--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-f1-durga-muhammad results: [] --- # bert-f1-durga-muhammad This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0079 - Accuracy: 0.999 - Precision: 0.999 - Recall: 0.999 - F1: 0.999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:-----:| | 0.1978 | 0.24 | 60 | 0.1764 | 0.968 | 0.968 | 0.968 | 0.968 | | 0.1657 | 0.48 | 120 | 0.0619 | 0.981 | 0.981 | 0.981 | 0.981 | | 0.1155 | 0.72 | 180 | 0.0475 | 0.989 | 0.989 | 0.989 | 0.989 | | 0.0675 | 0.96 | 240 | 0.0143 | 0.997 | 0.997 | 0.997 | 0.997 | | 0.0009 | 1.2 | 300 | 0.0148 | 0.997 | 0.997 | 0.997 | 0.997 | | 0.0006 | 1.44 | 360 | 0.0151 | 0.997 | 0.997 | 0.997 | 0.997 | | 0.0267 | 1.6800 | 420 | 0.0083 | 0.999 | 0.999 | 0.999 | 0.999 | | 0.0335 | 1.92 | 480 | 0.0080 | 0.999 | 0.999 | 0.999 | 0.999 | | 0.0315 | 2.16 | 540 | 0.0073 | 0.999 | 0.999 | 0.999 | 0.999 | | 0.0056 | 2.4 | 600 | 0.0076 | 0.999 | 0.999 | 0.999 | 0.999 | | 0.0004 | 2.64 | 660 | 0.0078 | 0.999 | 0.999 | 0.999 | 0.999 | | 0.0004 | 2.88 | 720 | 0.0079 | 0.999 | 0.999 | 0.999 | 0.999 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1