c) Microsoft Corporation.
         | 
| 4 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # DeepSpeed Team
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
         | 
| 9 | 
            +
            # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
         | 
| 10 | 
            +
            # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
         | 
| 11 | 
            +
            # application.
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            # example:
         | 
| 14 | 
            +
            #   python zero_to_fp32.py . output_dir/
         | 
| 15 | 
            +
            #   or
         | 
| 16 | 
            +
            #   python zero_to_fp32.py . output_dir/ --safe_serialization
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import argparse
         | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            import glob
         | 
| 21 | 
            +
            import math
         | 
| 22 | 
            +
            import os
         | 
| 23 | 
            +
            import re
         | 
| 24 | 
            +
            import gc
         | 
| 25 | 
            +
            import json
         | 
| 26 | 
            +
            import numpy as np
         | 
| 27 | 
            +
            from tqdm import tqdm
         | 
| 28 | 
            +
            from collections import OrderedDict
         | 
| 29 | 
            +
            from dataclasses import dataclass
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
         | 
| 32 | 
            +
            # DeepSpeed data structures it has to be available in the current python environment.
         | 
| 33 | 
            +
            from deepspeed.utils import logger
         | 
| 34 | 
            +
            from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
         | 
| 35 | 
            +
                                                        FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
         | 
| 36 | 
            +
                                                        FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            @dataclass
         | 
| 40 | 
            +
            class zero_model_state:
         | 
| 41 | 
            +
                buffers: dict()
         | 
| 42 | 
            +
                param_shapes: dict()
         | 
| 43 | 
            +
                shared_params: list
         | 
| 44 | 
            +
                ds_version: int
         | 
| 45 | 
            +
                frozen_param_shapes: dict()
         | 
| 46 | 
            +
                frozen_param_fragments: dict()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            debug = 0
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            # load to cpu
         | 
| 52 | 
            +
            device = torch.device('cpu')
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
            def atoi(text):
         | 
| 56 | 
            +
                return int(text) if text.isdigit() else text
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            def natural_keys(text):
         | 
| 60 | 
            +
                '''
         | 
| 61 | 
            +
                alist.sort(key=natural_keys) sorts in human order
         | 
| 62 | 
            +
                http://nedbatchelder.com/blog/200712/human_sorting.html
         | 
| 63 | 
            +
                (See Toothy's implementation in the comments)
         | 
| 64 | 
            +
                '''
         | 
| 65 | 
            +
                return [atoi(c) for c in re.split(r'(\d+)', text)]
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def get_model_state_file(checkpoint_dir, zero_stage):
         | 
| 69 | 
            +
                if not os.path.isdir(checkpoint_dir):
         | 
| 70 | 
            +
                    raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                # there should be only one file
         | 
| 73 | 
            +
                if zero_stage <= 2:
         | 
| 74 | 
            +
                    file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
         | 
| 75 | 
            +
                elif zero_stage == 3:
         | 
| 76 | 
            +
                    file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                if not os.path.exists(file):
         | 
| 79 | 
            +
                    raise FileNotFoundError(f"can't find model states file at '{file}'")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                return file
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
            def get_checkpoint_files(checkpoint_dir, glob_pattern):
         | 
| 85 | 
            +
                # XXX: need to test that this simple glob rule works for multi-node setup too
         | 
| 86 | 
            +
                ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                if len(ckpt_files) == 0:
         | 
| 89 | 
            +
                    raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                return ckpt_files
         | 
| 92 | 
            +
             | 
| 93 | 
            +
             | 
| 94 | 
            +
            def get_optim_files(checkpoint_dir):
         | 
| 95 | 
            +
                return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            def get_model_state_files(checkpoint_dir):
         | 
| 99 | 
            +
                return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
         | 
| 100 | 
            +
             | 
| 101 | 
            +
             | 
| 102 | 
            +
            def parse_model_states(files):
         | 
| 103 | 
            +
                zero_model_states = []
         | 
| 104 | 
            +
                for file in files:
         | 
| 105 | 
            +
                    state_dict = torch.load(file, map_location=device, weights_only=False)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    if BUFFER_NAMES not in state_dict:
         | 
| 108 | 
            +
                        raise ValueError(f"{file} is not a model state checkpoint")
         | 
| 109 | 
            +
                    buffer_names = state_dict[BUFFER_NAMES]
         | 
| 110 | 
            +
                    if debug:
         | 
| 111 | 
            +
                        print("Found buffers:", buffer_names)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    # recover just the buffers while restoring them to fp32 if they were saved in fp16
         | 
| 114 | 
            +
                    buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
         | 
| 115 | 
            +
                    param_shapes = state_dict[PARAM_SHAPES]
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    # collect parameters that are included in param_shapes
         | 
| 118 | 
            +
                    param_names = []
         | 
| 119 | 
            +
                    for s in param_shapes:
         | 
| 120 | 
            +
                        for name in s.keys():
         | 
| 121 | 
            +
                            param_names.append(name)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    # update with frozen parameters
         | 
| 124 | 
            +
                    frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
         | 
| 125 | 
            +
                    if frozen_param_shapes is not None:
         | 
| 126 | 
            +
                        if debug:
         | 
| 127 | 
            +
                            print(f"Found frozen_param_shapes: {frozen_param_shapes}")
         | 
| 128 | 
            +
                        param_names += list(frozen_param_shapes.keys())
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    # handle shared params
         | 
| 131 | 
            +
                    shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    ds_version = state_dict.get(DS_VERSION, None)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    z_model_state = zero_model_state(buffers=buffers,
         | 
| 138 | 
            +
                                                     param_shapes=param_shapes,
         | 
| 139 | 
            +
                                                     shared_params=shared_params,
         | 
| 140 | 
            +
                                                     ds_version=ds_version,
         | 
| 141 | 
            +
                                                     frozen_param_shapes=frozen_param_shapes,
         | 
| 142 | 
            +
                                                     frozen_param_fragments=frozen_param_fragments)
         | 
| 143 | 
            +
                    zero_model_states.append(z_model_state)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                return zero_model_states
         | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
            def parse_optim_states(files, ds_checkpoint_dir):
         | 
| 149 | 
            +
                total_files = len(files)
         | 
| 150 | 
            +
                state_dicts = []
         | 
| 151 | 
            +
                for f in tqdm(files, desc='Loading checkpoint shards'):
         | 
| 152 | 
            +
                    state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
         | 
| 153 | 
            +
                    # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
         | 
| 154 | 
            +
                    # and also handle the case where it was already removed by another helper script
         | 
| 155 | 
            +
                    state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
         | 
| 156 | 
            +
                    state_dicts.append(state_dict)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
         | 
| 159 | 
            +
                    raise ValueError(f"{files[0]} is not a zero checkpoint")
         | 
| 160 | 
            +
                zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
         | 
| 161 | 
            +
                world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
         | 
| 164 | 
            +
                # parameters can be different from data parallelism for non-expert parameters. So we can just
         | 
| 165 | 
            +
                # use the max of the partition_count to get the dp world_size.
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                if type(world_size) is list:
         | 
| 168 | 
            +
                    world_size = max(world_size)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                if world_size != total_files:
         | 
| 171 | 
            +
                    raise ValueError(
         | 
| 172 | 
            +
                        f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
         | 
| 173 | 
            +
                        "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
         | 
| 174 | 
            +
                    )
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                # the groups are named differently in each stage
         | 
| 177 | 
            +
                if zero_stage <= 2:
         | 
| 178 | 
            +
                    fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
         | 
| 179 | 
            +
                elif zero_stage == 3:
         | 
| 180 | 
            +
                    fp32_groups_key = FP32_FLAT_GROUPS
         | 
| 181 | 
            +
                else:
         | 
| 182 | 
            +
                    raise ValueError(f"unknown zero stage {zero_stage}")
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
         | 
| 185 | 
            +
                return zero_stage, world_size, fp32_flat_groups
         | 
| 186 | 
            +
             | 
| 187 | 
            +
             | 
| 188 | 
            +
            def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
         | 
| 189 | 
            +
                """
         | 
| 190 | 
            +
                Returns fp32 state_dict reconstructed from ds checkpoint
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                Args:
         | 
| 193 | 
            +
                    - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                """
         | 
| 196 | 
            +
                print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                optim_files = get_optim_files(ds_checkpoint_dir)
         | 
| 199 | 
            +
                zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
         | 
| 200 | 
            +
                print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                model_files = get_model_state_files(ds_checkpoint_dir)
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                zero_model_states = parse_model_states(model_files)
         | 
| 205 | 
            +
                print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                if zero_stage <= 2:
         | 
| 208 | 
            +
                    return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 209 | 
            +
                                                                      exclude_frozen_parameters)
         | 
| 210 | 
            +
                elif zero_stage == 3:
         | 
| 211 | 
            +
                    return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 212 | 
            +
                                                                      exclude_frozen_parameters)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
             | 
| 215 | 
            +
            def _zero2_merge_frozen_params(state_dict, zero_model_states):
         | 
| 216 | 
            +
                if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
         | 
| 217 | 
            +
                    return
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                frozen_param_shapes = zero_model_states[0].frozen_param_shapes
         | 
| 220 | 
            +
                frozen_param_fragments = zero_model_states[0].frozen_param_fragments
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                if debug:
         | 
| 223 | 
            +
                    num_elem = sum(s.numel() for s in frozen_param_shapes.values())
         | 
| 224 | 
            +
                    print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    wanted_params = len(frozen_param_shapes)
         | 
| 227 | 
            +
                    wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
         | 
| 228 | 
            +
                    avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
         | 
| 229 | 
            +
                    print(f'Frozen params: Have {avail_numel} numels to process.')
         | 
| 230 | 
            +
                    print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                total_params = 0
         | 
| 233 | 
            +
                total_numel = 0
         | 
| 234 | 
            +
                for name, shape in frozen_param_shapes.items():
         | 
| 235 | 
            +
                    total_params += 1
         | 
| 236 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 237 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    state_dict[name] = frozen_param_fragments[name]
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    if debug:
         | 
| 242 | 
            +
                        print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            def _has_callable(obj, fn):
         | 
| 248 | 
            +
                attr = getattr(obj, fn, None)
         | 
| 249 | 
            +
                return callable(attr)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
             | 
| 252 | 
            +
            def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
         | 
| 253 | 
            +
                param_shapes = zero_model_states[0].param_shapes
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                # Reconstruction protocol:
         | 
| 256 | 
            +
                #
         | 
| 257 | 
            +
                # XXX: document this
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                if debug:
         | 
| 260 | 
            +
                    for i in range(world_size):
         | 
| 261 | 
            +
                        for j in range(len(fp32_flat_groups[0])):
         | 
| 262 | 
            +
                            print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                # XXX: memory usage doubles here (zero2)
         | 
| 265 | 
            +
                num_param_groups = len(fp32_flat_groups[0])
         | 
| 266 | 
            +
                merged_single_partition_of_fp32_groups = []
         | 
| 267 | 
            +
                for i in range(num_param_groups):
         | 
| 268 | 
            +
                    merged_partitions = [sd[i] for sd in fp32_flat_groups]
         | 
| 269 | 
            +
                    full_single_fp32_vector = torch.cat(merged_partitions, 0)
         | 
| 270 | 
            +
                    merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
         | 
| 271 | 
            +
                avail_numel = sum(
         | 
| 272 | 
            +
                    [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                if debug:
         | 
| 275 | 
            +
                    wanted_params = sum([len(shapes) for shapes in param_shapes])
         | 
| 276 | 
            +
                    wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
         | 
| 277 | 
            +
                    # not asserting if there is a mismatch due to possible padding
         | 
| 278 | 
            +
                    print(f"Have {avail_numel} numels to process.")
         | 
| 279 | 
            +
                    print(f"Need {wanted_numel} numels in {wanted_params} params.")
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                # params
         | 
| 282 | 
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         | 
| 283 | 
            +
                # out-of-core computing solution
         | 
| 284 | 
            +
                total_numel = 0
         | 
| 285 | 
            +
                total_params = 0
         | 
| 286 | 
            +
                for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
         | 
| 287 | 
            +
                    offset = 0
         | 
| 288 | 
            +
                    avail_numel = full_single_fp32_vector.numel()
         | 
| 289 | 
            +
                    for name, shape in shapes.items():
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                        unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
         | 
| 292 | 
            +
                        total_numel += unpartitioned_numel
         | 
| 293 | 
            +
                        total_params += 1
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                        if debug:
         | 
| 296 | 
            +
                            print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
         | 
| 297 | 
            +
                        state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
         | 
| 298 | 
            +
                        offset += unpartitioned_numel
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
         | 
| 301 | 
            +
                    # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
         | 
| 302 | 
            +
                    # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
         | 
| 303 | 
            +
                    # live optimizer object, so we are checking that the numbers are within the right range
         | 
| 304 | 
            +
                    align_to = 2 * world_size
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    def zero2_align(x):
         | 
| 307 | 
            +
                        return align_to * math.ceil(x / align_to)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    if debug:
         | 
| 310 | 
            +
                        print(f"original offset={offset}, avail_numel={avail_numel}")
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    offset = zero2_align(offset)
         | 
| 313 | 
            +
                    avail_numel = zero2_align(avail_numel)
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    if debug:
         | 
| 316 | 
            +
                        print(f"aligned  offset={offset}, avail_numel={avail_numel}")
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    # Sanity check
         | 
| 319 | 
            +
                    if offset != avail_numel:
         | 
| 320 | 
            +
                        raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 323 | 
            +
             | 
| 324 | 
            +
             | 
| 325 | 
            +
            def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 326 | 
            +
                                                           exclude_frozen_parameters):
         | 
| 327 | 
            +
                state_dict = OrderedDict()
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                # buffers
         | 
| 330 | 
            +
                buffers = zero_model_states[0].buffers
         | 
| 331 | 
            +
                state_dict.update(buffers)
         | 
| 332 | 
            +
                if debug:
         | 
| 333 | 
            +
                    print(f"added {len(buffers)} buffers")
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                if not exclude_frozen_parameters:
         | 
| 336 | 
            +
                    _zero2_merge_frozen_params(state_dict, zero_model_states)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                # recover shared parameters
         | 
| 341 | 
            +
                for pair in zero_model_states[0].shared_params:
         | 
| 342 | 
            +
                    if pair[1] in state_dict:
         | 
| 343 | 
            +
                        state_dict[pair[0]] = state_dict[pair[1]]
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                return state_dict
         | 
| 346 | 
            +
             | 
| 347 | 
            +
             | 
| 348 | 
            +
            def zero3_partitioned_param_info(unpartitioned_numel, world_size):
         | 
| 349 | 
            +
                remainder = unpartitioned_numel % world_size
         | 
| 350 | 
            +
                padding_numel = (world_size - remainder) if remainder else 0
         | 
| 351 | 
            +
                partitioned_numel = math.ceil(unpartitioned_numel / world_size)
         | 
| 352 | 
            +
                return partitioned_numel, padding_numel
         | 
| 353 | 
            +
             | 
| 354 | 
            +
             | 
| 355 | 
            +
            def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
         | 
| 356 | 
            +
                if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
         | 
| 357 | 
            +
                    return
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                if debug:
         | 
| 360 | 
            +
                    for i in range(world_size):
         | 
| 361 | 
            +
                        num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
         | 
| 362 | 
            +
                        print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    frozen_param_shapes = zero_model_states[0].frozen_param_shapes
         | 
| 365 | 
            +
                    wanted_params = len(frozen_param_shapes)
         | 
| 366 | 
            +
                    wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
         | 
| 367 | 
            +
                    avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
         | 
| 368 | 
            +
                    print(f'Frozen params: Have {avail_numel} numels to process.')
         | 
| 369 | 
            +
                    print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                total_params = 0
         | 
| 372 | 
            +
                total_numel = 0
         | 
| 373 | 
            +
                for name, shape in zero_model_states[0].frozen_param_shapes.items():
         | 
| 374 | 
            +
                    total_params += 1
         | 
| 375 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 376 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
         | 
| 379 | 
            +
                    state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    if debug:
         | 
| 384 | 
            +
                        print(
         | 
| 385 | 
            +
                            f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         | 
| 386 | 
            +
                        )
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 389 | 
            +
             | 
| 390 | 
            +
             | 
| 391 | 
            +
            class GatheredTensor:
         | 
| 392 | 
            +
                """
         | 
| 393 | 
            +
                A pseudo tensor that collects partitioned weights.
         | 
| 394 | 
            +
                It is more memory efficient when there are multiple groups.
         | 
| 395 | 
            +
                """
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
         | 
| 398 | 
            +
                    self.flat_groups = flat_groups
         | 
| 399 | 
            +
                    self.flat_groups_offset = flat_groups_offset
         | 
| 400 | 
            +
                    self.offset = offset
         | 
| 401 | 
            +
                    self.partitioned_numel = partitioned_numel
         | 
| 402 | 
            +
                    self.shape = shape
         | 
| 403 | 
            +
                    self.dtype = self.flat_groups[0][0].dtype
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                def contiguous(self):
         | 
| 406 | 
            +
                    """
         | 
| 407 | 
            +
                    Merge partitioned weights from flat_groups into a single tensor.
         | 
| 408 | 
            +
                    """
         | 
| 409 | 
            +
                    end_idx = self.offset + self.partitioned_numel
         | 
| 410 | 
            +
                    world_size = len(self.flat_groups)
         | 
| 411 | 
            +
                    pad_flat_param_chunks = []
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    for rank_i in range(world_size):
         | 
| 414 | 
            +
                        # for each rank, we need to collect weights from related group/groups
         | 
| 415 | 
            +
                        flat_groups_at_rank_i = self.flat_groups[rank_i]
         | 
| 416 | 
            +
                        start_group_id = None
         | 
| 417 | 
            +
                        end_group_id = None
         | 
| 418 | 
            +
                        for group_id in range(len(self.flat_groups_offset)):
         | 
| 419 | 
            +
                            if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
         | 
| 420 | 
            +
                                start_group_id = group_id
         | 
| 421 | 
            +
                            if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
         | 
| 422 | 
            +
                                end_group_id = group_id
         | 
| 423 | 
            +
                                break
         | 
| 424 | 
            +
                        # collect weights from related group/groups
         | 
| 425 | 
            +
                        for group_id in range(start_group_id, end_group_id + 1):
         | 
| 426 | 
            +
                            flat_tensor = flat_groups_at_rank_i[group_id]
         | 
| 427 | 
            +
                            start_offset = self.offset - self.flat_groups_offset[group_id]
         | 
| 428 | 
            +
                            end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
         | 
| 429 | 
            +
                            pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                    # collect weights from all ranks
         | 
| 432 | 
            +
                    pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
         | 
| 433 | 
            +
                    param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
         | 
| 434 | 
            +
                    return param
         | 
| 435 | 
            +
             | 
| 436 | 
            +
             | 
| 437 | 
            +
            def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
         | 
| 438 | 
            +
                param_shapes = zero_model_states[0].param_shapes
         | 
| 439 | 
            +
                avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
         | 
| 442 | 
            +
                # param, re-consolidating each param, while dealing with padding if any
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                # merge list of dicts, preserving order
         | 
| 445 | 
            +
                param_shapes = {k: v for d in param_shapes for k, v in d.items()}
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                if debug:
         | 
| 448 | 
            +
                    for i in range(world_size):
         | 
| 449 | 
            +
                        print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    wanted_params = len(param_shapes)
         | 
| 452 | 
            +
                    wanted_numel = sum(shape.numel() for shape in param_shapes.values())
         | 
| 453 | 
            +
                    # not asserting if there is a mismatch due to possible padding
         | 
| 454 | 
            +
                    avail_numel = fp32_flat_groups[0].numel() * world_size
         | 
| 455 | 
            +
                    print(f"Trainable params: Have {avail_numel} numels to process.")
         | 
| 456 | 
            +
                    print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                # params
         | 
| 459 | 
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         | 
| 460 | 
            +
                # out-of-core computing solution
         | 
| 461 | 
            +
                offset = 0
         | 
| 462 | 
            +
                total_numel = 0
         | 
| 463 | 
            +
                total_params = 0
         | 
| 464 | 
            +
                flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
         | 
| 465 | 
            +
                for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
         | 
| 466 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 467 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 468 | 
            +
                    total_params += 1
         | 
| 469 | 
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    if debug:
         | 
| 472 | 
            +
                        print(
         | 
| 473 | 
            +
                            f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         | 
| 474 | 
            +
                        )
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                    # memory efficient tensor
         | 
| 477 | 
            +
                    tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
         | 
| 478 | 
            +
                    state_dict[name] = tensor
         | 
| 479 | 
            +
                    offset += partitioned_numel
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                offset *= world_size
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                # Sanity check
         | 
| 484 | 
            +
                if offset != avail_numel:
         | 
| 485 | 
            +
                    raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 488 | 
            +
             | 
| 489 | 
            +
             | 
| 490 | 
            +
            def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 491 | 
            +
                                                           exclude_frozen_parameters):
         | 
| 492 | 
            +
                state_dict = OrderedDict()
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                # buffers
         | 
| 495 | 
            +
                buffers = zero_model_states[0].buffers
         | 
| 496 | 
            +
                state_dict.update(buffers)
         | 
| 497 | 
            +
                if debug:
         | 
| 498 | 
            +
                    print(f"added {len(buffers)} buffers")
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                if not exclude_frozen_parameters:
         | 
| 501 | 
            +
                    _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                # recover shared parameters
         | 
| 506 | 
            +
                for pair in zero_model_states[0].shared_params:
         | 
| 507 | 
            +
                    if pair[1] in state_dict:
         | 
| 508 | 
            +
                        state_dict[pair[0]] = state_dict[pair[1]]
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                return state_dict
         | 
| 511 | 
            +
             | 
| 512 | 
            +
             | 
| 513 | 
            +
            def to_torch_tensor(state_dict, return_empty_tensor=False):
         | 
| 514 | 
            +
                """
         | 
| 515 | 
            +
                Convert state_dict of GatheredTensor to torch tensor
         | 
| 516 | 
            +
                """
         | 
| 517 | 
            +
                torch_state_dict = {}
         | 
| 518 | 
            +
                converted_tensors = {}
         | 
| 519 | 
            +
                for name, tensor in state_dict.items():
         | 
| 520 | 
            +
                    tensor_id = id(tensor)
         | 
| 521 | 
            +
                    if tensor_id in converted_tensors:  # shared tensors
         | 
| 522 | 
            +
                        shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
         | 
| 523 | 
            +
                        torch_state_dict[name] = shared_tensor
         | 
| 524 | 
            +
                    else:
         | 
| 525 | 
            +
                        converted_tensors[tensor_id] = name
         | 
| 526 | 
            +
                        if return_empty_tensor:
         | 
| 527 | 
            +
                            torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
         | 
| 528 | 
            +
                        else:
         | 
| 529 | 
            +
                            torch_state_dict[name] = tensor.contiguous()
         | 
| 530 | 
            +
                return torch_state_dict
         | 
| 531 | 
            +
             | 
| 532 | 
            +
             | 
| 533 | 
            +
            def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
         | 
| 534 | 
            +
                                                         tag=None,
         | 
| 535 | 
            +
                                                         exclude_frozen_parameters=False,
         | 
| 536 | 
            +
                                                         lazy_mode=False):
         | 
| 537 | 
            +
                """
         | 
| 538 | 
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
         | 
| 539 | 
            +
                ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
         | 
| 540 | 
            +
                via a model hub.
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                Args:
         | 
| 543 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder
         | 
| 544 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
         | 
| 545 | 
            +
                    - ``exclude_frozen_parameters``: exclude frozen parameters
         | 
| 546 | 
            +
                    - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
         | 
| 547 | 
            +
                      Convert the pesduo tensor to torch tensor by ``.contiguous()``
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                Returns:
         | 
| 550 | 
            +
                    - pytorch ``state_dict``
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                A typical usage might be ::
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
         | 
| 555 | 
            +
                    # do the training and checkpoint saving
         | 
| 556 | 
            +
                    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
         | 
| 557 | 
            +
                    model = model.cpu() # move to cpu
         | 
| 558 | 
            +
                    model.load_state_dict(state_dict)
         | 
| 559 | 
            +
                    # submit to model hub or save the model to share with others
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                In this example the ``model`` will no longer be usable in the deepspeed context of the same
         | 
| 562 | 
            +
                application. i.e. you will need to re-initialize the deepspeed engine, since
         | 
| 563 | 
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
         | 
| 568 | 
            +
                You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
         | 
| 569 | 
            +
                the checkpoint. Or you can load state_dict in lazy mode ::
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
         | 
| 572 | 
            +
                    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
         | 
| 573 | 
            +
                    for name, lazy_tensor in state_dict.item():
         | 
| 574 | 
            +
                        tensor = lazy_tensor.contiguous()  # to cpu
         | 
| 575 | 
            +
                        print(name, tensor)
         | 
| 576 | 
            +
                        # del tensor to release memory if it no longer in use
         | 
| 577 | 
            +
                """
         | 
| 578 | 
            +
                if tag is None:
         | 
| 579 | 
            +
                    latest_path = os.path.join(checkpoint_dir, 'latest')
         | 
| 580 | 
            +
                    if os.path.isfile(latest_path):
         | 
| 581 | 
            +
                        with open(latest_path, 'r') as fd:
         | 
| 582 | 
            +
                            tag = fd.read().strip()
         | 
| 583 | 
            +
                    else:
         | 
| 584 | 
            +
                        raise ValueError(f"Unable to find 'latest' file at {latest_path}")
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
         | 
| 587 | 
            +
             | 
| 588 | 
            +
                if not os.path.isdir(ds_checkpoint_dir):
         | 
| 589 | 
            +
                    raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
         | 
| 592 | 
            +
                if lazy_mode:
         | 
| 593 | 
            +
                    return state_dict
         | 
| 594 | 
            +
                else:
         | 
| 595 | 
            +
                    return to_torch_tensor(state_dict)
         | 
| 596 | 
            +
             | 
| 597 | 
            +
             | 
| 598 | 
            +
            def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
         | 
| 599 | 
            +
                                                           output_dir,
         | 
| 600 | 
            +
                                                           max_shard_size="5GB",
         | 
| 601 | 
            +
                                                           safe_serialization=False,
         | 
| 602 | 
            +
                                                           tag=None,
         | 
| 603 | 
            +
                                                           exclude_frozen_parameters=False):
         | 
| 604 | 
            +
                """
         | 
| 605 | 
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
         | 
| 606 | 
            +
                loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                Args:
         | 
| 609 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         | 
| 610 | 
            +
                    - ``output_dir``: directory to the pytorch fp32 state_dict output files
         | 
| 611 | 
            +
                    - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
         | 
| 612 | 
            +
                    - ``safe_serialization``:  whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
         | 
| 613 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         | 
| 614 | 
            +
                    - ``exclude_frozen_parameters``: exclude frozen parameters
         | 
| 615 | 
            +
                """
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                # Dependency pre-check
         | 
| 618 | 
            +
                if safe_serialization:
         | 
| 619 | 
            +
                    try:
         | 
| 620 | 
            +
                        from safetensors.torch import save_file
         | 
| 621 | 
            +
                    except ImportError:
         | 
| 622 | 
            +
                        print('If you want to use `safe_serialization`, please `pip install safetensors`')
         | 
| 623 | 
            +
                        raise
         | 
| 624 | 
            +
                if max_shard_size is not None:
         | 
| 625 | 
            +
                    try:
         | 
| 626 | 
            +
                        from huggingface_hub import split_torch_state_dict_into_shards
         | 
| 627 | 
            +
                    except ImportError:
         | 
| 628 | 
            +
                        print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
         | 
| 629 | 
            +
                        raise
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                # Convert zero checkpoint to state_dict
         | 
| 632 | 
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
         | 
| 633 | 
            +
                                                                      tag,
         | 
| 634 | 
            +
                                                                      exclude_frozen_parameters,
         | 
| 635 | 
            +
                                                                      lazy_mode=True)
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                # Shard the model if it is too big.
         | 
| 638 | 
            +
                weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
         | 
| 639 | 
            +
                if max_shard_size is not None:
         | 
| 640 | 
            +
                    filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
         | 
| 641 | 
            +
                    # an memory-efficient approach for sharding
         | 
| 642 | 
            +
                    empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
         | 
| 643 | 
            +
                    state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
         | 
| 644 | 
            +
                                                                          filename_pattern=filename_pattern,
         | 
| 645 | 
            +
                                                                          max_shard_size=max_shard_size)
         | 
| 646 | 
            +
                else:
         | 
| 647 | 
            +
                    from collections import namedtuple
         | 
| 648 | 
            +
                    StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
         | 
| 649 | 
            +
                    state_dict_split = StateDictSplit(is_sharded=False,
         | 
| 650 | 
            +
                                                      filename_to_tensors={weights_name: list(state_dict.keys())})
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                # Save the model by shard
         | 
| 653 | 
            +
                os.makedirs(output_dir, exist_ok=True)
         | 
| 654 | 
            +
                filename_to_tensors = state_dict_split.filename_to_tensors.items()
         | 
| 655 | 
            +
                for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
         | 
| 656 | 
            +
                    shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
         | 
| 657 | 
            +
                    shard_state_dict = to_torch_tensor(shard_state_dict)
         | 
| 658 | 
            +
                    output_path = os.path.join(output_dir, shard_file)
         | 
| 659 | 
            +
                    if safe_serialization:
         | 
| 660 | 
            +
                        save_file(shard_state_dict, output_path, metadata={"format": "pt"})
         | 
| 661 | 
            +
                    else:
         | 
| 662 | 
            +
                        torch.save(shard_state_dict, output_path)
         | 
| 663 | 
            +
                    # release the memory of current shard
         | 
| 664 | 
            +
                    for tensor_name in list(shard_state_dict.keys()):
         | 
| 665 | 
            +
                        del state_dict[tensor_name]
         | 
| 666 | 
            +
                        del shard_state_dict[tensor_name]
         | 
| 667 | 
            +
                    del shard_state_dict
         | 
| 668 | 
            +
                    gc.collect()
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                # Save index if sharded
         | 
| 671 | 
            +
                if state_dict_split.is_sharded:
         | 
| 672 | 
            +
                    index = {
         | 
| 673 | 
            +
                        "metadata": state_dict_split.metadata,
         | 
| 674 | 
            +
                        "weight_map": state_dict_split.tensor_to_filename,
         | 
| 675 | 
            +
                    }
         | 
| 676 | 
            +
                    save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
         | 
| 677 | 
            +
                    save_index_file = os.path.join(output_dir, save_index_file)
         | 
| 678 | 
            +
                    with open(save_index_file, "w", encoding="utf-8") as f:
         | 
| 679 | 
            +
                        content = json.dumps(index, indent=2, sort_keys=True) + "\n"
         | 
| 680 | 
            +
                        f.write(content)
         | 
| 681 | 
            +
             | 
| 682 | 
            +
             | 
| 683 | 
            +
            def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
         | 
| 684 | 
            +
                """
         | 
| 685 | 
            +
                1. Put the provided model to cpu
         | 
| 686 | 
            +
                2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
         | 
| 687 | 
            +
                3. Load it into the provided model
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                Args:
         | 
| 690 | 
            +
                    - ``model``: the model object to update
         | 
| 691 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         | 
| 692 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                Returns:
         | 
| 695 | 
            +
                    - ``model`: modified model
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                Make sure you have plenty of CPU memory available before you call this function. If you don't
         | 
| 698 | 
            +
                have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
         | 
| 699 | 
            +
                conveniently placed for you in the checkpoint folder.
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                A typical usage might be ::
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
         | 
| 704 | 
            +
                    model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
         | 
| 705 | 
            +
                    # submit to model hub or save the model to share with others
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
         | 
| 708 | 
            +
                of the same application. i.e. you will need to re-initialize the deepspeed engine, since
         | 
| 709 | 
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                """
         | 
| 712 | 
            +
                logger.info(f"Extracting fp32 weights")
         | 
| 713 | 
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                logger.info(f"Overwriting model with fp32 weights")
         | 
| 716 | 
            +
                model = model.cpu()
         | 
| 717 | 
            +
                model.load_state_dict(state_dict, strict=False)
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                return model
         | 
| 720 | 
            +
             | 
| 721 | 
            +
             | 
| 722 | 
            +
            if __name__ == "__main__":
         | 
| 723 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 724 | 
            +
                parser.add_argument("checkpoint_dir",
         | 
| 725 | 
            +
                                    type=str,
         | 
| 726 | 
            +
                                    help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
         | 
| 727 | 
            +
                parser.add_argument("output_dir",
         | 
| 728 | 
            +
                                    type=str,
         | 
| 729 | 
            +
                                    help="directory to the pytorch fp32 state_dict output files"
         | 
| 730 | 
            +
                                    "(e.g. path/checkpoint-12-output/)")
         | 
| 731 | 
            +
                parser.add_argument(
         | 
| 732 | 
            +
                    "--max_shard_size",
         | 
| 733 | 
            +
                    type=str,
         | 
| 734 | 
            +
                    default="5GB",
         | 
| 735 | 
            +
                    help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
         | 
| 736 | 
            +
                    "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
         | 
| 737 | 
            +
                    "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
         | 
| 738 | 
            +
                    "without CPU OOM issues.")
         | 
| 739 | 
            +
                parser.add_argument(
         | 
| 740 | 
            +
                    "--safe_serialization",
         | 
| 741 | 
            +
                    default=False,
         | 
| 742 | 
            +
                    action='store_true',
         | 
| 743 | 
            +
                    help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
         | 
| 744 | 
            +
                parser.add_argument("-t",
         | 
| 745 | 
            +
                                    "--tag",
         | 
| 746 | 
            +
                                    type=str,
         | 
| 747 | 
            +
                                    default=None,
         | 
| 748 | 
            +
                                    help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
         | 
| 749 | 
            +
                parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
         | 
| 750 | 
            +
                parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
         | 
| 751 | 
            +
                args = parser.parse_args()
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                debug = args.debug
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
         | 
| 756 | 
            +
                                                           args.output_dir,
         | 
| 757 | 
            +
                                                           max_shard_size=args.max_shard_size,
         | 
| 758 | 
            +
                                                           safe_serialization=args.safe_serialization,
         | 
| 759 | 
            +
                                                           tag=args.tag,
         | 
| 760 | 
            +
                                                           exclude_frozen_parameters=args.exclude_frozen_parameters)
         | 
