--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-f1-durga-muhammad results: [] --- # bert-f1-durga-muhammad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0313 - Accuracy: 0.995 - Precision: 0.995 - Recall: 0.995 - F1: 0.995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----:| | 0.3962 | 1.2 | 60 | 0.0549 | 0.995 | 0.995 | 0.995 | 0.995 | | 0.0345 | 2.4 | 120 | 0.0314 | 0.995 | 0.995 | 0.995 | 0.995 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1