update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- ccmatrix
|
7 |
+
metrics:
|
8 |
+
- bleu
|
9 |
+
model-index:
|
10 |
+
- name: t5-base-finetuned-en-to-it
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: ccmatrix
|
17 |
+
type: ccmatrix
|
18 |
+
config: en-it
|
19 |
+
split: train[3000:12000]
|
20 |
+
args: en-it
|
21 |
+
metrics:
|
22 |
+
- name: Bleu
|
23 |
+
type: bleu
|
24 |
+
value: 20.1194
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# t5-base-finetuned-en-to-it
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the ccmatrix dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.4830
|
35 |
+
- Bleu: 20.1194
|
36 |
+
- Gen Len: 51.456
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 40
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
68 |
+
| No log | 1.0 | 282 | 2.0137 | 6.5621 | 69.0227 |
|
69 |
+
| 2.4006 | 2.0 | 564 | 1.9278 | 7.2684 | 70.0333 |
|
70 |
+
| 2.4006 | 3.0 | 846 | 1.8712 | 8.6643 | 64.654 |
|
71 |
+
| 2.1423 | 4.0 | 1128 | 1.8223 | 9.3778 | 63.4453 |
|
72 |
+
| 2.1423 | 5.0 | 1410 | 1.7836 | 10.0151 | 63.778 |
|
73 |
+
| 2.0248 | 6.0 | 1692 | 1.7515 | 10.9865 | 62.224 |
|
74 |
+
| 2.0248 | 7.0 | 1974 | 1.7208 | 11.5089 | 61.2 |
|
75 |
+
| 1.9316 | 8.0 | 2256 | 1.6936 | 12.3755 | 60.1047 |
|
76 |
+
| 1.8584 | 9.0 | 2538 | 1.6731 | 12.8765 | 59.4427 |
|
77 |
+
| 1.8584 | 10.0 | 2820 | 1.6535 | 13.7278 | 57.6253 |
|
78 |
+
| 1.7949 | 11.0 | 3102 | 1.6360 | 14.2498 | 56.3913 |
|
79 |
+
| 1.7949 | 12.0 | 3384 | 1.6222 | 14.8795 | 55.346 |
|
80 |
+
| 1.7461 | 13.0 | 3666 | 1.6064 | 15.017 | 55.7473 |
|
81 |
+
| 1.7461 | 14.0 | 3948 | 1.5926 | 15.3093 | 56.0067 |
|
82 |
+
| 1.6998 | 15.0 | 4230 | 1.5803 | 15.6934 | 55.366 |
|
83 |
+
| 1.6635 | 16.0 | 4512 | 1.5707 | 16.3604 | 54.5413 |
|
84 |
+
| 1.6635 | 17.0 | 4794 | 1.5633 | 16.8086 | 53.824 |
|
85 |
+
| 1.621 | 18.0 | 5076 | 1.5515 | 17.1319 | 53.5927 |
|
86 |
+
| 1.621 | 19.0 | 5358 | 1.5450 | 17.5039 | 53.5167 |
|
87 |
+
| 1.6008 | 20.0 | 5640 | 1.5389 | 17.8012 | 53.6527 |
|
88 |
+
| 1.6008 | 21.0 | 5922 | 1.5314 | 17.7305 | 53.342 |
|
89 |
+
| 1.5656 | 22.0 | 6204 | 1.5259 | 18.1609 | 53.4033 |
|
90 |
+
| 1.5656 | 23.0 | 6486 | 1.5200 | 18.6506 | 52.226 |
|
91 |
+
| 1.5466 | 24.0 | 6768 | 1.5185 | 18.9433 | 52.2173 |
|
92 |
+
| 1.53 | 25.0 | 7050 | 1.5120 | 19.0978 | 52.022 |
|
93 |
+
| 1.53 | 26.0 | 7332 | 1.5083 | 19.1326 | 52.0527 |
|
94 |
+
| 1.5072 | 27.0 | 7614 | 1.5044 | 19.0854 | 52.2447 |
|
95 |
+
| 1.5072 | 28.0 | 7896 | 1.5002 | 19.372 | 51.7687 |
|
96 |
+
| 1.4926 | 29.0 | 8178 | 1.4977 | 19.5798 | 52.0327 |
|
97 |
+
| 1.4926 | 30.0 | 8460 | 1.4941 | 19.5161 | 51.9893 |
|
98 |
+
| 1.478 | 31.0 | 8742 | 1.4911 | 19.7821 | 51.534 |
|
99 |
+
| 1.47 | 32.0 | 9024 | 1.4897 | 19.7207 | 51.4787 |
|
100 |
+
| 1.47 | 33.0 | 9306 | 1.4888 | 19.8066 | 51.5407 |
|
101 |
+
| 1.4603 | 34.0 | 9588 | 1.4869 | 19.9036 | 51.398 |
|
102 |
+
| 1.4603 | 35.0 | 9870 | 1.4856 | 19.9575 | 51.352 |
|
103 |
+
| 1.4558 | 36.0 | 10152 | 1.4845 | 19.9513 | 51.4833 |
|
104 |
+
| 1.4558 | 37.0 | 10434 | 1.4840 | 20.0177 | 51.3027 |
|
105 |
+
| 1.4486 | 38.0 | 10716 | 1.4833 | 20.0644 | 51.484 |
|
106 |
+
| 1.4486 | 39.0 | 10998 | 1.4830 | 20.1001 | 51.5747 |
|
107 |
+
| 1.4452 | 40.0 | 11280 | 1.4830 | 20.1194 | 51.456 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.22.1
|
113 |
+
- Pytorch 1.12.1
|
114 |
+
- Datasets 2.5.1
|
115 |
+
- Tokenizers 0.11.0
|