patrickvonplaten commited on
Commit
96eb466
·
0 Parent(s):

Duplicate from google/ddpm-cifar10-32

Browse files
.gitattributes ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ diffusion_model.pt filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - pytorch
5
+ - diffusers
6
+ - unconditional-image-generation
7
+ duplicated_from: google/ddpm-cifar10-32
8
+ ---
9
+
10
+ # Denoising Diffusion Probabilistic Models (DDPM)
11
+
12
+ **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
13
+
14
+ **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel
15
+
16
+ **Abstract**:
17
+
18
+ *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
19
+
20
+ ## Inference
21
+
22
+ **DDPM** models can use *discrete noise schedulers* such as:
23
+
24
+ - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py)
25
+ - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)
26
+ - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
27
+
28
+ for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest.
29
+ For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead.
30
+
31
+ See the following code:
32
+
33
+ ```python
34
+ # !pip install diffusers
35
+ from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
36
+
37
+ model_id = "google/ddpm-cifar10-32"
38
+
39
+ # load model and scheduler
40
+ ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
41
+
42
+ # run pipeline in inference (sample random noise and denoise)
43
+ image = ddpm().images[0]
44
+
45
+ # save image
46
+ image.save("ddpm_generated_image.png")
47
+ ```
48
+
49
+ For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb)
50
+
51
+ ## Training
52
+
53
+ If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
54
+
55
+ ## Samples
56
+ 1. ![sample_1](https://huggingface.co/google/ddpm-cifar10-32/resolve/main/images/generated_image_0.png)
57
+ 2. ![sample_2](https://huggingface.co/google/ddpm-cifar10-32/resolve/main/images/generated_image_1.png)
58
+ 3. ![sample_3](https://huggingface.co/google/ddpm-cifar10-32/resolve/main/images/generated_image_2.png)
59
+ 4. ![sample_4](https://huggingface.co/google/ddpm-cifar10-32/resolve/main/images/generated_image_3.png)
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DModel",
3
+ "_diffusers_version": "0.0.4",
4
+ "act_fn": "silu",
5
+ "attention_head_dim": null,
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 256,
10
+ 256
11
+ ],
12
+ "center_input_sample": false,
13
+ "down_block_types": [
14
+ "DownBlock2D",
15
+ "AttnDownBlock2D",
16
+ "DownBlock2D",
17
+ "DownBlock2D"
18
+ ],
19
+ "downsample_padding": 0,
20
+ "flip_sin_to_cos": false,
21
+ "freq_shift": 1,
22
+ "in_channels": 3,
23
+ "layers_per_block": 2,
24
+ "mid_block_scale_factor": 1,
25
+ "norm_eps": 1e-06,
26
+ "norm_num_groups": 32,
27
+ "out_channels": 3,
28
+ "sample_size": 32,
29
+ "time_embedding_type": "positional",
30
+ "up_block_types": [
31
+ "UpBlock2D",
32
+ "UpBlock2D",
33
+ "AttnUpBlock2D",
34
+ "UpBlock2D"
35
+ ]
36
+ }
diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3416a548879738893e935b42cab9119f51745b62bec4b6d8375e4d86e98ea4
3
+ size 143101489
images/generated_image_0.png ADDED
images/generated_image_1.png ADDED
images/generated_image_2.png ADDED
images/generated_image_3.png ADDED
model_index.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDPMPipeline",
3
+ "_module": "modeling_ddpm.py",
4
+ "scheduler": [
5
+ "diffusers",
6
+ "DDPMScheduler"
7
+ ],
8
+ "unet": [
9
+ "diffusers",
10
+ "UNet2DModel"
11
+ ]
12
+ }
modeling_ddpm.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+
14
+ # limitations under the License.
15
+
16
+
17
+ from diffusers import DiffusionPipeline
18
+ import tqdm
19
+ import torch
20
+
21
+
22
+ class DDPM(DiffusionPipeline):
23
+
24
+ modeling_file = "modeling_ddpm.py"
25
+
26
+ def __init__(self, unet, noise_scheduler):
27
+ super().__init__()
28
+ self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
29
+
30
+ def __call__(self, generator=None, torch_device=None):
31
+ torch_device = "cuda" if torch.cuda.is_available() else "cpu"
32
+
33
+ self.unet.to(torch_device)
34
+ # 1. Sample gaussian noise
35
+ image = self.noise_scheduler.sample_noise((1, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator)
36
+ for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)):
37
+ # i) define coefficients for time step t
38
+ clip_image_coeff = 1 / torch.sqrt(self.noise_scheduler.get_alpha_prod(t))
39
+ clip_noise_coeff = torch.sqrt(1 / self.noise_scheduler.get_alpha_prod(t) - 1)
40
+ image_coeff = (1 - self.noise_scheduler.get_alpha_prod(t - 1)) * torch.sqrt(self.noise_scheduler.get_alpha(t)) / (1 - self.noise_scheduler.get_alpha_prod(t))
41
+ clip_coeff = torch.sqrt(self.noise_scheduler.get_alpha_prod(t - 1)) * self.noise_scheduler.get_beta(t) / (1 - self.noise_scheduler.get_alpha_prod(t))
42
+
43
+ # ii) predict noise residual
44
+ with torch.no_grad():
45
+ noise_residual = self.unet(image, t)
46
+
47
+ # iii) compute predicted image from residual
48
+ # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
49
+ pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
50
+ pred_mean = torch.clamp(pred_mean, -1, 1)
51
+ prev_image = clip_coeff * pred_mean + image_coeff * image
52
+
53
+ # iv) sample variance
54
+ prev_variance = self.noise_scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
55
+
56
+ # v) sample x_{t-1} ~ N(prev_image, prev_variance)
57
+ sampled_prev_image = prev_image + prev_variance
58
+ image = sampled_prev_image
59
+
60
+ return image
scheduler_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDPMScheduler",
3
+ "_diffusers_version": "0.1.1",
4
+ "beta_end": 0.02,
5
+ "beta_schedule": "linear",
6
+ "beta_start": 0.0001,
7
+ "clip_sample": true,
8
+ "num_train_timesteps": 1000,
9
+ "trained_betas": null,
10
+ "variance_type": "fixed_large"
11
+ }