Update README.md
Browse files
README.md
CHANGED
|
@@ -40,16 +40,57 @@ pipeline_tag: image-text-to-text
|
|
| 40 |
You can use transformers or docling to perform inference:
|
| 41 |
|
| 42 |
<details>
|
| 43 |
-
<summary>
|
| 44 |
|
| 45 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
print(generated_texts[0])
|
| 48 |
```
|
| 49 |
</details>
|
| 50 |
|
|
|
|
| 51 |
<details>
|
| 52 |
-
<summary>
|
| 53 |
|
| 54 |
```python
|
| 55 |
import torch
|
|
@@ -94,7 +135,7 @@ generated_texts = processor.batch_decode(
|
|
| 94 |
)
|
| 95 |
|
| 96 |
print(generated_texts[0])
|
| 97 |
-
|
| 98 |
</details>
|
| 99 |
|
| 100 |
<details>
|
|
|
|
| 40 |
You can use transformers or docling to perform inference:
|
| 41 |
|
| 42 |
<details>
|
| 43 |
+
<summary>Single image inference using Tranformers</summary>
|
| 44 |
|
| 45 |
```python
|
| 46 |
+
import torch
|
| 47 |
+
from PIL import Image
|
| 48 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 49 |
+
from transformers.image_utils import load_image
|
| 50 |
+
|
| 51 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
+
|
| 53 |
+
# Load images
|
| 54 |
+
image = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
|
| 55 |
+
|
| 56 |
+
# Initialize processor and model
|
| 57 |
+
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
| 58 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 59 |
+
"ds4sd/SmolDocling-256M-preview",
|
| 60 |
+
torch_dtype=torch.bfloat16,
|
| 61 |
+
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
| 62 |
+
).to(DEVICE)
|
| 63 |
+
|
| 64 |
+
# Create input messages
|
| 65 |
+
messages = [
|
| 66 |
+
{
|
| 67 |
+
"role": "user",
|
| 68 |
+
"content": [
|
| 69 |
+
{"type": "image"},
|
| 70 |
+
{"type": "text", "text": "Convert this page to docling."}
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
# Prepare inputs
|
| 76 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 77 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 78 |
+
inputs = inputs.to(DEVICE)
|
| 79 |
+
|
| 80 |
+
# Generate outputs
|
| 81 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
| 82 |
+
generated_texts = processor.batch_decode(
|
| 83 |
+
generated_ids,
|
| 84 |
+
skip_special_tokens=True,
|
| 85 |
+
)
|
| 86 |
|
| 87 |
print(generated_texts[0])
|
| 88 |
```
|
| 89 |
</details>
|
| 90 |
|
| 91 |
+
|
| 92 |
<details>
|
| 93 |
+
<summary>Multi-page image inference using Tranformers</summary>
|
| 94 |
|
| 95 |
```python
|
| 96 |
import torch
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
print(generated_texts[0])
|
| 138 |
+
``````
|
| 139 |
</details>
|
| 140 |
|
| 141 |
<details>
|