doublemathew commited on
Commit
cffa90e
·
verified ·
1 Parent(s): bc6f1f6

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/fig1.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/show1.jpg filter=lfs diff=lfs merge=lfs -text
38
+ assets/show2.jpg filter=lfs diff=lfs merge=lfs -text
39
+ assets/show3.jpg filter=lfs diff=lfs merge=lfs -text
40
+ assets/show4.jpg filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-text-to-text
3
+ language:
4
+ - multilingual
5
+ tags:
6
+ - deepseek
7
+ - vision-language
8
+ - ocr
9
+ - custom_code
10
+ license: mit
11
+ ---
12
+ <div align="center">
13
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" />
14
+ </div>
15
+ <hr>
16
+ <div align="center">
17
+ <a href="https://www.deepseek.com/" target="_blank">
18
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" />
19
+ </a>
20
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank">
21
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
22
+ </a>
23
+
24
+ </div>
25
+
26
+ <div align="center">
27
+
28
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
29
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
30
+ </a>
31
+ <a href="https://twitter.com/deepseek_ai" target="_blank">
32
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
33
+ </a>
34
+
35
+ </div>
36
+
37
+
38
+
39
+ <p align="center">
40
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR"><b>🌟 Github</b></a> |
41
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> |
42
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> |
43
+ <a href=""><b>📄 Arxiv Paper Link</b></a> |
44
+ </p>
45
+ <h2>
46
+ <p align="center">
47
+ <a href="">DeepSeek-OCR: Contexts Optical Compression</a>
48
+ </p>
49
+ </h2>
50
+ <p align="center">
51
+ <img src="assets/fig1.png" style="width: 1000px" align=center>
52
+ </p>
53
+ <p align="center">
54
+ <a href="">Explore the boundaries of visual-text compression.</a>
55
+ </p>
56
+
57
+ ## Usage
58
+ Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:
59
+
60
+ ```
61
+ torch==2.6.0
62
+ transformers==4.46.3
63
+ tokenizers==0.20.3
64
+ einops
65
+ addict
66
+ easydict
67
+ pip install flash-attn==2.7.3 --no-build-isolation
68
+ ```
69
+
70
+ ```python
71
+ from transformers import AutoModel, AutoTokenizer
72
+ import torch
73
+ import os
74
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
75
+ model_name = 'deepseek-ai/DeepSeek-OCR'
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
78
+ model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
79
+ model = model.eval().cuda().to(torch.bfloat16)
80
+
81
+ # prompt = "<image>\nFree OCR. "
82
+ prompt = "<image>\n<|grounding|>Convert the document to markdown. "
83
+ image_file = 'your_image.jpg'
84
+ output_path = 'your/output/dir'
85
+
86
+ # infer(self, tokenizer, prompt='', image_file='', output_path = ' ', base_size = 1024, image_size = 640, crop_mode = True, test_compress = False, save_results = False):
87
+
88
+ # Tiny: base_size = 512, image_size = 512, crop_mode = False
89
+ # Small: base_size = 640, image_size = 640, crop_mode = False
90
+ # Base: base_size = 1024, image_size = 1024, crop_mode = False
91
+ # Large: base_size = 1280, image_size = 1280, crop_mode = False
92
+
93
+ # Gundam: base_size = 1024, image_size = 640, crop_mode = True
94
+
95
+ res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True)
96
+ ```
97
+
98
+ ## vLLM
99
+ Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR/) for guidance on model inference acceleration and PDF processing, etc.<!-- -->
100
+
101
+ ## Visualizations
102
+ <table>
103
+ <tr>
104
+ <td><img src="assets/show1.jpg" style="width: 500px"></td>
105
+ <td><img src="assets/show2.jpg" style="width: 500px"></td>
106
+ </tr>
107
+ <tr>
108
+ <td><img src="assets/show3.jpg" style="width: 500px"></td>
109
+ <td><img src="assets/show4.jpg" style="width: 500px"></td>
110
+ </tr>
111
+ </table>
112
+
113
+
114
+ ## Acknowledgement
115
+
116
+ We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas.
117
+
118
+ We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
119
+
120
+
121
+ ## Citation
122
+ Coming soon!
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 DeepSeek
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - deepseek-ai/DeepSeek-OCR
4
+ pipeline_tag: image-text-to-text
5
+ language:
6
+ - multilingual
7
+ tags:
8
+ - deepseek
9
+ - unsloth
10
+ - vision-language
11
+ - ocr
12
+ - custom_code
13
+ license: mit
14
+ ---
15
+ # Read our Guide How to: [Run & Fine-tune DeepSeek-OCR!](https://docs.unsloth.ai/new/deepseek-ocr)
16
+
17
+ <div>
18
+ <p style="margin-top: 0;margin-bottom: 0;">
19
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
20
+ </p>
21
+ <div style="display: flex; gap: 5px; align-items: center; ">
22
+ <a href="https://github.com/unslothai/unsloth/">
23
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
24
+ </a>
25
+ <a href="https://discord.gg/unsloth">
26
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
27
+ </a>
28
+ <a href="https://docs.unsloth.ai/new/deepseek-ocr">
29
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
30
+ </a>
31
+ </div>
32
+ <h1 style="margin-top: 0rem;">✨ Read our DeepSeek-OCR Guide <a href="https://docs.unsloth.ai/new/deepseek-ocr">here</a>!</h1>
33
+ </div>
34
+
35
+ - Fine-tune DeepSeek-OCR for free using our [Google Colab notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Deepseek_OCR_(3B).ipynb)
36
+ - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
37
+
38
+ ---
39
+
40
+ <div align="center">
41
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" />
42
+ </div>
43
+ <hr>
44
+ <div align="center">
45
+ <a href="https://www.deepseek.com/" target="_blank">
46
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" />
47
+ </a>
48
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank">
49
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
50
+ </a>
51
+
52
+ </div>
53
+
54
+ <div align="center">
55
+
56
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
57
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
58
+ </a>
59
+ <a href="https://twitter.com/deepseek_ai" target="_blank">
60
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
61
+ </a>
62
+
63
+ </div>
64
+
65
+
66
+
67
+ <p align="center">
68
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR"><b>🌟 Github</b></a> |
69
+ <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> |
70
+ <a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> |
71
+ <a href="https://arxiv.org/abs/2510.18234"><b>📄 Arxiv Paper Link</b></a> |
72
+ </p>
73
+ <h2>
74
+ <p align="center">
75
+ <a href="">DeepSeek-OCR: Contexts Optical Compression</a>
76
+ </p>
77
+ </h2>
78
+ <p align="center">
79
+ <img src="assets/fig1.png" style="width: 1000px" align=center>
80
+ </p>
81
+ <p align="center">
82
+ <a href="">Explore the boundaries of visual-text compression.</a>
83
+ </p>
84
+
85
+ ## Usage
86
+ Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:
87
+
88
+ ```
89
+ torch==2.6.0
90
+ transformers==4.46.3
91
+ tokenizers==0.20.3
92
+ einops
93
+ addict
94
+ easydict
95
+ pip install flash-attn==2.7.3 --no-build-isolation
96
+ ```
97
+
98
+ ```python
99
+ from transformers import AutoModel, AutoTokenizer
100
+ import torch
101
+ import os
102
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
103
+ model_name = 'deepseek-ai/DeepSeek-OCR'
104
+
105
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
106
+ model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
107
+ model = model.eval().cuda().to(torch.bfloat16)
108
+
109
+ # prompt = "<image>\nFree OCR. "
110
+ prompt = "<image>\n<|grounding|>Convert the document to markdown. "
111
+ image_file = 'your_image.jpg'
112
+ output_path = 'your/output/dir'
113
+
114
+ # infer(self, tokenizer, prompt='', image_file='', output_path = ' ', base_size = 1024, image_size = 640, crop_mode = True, test_compress = False, save_results = False):
115
+
116
+ # Tiny: base_size = 512, image_size = 512, crop_mode = False
117
+ # Small: base_size = 640, image_size = 640, crop_mode = False
118
+ # Base: base_size = 1024, image_size = 1024, crop_mode = False
119
+ # Large: base_size = 1280, image_size = 1280, crop_mode = False
120
+
121
+ # Gundam: base_size = 1024, image_size = 640, crop_mode = True
122
+
123
+ res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True)
124
+ ```
125
+
126
+ ## vLLM
127
+ Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR/) for guidance on model inference acceleration and PDF processing, etc.<!-- -->
128
+
129
+ [2025/10/23] 🚀🚀🚀 DeepSeek-OCR is now officially supported in upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm).
130
+ ```shell
131
+ uv venv
132
+ source .venv/bin/activate
133
+ # Until v0.11.1 release, you need to install vLLM from nightly build
134
+ uv pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
135
+ ```
136
+
137
+ ```python
138
+ from vllm import LLM, SamplingParams
139
+ from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor
140
+ from PIL import Image
141
+
142
+ # Create model instance
143
+ llm = LLM(
144
+ model="deepseek-ai/DeepSeek-OCR",
145
+ enable_prefix_caching=False,
146
+ mm_processor_cache_gb=0,
147
+ logits_processors=[NGramPerReqLogitsProcessor]
148
+ )
149
+
150
+ # Prepare batched input with your image file
151
+ image_1 = Image.open("path/to/your/image_1.png").convert("RGB")
152
+ image_2 = Image.open("path/to/your/image_2.png").convert("RGB")
153
+ prompt = "<image>\nFree OCR."
154
+
155
+ model_input = [
156
+ {
157
+ "prompt": prompt,
158
+ "multi_modal_data": {"image": image_1}
159
+ },
160
+ {
161
+ "prompt": prompt,
162
+ "multi_modal_data": {"image": image_2}
163
+ }
164
+ ]
165
+
166
+ sampling_param = SamplingParams(
167
+ temperature=0.0,
168
+ max_tokens=8192,
169
+ # ngram logit processor args
170
+ extra_args=dict(
171
+ ngram_size=30,
172
+ window_size=90,
173
+ whitelist_token_ids={128821, 128822}, # whitelist: <td>, </td>
174
+ ),
175
+ skip_special_tokens=False,
176
+ )
177
+ # Generate output
178
+ model_outputs = llm.generate(model_input, sampling_param)
179
+
180
+ # Print output
181
+ for output in model_outputs:
182
+ print(output.outputs[0].text)
183
+ ```
184
+
185
+
186
+ ## Visualizations
187
+ <table>
188
+ <tr>
189
+ <td><img src="assets/show1.jpg" style="width: 500px"></td>
190
+ <td><img src="assets/show2.jpg" style="width: 500px"></td>
191
+ </tr>
192
+ <tr>
193
+ <td><img src="assets/show3.jpg" style="width: 500px"></td>
194
+ <td><img src="assets/show4.jpg" style="width: 500px"></td>
195
+ </tr>
196
+ </table>
197
+
198
+
199
+ ## Acknowledgement
200
+
201
+ We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas.
202
+
203
+ We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
204
+
205
+
206
+ ## Citation
207
+ ```bibtex
208
+ @article{wei2025deepseek,
209
+ title={DeepSeek-OCR: Contexts Optical Compression},
210
+ author={Wei, Haoran and Sun, Yaofeng and Li, Yukun},
211
+ journal={arXiv preprint arXiv:2510.18234},
212
+ year={2025}
213
+ }
assets/fig1.png ADDED

Git LFS Details

  • SHA256: 3a709eb3fdb51cf6d8a546ffb8efe3c80bef61ae0183c2c8476a4c4a41efa3f1
  • Pointer size: 131 Bytes
  • Size of remote file: 396 kB
assets/show1.jpg ADDED

Git LFS Details

  • SHA256: 887e88e60e5833bc10a2cd7edb89ea7e6992abaae5e1550b027c611b8b8456f2
  • Pointer size: 131 Bytes
  • Size of remote file: 117 kB
assets/show2.jpg ADDED

Git LFS Details

  • SHA256: 81d08f7f33d9d39b95dd9b8162506659e6822d621b9829a208f3830c34c2b4d0
  • Pointer size: 131 Bytes
  • Size of remote file: 216 kB
assets/show3.jpg ADDED

Git LFS Details

  • SHA256: cd24b0cfc7b6c0b1b34bd1aa55bc385e746298fdd82410db6c0d4e0bf69085c0
  • Pointer size: 131 Bytes
  • Size of remote file: 247 kB
assets/show4.jpg ADDED

Git LFS Details

  • SHA256: 2fe88eacc470c34d00225151372d3770948864f3d9cfaae16afa15b2432d7793
  • Pointer size: 131 Bytes
  • Size of remote file: 269 kB
config.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-OCR",
3
+ "candidate_resolutions": [
4
+ [
5
+ 1024,
6
+ 1024
7
+ ]
8
+ ],
9
+ "global_view_pos": "head",
10
+ "architectures": [
11
+ "DeepseekOCRForCausalLM"
12
+ ],
13
+ "auto_map": {
14
+ "AutoConfig": "modeling_deepseekocr.DeepseekOCRConfig",
15
+ "AutoModel": "modeling_deepseekocr.DeepseekOCRForCausalLM"
16
+ },
17
+ "language_config": {
18
+ "architectures": [
19
+ "DeepseekV2ForCausalLM"
20
+ ],
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_deepseekv2.DeepseekV2Config",
23
+ "AutoModel": "modeling_deepseek.DeepseekV2Model",
24
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
25
+ },
26
+ "bos_token_id": 0,
27
+ "eos_token_id": 1,
28
+ "first_k_dense_replace": 1,
29
+ "hidden_size": 1280,
30
+ "intermediate_size": 6848,
31
+ "kv_lora_rank": null,
32
+ "lm_head": true,
33
+ "max_position_embeddings": 8192,
34
+ "moe_intermediate_size": 896,
35
+ "n_group": 1,
36
+ "n_routed_experts": 64,
37
+ "n_shared_experts": 2,
38
+ "num_attention_heads": 10,
39
+ "num_experts_per_tok": 6,
40
+ "num_hidden_layers": 12,
41
+ "num_key_value_heads": 10,
42
+ "q_lora_rank": null,
43
+ "qk_nope_head_dim": 0,
44
+ "qk_rope_head_dim": 0,
45
+ "rm_head": false,
46
+ "topk_group": 1,
47
+ "topk_method": "greedy",
48
+ "torch_dtype": "bfloat16",
49
+ "use_mla": false,
50
+ "v_head_dim": 0,
51
+ "vocab_size": 129280
52
+ },
53
+ "model_type": "deepseek_vl_v2",
54
+ "projector_config": {
55
+ "input_dim": 2048,
56
+ "model_type": "mlp_projector",
57
+ "n_embed": 1280,
58
+ "projector_type": "linear"
59
+ },
60
+ "tile_tag": "2D",
61
+ "torch_dtype": "bfloat16",
62
+ "transformers_version": "4.46.3",
63
+ "vision_config": {
64
+ "image_size": 1024,
65
+ "mlp_ratio": 3.7362,
66
+ "model_name": "deeplip_b_l",
67
+ "model_type": "vision",
68
+ "width": {
69
+ "clip-l-14-224": {
70
+ "heads": 16,
71
+ "image_size": 224,
72
+ "layers": 24,
73
+ "patch_size": 14,
74
+ "width": 1024
75
+ },
76
+ "sam_vit_b": {
77
+ "downsample_channels": [
78
+ 512,
79
+ 1024
80
+ ],
81
+ "global_attn_indexes": [
82
+ 2,
83
+ 5,
84
+ 8,
85
+ 11
86
+ ],
87
+ "heads": 12,
88
+ "layers": 12,
89
+ "width": 768
90
+ }
91
+ }
92
+ },
93
+ "bos_token_id": 0,
94
+ "eos_token_id": 1,
95
+ "first_k_dense_replace": 1,
96
+ "hidden_size": 1280,
97
+ "intermediate_size": 6848,
98
+ "kv_lora_rank": null,
99
+ "lm_head": true,
100
+ "max_position_embeddings": 8192,
101
+ "moe_intermediate_size": 896,
102
+ "n_group": 1,
103
+ "n_routed_experts": 64,
104
+ "n_shared_experts": 2,
105
+ "num_attention_heads": 10,
106
+ "num_experts_per_tok": 6,
107
+ "num_hidden_layers": 12,
108
+ "num_key_value_heads": 10,
109
+ "q_lora_rank": null,
110
+ "qk_nope_head_dim": 0,
111
+ "qk_rope_head_dim": 0,
112
+ "rm_head": false,
113
+ "topk_group": 1,
114
+ "topk_method": "greedy",
115
+ "use_mla": false,
116
+ "v_head_dim": 0,
117
+ "vocab_size": 129280
118
+ }
configuration_deepseek_v2.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+ use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True,
102
+ the model will use multi-latent attention, otherwise, it will use multi-head attention.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
106
+
107
+ >>> # Initializing a Deepseek-V2 style configuration
108
+ >>> configuration = DeepseekV2Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v2"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=102400,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ moe_intermediate_size = 1407,
123
+ num_hidden_layers=30,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=32,
126
+ n_shared_experts = None,
127
+ n_routed_experts = None,
128
+ ep_size = 1,
129
+ routed_scaling_factor = 1.0,
130
+ kv_lora_rank = 512,
131
+ q_lora_rank = 1536,
132
+ qk_rope_head_dim = 64,
133
+ v_head_dim = 128,
134
+ qk_nope_head_dim = 128,
135
+ topk_method = 'gready',
136
+ n_group = None,
137
+ topk_group = None,
138
+ num_experts_per_tok = None,
139
+ moe_layer_freq = 1,
140
+ first_k_dense_replace = 0,
141
+ norm_topk_prob = False,
142
+ scoring_func = 'softmax',
143
+ aux_loss_alpha = 0.001,
144
+ seq_aux = True,
145
+ hidden_act="silu",
146
+ max_position_embeddings=2048,
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-6,
149
+ use_cache=True,
150
+ pad_token_id=None,
151
+ bos_token_id=100000,
152
+ eos_token_id=100001,
153
+ pretraining_tp=1,
154
+ tie_word_embeddings=False,
155
+ rope_theta=10000.0,
156
+ rope_scaling=None,
157
+ attention_bias=False,
158
+ attention_dropout=0.0,
159
+ use_mla=True,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_attention_heads = num_attention_heads
169
+ self.n_shared_experts = n_shared_experts
170
+ self.n_routed_experts = n_routed_experts
171
+ self.ep_size = ep_size
172
+ self.routed_scaling_factor = routed_scaling_factor
173
+ self.kv_lora_rank = kv_lora_rank
174
+ self.q_lora_rank = q_lora_rank
175
+ self.qk_rope_head_dim = qk_rope_head_dim
176
+ self.v_head_dim = v_head_dim
177
+ self.qk_nope_head_dim = qk_nope_head_dim
178
+ self.topk_method = topk_method
179
+ self.n_group = n_group
180
+ self.topk_group = topk_group
181
+ self.num_experts_per_tok = num_experts_per_tok
182
+ self.moe_layer_freq = moe_layer_freq
183
+ self.first_k_dense_replace = first_k_dense_replace
184
+ self.norm_topk_prob = norm_topk_prob
185
+ self.scoring_func = scoring_func
186
+ self.aux_loss_alpha = aux_loss_alpha
187
+ self.seq_aux = seq_aux
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = float(rms_norm_eps)
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.use_mla = use_mla
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
conversation.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
3
+ """
4
+
5
+ import dataclasses
6
+ from enum import IntEnum, auto
7
+ from typing import Any, Dict, List
8
+
9
+
10
+ class SeparatorStyle(IntEnum):
11
+ """Separator styles."""
12
+
13
+ DeepSeek = auto()
14
+ DeepSeekV2 = auto()
15
+ PLAIN = auto()
16
+ ALIGNMENT = auto()
17
+
18
+
19
+ @dataclasses.dataclass
20
+ class Conversation:
21
+ """A class that manages prompt templates and keeps all conversation history."""
22
+
23
+ # The name of this template
24
+ name: str
25
+ # The template of the system prompt
26
+ system_template: str = "{system_message}"
27
+ # The system message
28
+ system_message: str = ""
29
+ # The names of two roles
30
+ roles: List[str] = (("USER", "ASSISTANT"),)
31
+ # All messages. Each item is (role, message).
32
+ messages: List[List[str]] = ()
33
+ # The number of few shot examples
34
+ offset: int = 0
35
+ # The separator style and configurations
36
+ sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
37
+ sep: str = "\n"
38
+ sep2: str = None
39
+ # Stop criteria (the default one is EOS token)
40
+ stop_str: str = None
41
+ # Stops generation if meeting any token in this list
42
+ stop_token_ids: List[int] = None
43
+
44
+ def get_prompt(self) -> str:
45
+ """Get the prompt for generation."""
46
+ system_prompt = self.system_template.format(system_message=self.system_message)
47
+ if self.sep_style == SeparatorStyle.DeepSeek:
48
+ seps = [self.sep, self.sep2]
49
+ if system_prompt == "" or system_prompt is None:
50
+ ret = ""
51
+ else:
52
+ ret = system_prompt + seps[0]
53
+ for i, (role, message) in enumerate(self.messages):
54
+ if message:
55
+ ret += role + ": " + message + seps[i % 2]
56
+ else:
57
+ ret += role + ":"
58
+ return ret
59
+ elif self.sep_style == SeparatorStyle.DeepSeekV2:
60
+ seps = [self.sep, self.sep2]
61
+ if system_prompt == "" or system_prompt is None:
62
+ ret = ""
63
+ else:
64
+ ret = system_prompt + seps[0]
65
+ for i, (role, message) in enumerate(self.messages):
66
+ if message:
67
+ if role == "User":
68
+ ret += "<|sft▁begin|>\n" + message + self.sep #<|sft▁begin|>User Input<|sft▁end|>\nResponse<|end▁of▁sentence|>
69
+ else:
70
+ ret += message + self.sep2
71
+ else:
72
+ ret = ret
73
+ return ret
74
+
75
+ elif self.sep_style == SeparatorStyle.PLAIN:
76
+ seps = [self.sep, self.sep2]
77
+ ret = ""
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i % 2 == 0:
83
+ ret += message + seps[i % 2]
84
+ else:
85
+ ret += message + seps[i % 2]
86
+ else:
87
+ ret += ""
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ALIGNMENT:
90
+ seps = [self.sep, self.sep2]
91
+ ret = ""
92
+ for i, (role, message) in enumerate(self.messages):
93
+ if message:
94
+ if type(message) is tuple:
95
+ message, _, _ = message
96
+ if i % 2 == 0:
97
+ ret += '<image>\n' + seps[i % 2]
98
+ else:
99
+ ret += message + seps[i % 2]
100
+ else:
101
+ ret += ""
102
+ return ret
103
+ else:
104
+ raise ValueError(f"Invalid style: {self.sep_style}")
105
+
106
+ def set_system_message(self, system_message: str):
107
+ """Set the system message."""
108
+ self.system_message = system_message
109
+
110
+ def append_message(self, role: str, message: str):
111
+ """Append a new message."""
112
+ self.messages.append([role, message])
113
+
114
+ def update_last_message(self, message: str):
115
+ """Update the last output.
116
+
117
+ The last message is typically set to be None when constructing the prompt,
118
+ so we need to update it in-place after getting the response from a model.
119
+ """
120
+ self.messages[-1][1] = message
121
+
122
+ def reset_message(self):
123
+ """Reset a new message."""
124
+ self.messages = []
125
+
126
+ def to_gradio_chatbot(self):
127
+ """Convert the conversation to gradio chatbot format."""
128
+ ret = []
129
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
130
+ if i % 2 == 0:
131
+ ret.append([msg, None])
132
+ else:
133
+ ret[-1][-1] = msg
134
+ return ret
135
+
136
+ def to_openai_api_messages(self):
137
+ """Convert the conversation to OpenAI chat completion format."""
138
+ system_prompt = self.system_template.format(system_message=self.system_message)
139
+ ret = [{"role": "system", "content": system_prompt}]
140
+
141
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
142
+ if i % 2 == 0:
143
+ ret.append({"role": "user", "content": msg})
144
+ else:
145
+ if msg is not None:
146
+ ret.append({"role": "assistant", "content": msg})
147
+ return ret
148
+
149
+ def copy(self):
150
+ return Conversation(
151
+ name=self.name,
152
+ system_template=self.system_template,
153
+ system_message=self.system_message,
154
+ roles=self.roles,
155
+ messages=[[x, y] for x, y in self.messages],
156
+ offset=self.offset,
157
+ sep_style=self.sep_style,
158
+ sep=self.sep,
159
+ sep2=self.sep2,
160
+ stop_str=self.stop_str,
161
+ stop_token_ids=self.stop_token_ids,
162
+ )
163
+
164
+ def dict(self):
165
+ return {
166
+ "template_name": self.name,
167
+ "system_message": self.system_message,
168
+ "roles": self.roles,
169
+ "messages": self.messages,
170
+ "offset": self.offset,
171
+ }
172
+
173
+
174
+ # A global registry for all conversation templates
175
+ conv_templates: Dict[str, Conversation] = {}
176
+
177
+
178
+ def register_conv_template(template: Conversation, override: bool = False):
179
+ """Register a new conversation template."""
180
+ if not override:
181
+ assert template.name not in conv_templates, f"{template.name} has been registered."
182
+
183
+ conv_templates[template.name] = template
184
+
185
+
186
+ def get_conv_template(name: str) -> Conversation:
187
+ """Get a conversation template."""
188
+ return conv_templates[name].copy()
189
+
190
+
191
+ register_conv_template(
192
+ Conversation(
193
+ name="deepseek",
194
+ system_template="{system_message}",
195
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
196
+ # "thinking step by step to be sure you get the right answer.",
197
+ system_message="",
198
+ roles=("<|User|>", "<|Assistant|>"),
199
+ messages=(),
200
+ offset=0,
201
+ sep_style=SeparatorStyle.DeepSeek,
202
+ sep="\n\n",
203
+ sep2="<|end▁of▁sentence|>",
204
+ stop_token_ids=[100001],
205
+ stop_str=["User:", "<|end▁of▁sentence|>"]
206
+ )
207
+ )
208
+ register_conv_template(
209
+ Conversation(
210
+ name="deepseekv2",
211
+ system_template="{system_message}",
212
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
213
+ # "thinking step by step to be sure you get the right answer.",
214
+ system_message="",
215
+ roles=("<|User|>", "<|Assistant|>"),
216
+ messages=(),
217
+ offset=0,
218
+ sep_style=SeparatorStyle.DeepSeek,
219
+ sep="",
220
+ sep2="<|end▁of▁sentence|>",
221
+ stop_token_ids=[100001],
222
+ stop_str=["User:", "<|end▁of▁sentence|>"]
223
+ )
224
+ )
225
+
226
+
227
+ register_conv_template(
228
+ Conversation(
229
+ name="plain",
230
+ system_template="",
231
+ system_message="",
232
+ roles=("", ""),
233
+ messages=(),
234
+ offset=0,
235
+ sep_style=SeparatorStyle.PLAIN,
236
+ sep="",
237
+ sep2="",
238
+ stop_token_ids=[100001],
239
+ stop_str=['</s>'],
240
+ )
241
+ )
242
+
243
+
244
+ register_conv_template(
245
+ Conversation(
246
+ name="alignment",
247
+ system_template="",
248
+ system_message="",
249
+ roles=("", ""),
250
+ messages=(),
251
+ offset=0,
252
+ sep_style=SeparatorStyle.ALIGNMENT,
253
+ sep="",
254
+ sep2="",
255
+ stop_token_ids=[100001],
256
+ stop_str=['</s>'],
257
+ )
258
+ )
259
+
260
+
261
+ if __name__ == "__main__":
262
+ print("deepseek template:")
263
+ conv = get_conv_template("deepseek")
264
+ conv.append_message(conv.roles[0], "Hello!")
265
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
266
+ conv.append_message(conv.roles[0], "Who are you?")
267
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
268
+ conv.append_message(conv.roles[0], "How are you?")
269
+ conv.append_message(conv.roles[1], None)
270
+ print(conv.get_prompt())
271
+
272
+ print("deepseekv2 template:")
273
+ conv = get_conv_template("deepseekv2")
274
+ conv.append_message(conv.roles[0], "Hello!")
275
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
276
+ conv.append_message(conv.roles[0], "Who are you?")
277
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
278
+ conv.append_message(conv.roles[0], "How are you?")
279
+ conv.append_message(conv.roles[1], None)
280
+ print(conv.get_prompt())
deepencoder.py ADDED
@@ -0,0 +1,1058 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import copy
5
+
6
+ from contextlib import nullcontext
7
+ import math
8
+ from typing import Optional, Tuple
9
+ # from megatron.model import LayerNorm
10
+
11
+ from einops import rearrange
12
+ from easydict import EasyDict as adict
13
+
14
+
15
+ from typing import Optional, Tuple, Type
16
+ from functools import partial
17
+
18
+
19
+
20
+ class MlpProjector(nn.Module):
21
+
22
+ def __init__(self, cfg):
23
+
24
+ super().__init__()
25
+
26
+ self.cfg = cfg
27
+
28
+ if cfg.projector_type == "identity":
29
+ modules = nn.Identity()
30
+
31
+ elif cfg.projector_type == "linear":
32
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
33
+
34
+ elif cfg.projector_type == "mlp_gelu":
35
+ mlp_depth = cfg.get("depth", 1)
36
+ modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
37
+ for _ in range(1, mlp_depth):
38
+ modules.append(nn.GELU())
39
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
40
+ modules = nn.Sequential(*modules)
41
+
42
+ elif cfg.projector_type == "normlayer_downsample_mlp_gelu":
43
+ mlp_depth = cfg.get("depth", 1)
44
+ mlp_ratio = cfg.get("mlp_ratio", 1)
45
+ modules = [
46
+ nn.LayerNorm(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio),
47
+ nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
48
+ ]
49
+ for _ in range(1, mlp_depth - 1):
50
+ modules.append(nn.GELU())
51
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
52
+ modules.append(nn.GELU())
53
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
54
+ modules = nn.Sequential(*modules)
55
+
56
+ elif cfg.projector_type == "downsample_mlp_gelu":
57
+ mlp_depth = cfg.get("depth", 1)
58
+ mlp_ratio = cfg.get("mlp_ratio", 1)
59
+ modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
60
+ for _ in range(1, mlp_depth - 1):
61
+ modules.append(nn.GELU())
62
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
63
+ modules.append(nn.GELU())
64
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
65
+ modules = nn.Sequential(*modules)
66
+
67
+ elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
68
+ mlp_depth = cfg.get("depth", 1)
69
+ self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
70
+ self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
71
+
72
+ modules = []
73
+ for _ in range(1, mlp_depth):
74
+ modules.append(nn.GELU())
75
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
76
+ modules = nn.Sequential(*modules)
77
+
78
+ elif cfg.projector_type == "hybrid_split_feature_mlp_gelu":
79
+ mlp_depth = cfg.get("depth", 1)
80
+ channel_div = cfg.get("channel_div", 0.5)
81
+ self.high_up_proj = nn.Linear(cfg.input_dim[0], int(cfg.n_embed * channel_div))
82
+ self.low_up_proj = nn.Linear(cfg.input_dim[1], cfg.n_embed - int(cfg.n_embed * channel_div))
83
+
84
+ modules = []
85
+ for _ in range(1, mlp_depth):
86
+ modules.append(nn.GELU())
87
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
88
+ modules = nn.Sequential(*modules)
89
+
90
+ elif cfg.projector_type == "low_high_split_mlp_gelu":
91
+ mlp_depth = cfg.get("depth", 1)
92
+ modules = []
93
+ for _ in range(1, mlp_depth):
94
+ modules.append(nn.GELU())
95
+ modules.append(nn.Linear(cfg.n_embed // 2, cfg.n_embed // 2))
96
+ modules = nn.Sequential(*modules)
97
+ self.high_layers = nn.Sequential(*modules)
98
+ self.low_layers = copy.deepcopy(modules)
99
+
100
+ else:
101
+ raise ValueError(f"Unknown projector type: {cfg.projector_type}")
102
+
103
+ if cfg.get("token_pooling", False):
104
+ self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
105
+
106
+ if cfg.get("conv_fusion_high_low_features", False):
107
+ self.fusion_layer = nn.Linear(cfg.input_dim, cfg.input_dim)
108
+ self.layers = modules
109
+
110
+ def forward(self, x):
111
+ if self.cfg.get("token_pooling", False):
112
+ batch_size, wxh, channels = x.shape
113
+ w = h = int(wxh**0.5)
114
+ x = x.view(batch_size, w, h, channels)
115
+ x = x.permute(0, 3, 1, 2)
116
+ # import ipdb; ipdb.set_trace()
117
+ patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
118
+ batch_size, channels, h_patches, w_patches, _, _ = patches.size()
119
+ # 在通道维度上拼接
120
+ patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
121
+
122
+ # 通过线性层
123
+ patches = patches.permute(0, 2, 1, 3).contiguous()
124
+ patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
125
+
126
+ x = self.token_pooling_layer(patches)
127
+
128
+ if self.cfg.get("conv_fusion_high_low_features", False):
129
+ x = self.fusion_layer(x[:, 0]) + x[:, 1]
130
+
131
+ if self.cfg.projector_type == 'low_high_hybrid_split_mlp_gelu':
132
+ high_x, low_x = x[0], x[1]
133
+ high_x = self.high_up_proj(high_x)
134
+ low_x = self.low_up_proj(low_x)
135
+ x = torch.concat([high_x, low_x], dim=-1)
136
+
137
+ if self.cfg.projector_type == 'hybrid_split_feature_mlp_gelu':
138
+ high_x = x[...,:self.cfg.input_dim[0]]
139
+ low_x = x[...,self.cfg.input_dim[0]:]
140
+ high_x = self.high_up_proj(high_x)
141
+ low_x = self.low_up_proj(low_x)
142
+ x = torch.concat([high_x, low_x], dim=-1)
143
+
144
+ if self.cfg.projector_type == 'low_high_split_mlp_gelu':
145
+ high_x, low_x = x[0], x[1]
146
+ high_x = self.high_layers(high_x)
147
+ low_x = self.low_layers(low_x)
148
+ x = torch.concat([high_x, low_x], dim=-1)
149
+ return x
150
+
151
+ if self.cfg.projector_type == 'downsample_mlp_gelu' or self.cfg.projector_type == 'normlayer_downsample_mlp_gelu':
152
+ bs, hw, input_dim = x.shape
153
+ h = w = int((hw) ** 0.5)
154
+
155
+ """compute padding"""
156
+ if h % self.cfg.downsample_ratio:
157
+ pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
158
+ else:
159
+ pad = 0
160
+ x = x.reshape(bs, h, w, input_dim)
161
+ if pad > 0:
162
+ x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
163
+
164
+ """4 to 1 concat"""
165
+ x = x.permute(0, 3, 1, 2) # B, C, H, W
166
+ x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4
167
+ x = x.permute(0, 2, 1)
168
+
169
+ return self.layers(x)
170
+
171
+ @staticmethod
172
+ def get_flops_per_sample(cfg):
173
+ if cfg.projector_type == "linear":
174
+ fwd = 2 * cfg.input_dim * cfg.n_embed
175
+
176
+ elif "mlp_gelu" in cfg.projector_type :
177
+ mlp_depth = cfg.get("depth", 1)
178
+ downsample_ratio = cfg.get("downsample_ratio", 1)
179
+ input_dim = sum(cfg.input_dim) if isinstance(cfg.input_dim, list) else cfg.input_dim
180
+ input_dim = input_dim * downsample_ratio * downsample_ratio
181
+ fwd = 2 * input_dim * cfg.n_embed + (mlp_depth - 1) * 2 * cfg.n_embed * cfg.n_embed
182
+ else:
183
+ fwd = 0
184
+
185
+ return fwd * 3
186
+
187
+
188
+ #===================clip============================================================
189
+
190
+ class LayerNormfp32(torch.nn.LayerNorm):
191
+ """Subclass torch's LayerNorm to handle fp16."""
192
+
193
+ def forward(self, x: torch.Tensor):
194
+ orig_type = x.dtype
195
+ ret = super().forward(x.type(torch.float32))
196
+ return ret.type(orig_type)
197
+
198
+
199
+ def get_abs_pos(abs_pos, tgt_size):
200
+ # abs_pos: L, C
201
+ # tgt_size: M
202
+ # return: M, C
203
+
204
+ # print(tgt_size)
205
+ # print(abs_pos.shape)
206
+ # exit()
207
+ dim = abs_pos.size(-1)
208
+ # print(dim)
209
+ abs_pos_new = abs_pos.squeeze(0)
210
+ cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
211
+
212
+
213
+
214
+ src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
215
+ tgt_size = int(math.sqrt(tgt_size))
216
+ dtype = abs_pos.dtype
217
+
218
+ if src_size != tgt_size:
219
+ old_pos_embed = old_pos_embed.view(1, src_size, src_size, dim).permute(0, 3, 1,
220
+ 2).contiguous()
221
+ old_pos_embed = old_pos_embed.to(torch.float32)
222
+ new_pos_embed = F.interpolate(
223
+ old_pos_embed,
224
+ size=(tgt_size, tgt_size),
225
+ mode='bicubic',
226
+ antialias=True,
227
+ align_corners=False,
228
+ ).to(dtype)
229
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
230
+ new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
231
+ vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
232
+ vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
233
+ return vision_pos_embed
234
+ else:
235
+ return abs_pos
236
+
237
+ @torch.jit.script
238
+ def quick_gelu(x):
239
+ return x * torch.sigmoid(1.702 * x)
240
+
241
+
242
+
243
+ class CLIPVisionEmbeddings(nn.Module):
244
+ def __init__(self, hidden_size=1024, image_size=224, patch_size=14, num_channels=3):
245
+ super().__init__()
246
+ self.embed_dim = hidden_size
247
+ self.image_size = image_size
248
+ self.patch_size = patch_size
249
+
250
+ self.class_embedding = torch.nn.Parameter(torch.randn(self.embed_dim))
251
+
252
+ self.patch_embedding = torch.nn.Conv2d(
253
+ in_channels=num_channels,
254
+ out_channels=self.embed_dim,
255
+ kernel_size=self.patch_size,
256
+ stride=self.patch_size,
257
+ bias=False,
258
+ )
259
+
260
+ self.num_patches = (self.image_size // self.patch_size) ** 2
261
+ self.num_positions = self.num_patches + 1
262
+ self.position_embedding = torch.nn.Embedding(self.num_positions, self.embed_dim)
263
+ self.register_buffer(
264
+ "position_ids", torch.arange(self.num_positions).expand((1, -1))
265
+ )
266
+
267
+ def forward(self, pixel_values, patch_embeds):
268
+ batch_size = pixel_values.shape[0]
269
+ # patch_embeds = self.patch_embedding(
270
+ # pixel_values
271
+ # ) # shape = [*, width, grid, grid]
272
+
273
+
274
+ if patch_embeds is not None:
275
+ patch_embeds = patch_embeds
276
+ # print(patch_embeds.shape)
277
+ else:
278
+ patch_embeds = self.patch_embedding(pixel_values)
279
+ # print(111111)
280
+ # shape = [*, width, grid, grid]
281
+ # patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
282
+
283
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
284
+
285
+
286
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
287
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
288
+
289
+ # x = torch.cat([cls_token, x], dim=1)
290
+ embeddings = embeddings + get_abs_pos(self.position_embedding(self.position_ids), embeddings.size(1))
291
+ # embeddings = embeddings + self.position_embedding(self.position_ids)
292
+ return embeddings
293
+
294
+
295
+ class NoTPFeedForward(nn.Module):
296
+ def __init__(
297
+ self,
298
+ cfg,
299
+ dim: int,
300
+ hidden_dim: int,
301
+ ):
302
+ super().__init__()
303
+
304
+ self.fc1 = torch.nn.Linear(dim, hidden_dim, bias=True)
305
+ self.fc2 = torch.nn.Linear(hidden_dim, dim, bias=True)
306
+
307
+ def forward(self, x):
308
+ output = self.fc2(quick_gelu(self.fc1(x)))
309
+ return output
310
+
311
+
312
+
313
+
314
+ class NoTPAttention(torch.nn.Module):
315
+ def __init__(self, cfg):
316
+ super().__init__()
317
+ self.num_heads = cfg.num_attention_heads
318
+ self.n_local_heads = cfg.num_attention_heads
319
+ self.head_dim = cfg.hidden_size // cfg.num_attention_heads
320
+ self.max_seq_len = cfg.seq_length
321
+ self.use_flash_attention = cfg.use_flash_attn
322
+
323
+ self.qkv_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size * 3, bias=True)
324
+ self.out_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size, bias=True)
325
+
326
+ # self.core_attention = CoreAttention(cfg, AttnType.self_attn)
327
+
328
+ self.attn_drop = cfg.attention_dropout
329
+
330
+ def forward(
331
+ self,
332
+ x: torch.Tensor,
333
+ ):
334
+ bsz, seqlen, _ = x.shape
335
+ xqkv = self.qkv_proj(x)
336
+ xqkv = xqkv.view(bsz, seqlen, 3, self.num_heads, self.head_dim)
337
+
338
+ if self.use_flash_attention:
339
+
340
+ xq, xk, xv = torch.split(xqkv, 1, dim=2)
341
+ xq = xq.squeeze(2)
342
+ xk = xk.squeeze(2)
343
+ xv = xv.squeeze(2)
344
+ # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
345
+
346
+ # (B, num_head, S, head_size)
347
+ xq = xq.permute(0, 2, 1, 3)
348
+ xk = xk.permute(0, 2, 1, 3)
349
+ xv = xv.permute(0, 2, 1, 3)
350
+ # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
351
+ output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
352
+ output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
353
+ # output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
354
+ else:
355
+ # print(22222)
356
+ xq, xk, xv = torch.split(xqkv, 1, dim=2)
357
+ xq = xq.squeeze(2)
358
+ xk = xk.squeeze(2)
359
+ xv = xv.squeeze(2)
360
+ # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
361
+
362
+ # (B, num_head, S, head_size)
363
+ xq = xq.permute(0, 2, 1, 3)
364
+ xk = xk.permute(0, 2, 1, 3)
365
+ xv = xv.permute(0, 2, 1, 3)
366
+ # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
367
+ output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
368
+ output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
369
+ # output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
370
+ output = self.out_proj(output)
371
+ return output
372
+
373
+ class NoTPTransformerBlock(nn.Module):
374
+ def __init__(self, cfg, layer_id: int, multiple_of=256):
375
+ super().__init__()
376
+
377
+ self.n_heads = cfg.num_attention_heads
378
+ self.dim = cfg.hidden_size
379
+ self.head_dim = cfg.hidden_size // cfg.num_attention_heads
380
+ self.self_attn = NoTPAttention(cfg)
381
+ self.mlp = NoTPFeedForward(
382
+ cfg, dim=cfg.hidden_size, hidden_dim=cfg.ffn_hidden_size
383
+ )
384
+ self.layer_id = layer_id
385
+ self.layer_norm1 = torch.nn.LayerNorm(
386
+ cfg.hidden_size, eps=cfg.layernorm_epsilon
387
+ )
388
+ self.layer_norm2 = torch.nn.LayerNorm(
389
+ cfg.hidden_size, eps=cfg.layernorm_epsilon
390
+ )
391
+
392
+ def forward(self, x: torch.Tensor):
393
+ residual = self.self_attn.forward(self.layer_norm1(x))
394
+ h = x + residual
395
+ out = h + self.mlp.forward(self.layer_norm2(h))
396
+ return out
397
+
398
+
399
+ class NoTPTransformer(nn.Module):
400
+ def __init__(self, cfg):
401
+ super().__init__()
402
+
403
+ self.cfg = cfg
404
+ # self.recompute_list = self.cfg.get("recompute_list", [])
405
+ self.num_layers = cfg.num_layers # _get_num_layers(cfg)
406
+
407
+ self.layers = torch.nn.ModuleList()
408
+ for layer_id in range(self.num_layers):
409
+ self.layers.append(
410
+ NoTPTransformerBlock(
411
+ cfg,
412
+ layer_id + 1,
413
+ )
414
+ )
415
+
416
+ def forward(
417
+ self,
418
+ hidden_states,
419
+ ):
420
+
421
+ for lid, layer in enumerate(self.layers):
422
+ # if lid in self.recompute_list:
423
+ # def custom(layer_id):
424
+ # def custom_forward(*args, **kwargs):
425
+ # x_ = self.layers[layer_id](*args, **kwargs)
426
+ # return x_
427
+
428
+ # return custom_forward
429
+
430
+ # assert hidden_states.requires_grad == True, logger.warning(
431
+ # "When using recalculation, the input must have grad fn"
432
+ # )
433
+ # hidden_states = tensor_parallel.checkpoint(
434
+ # custom(lid),
435
+ # False,
436
+ # hidden_states.contiguous()
437
+ # )
438
+ # else:
439
+ hidden_states = layer(hidden_states)
440
+
441
+ return hidden_states
442
+
443
+
444
+ # from megatron.core.tensor_parallel.layers import non_tensor_paralleled, local_dp_reduce, local_dp_scatter
445
+
446
+ class VitModel(nn.Module):
447
+ def __init__(
448
+ self,
449
+ cfg,
450
+ freeze_embed=False,
451
+ freeze_pre_norm=False
452
+ ) -> None:
453
+ super().__init__()
454
+
455
+ self.embeddings = CLIPVisionEmbeddings(hidden_size=cfg.hidden_size, image_size=cfg.image_size, patch_size=cfg.patch_size)
456
+
457
+ if freeze_embed:
458
+ for name, param in self.embeddings.named_parameters():
459
+ param.requires_grad = False
460
+
461
+ self.transformer = NoTPTransformer(cfg=cfg)
462
+
463
+ if cfg.get("fp32norm", False):
464
+ logger.info("Load fp32 layernorm for ViT.")
465
+ self.pre_layrnorm = LayerNormfp32(
466
+ cfg.hidden_size,
467
+ eps=cfg.get("pre_layernorm_epsilon", 1e-5),
468
+ )
469
+ else:
470
+ self.pre_layrnorm = torch.nn.LayerNorm(
471
+ cfg.hidden_size,
472
+ eps=cfg.get("pre_layernorm_epsilon", 1e-5),
473
+ )
474
+
475
+ # self.pre_layrnorm = RMSNorm(
476
+ # cfg.hidden_size,
477
+ # eps=cfg.get("pre_layernorm_epsilon", 1e-5),
478
+ # sequence_parallel=False,
479
+ # use_fp32=True,
480
+ # use_optimus=True,
481
+ # )
482
+
483
+ if freeze_pre_norm:
484
+ for name, param in self.pre_layrnorm.named_parameters():
485
+ param.requires_grad = False
486
+
487
+ for p in self.parameters():
488
+ p.micro_dp = True
489
+
490
+ def set_input_tensor(self, input_tensor):
491
+ if not isinstance(input_tensor, list):
492
+ input_tensor = [input_tensor]
493
+ self.transformer.set_input_tensor(input_tensor[0])
494
+
495
+ def __str__(self) -> str:
496
+ return "open_clip"
497
+
498
+ def forward(
499
+ self,
500
+ x,
501
+ patch_embeds
502
+ ):
503
+ x = self.embeddings(x, patch_embeds)
504
+ hidden_states = self.pre_layrnorm(x)
505
+
506
+ # hidden_states, dis = local_dp_scatter(hidden_states)
507
+ output = self.transformer(hidden_states)
508
+
509
+ # output = local_dp_reduce(output, dis)
510
+
511
+ return output
512
+
513
+
514
+ vit_model_cfg = adict(
515
+ num_layers=24,
516
+ hidden_size=1024,
517
+ num_heads = 16,
518
+ num_attention_heads=16,
519
+ ffn_hidden_size=4096,
520
+ seq_length=256,
521
+ max_position_embeddings=256,
522
+ use_flash_attn=False,
523
+ understand_projector_stride=2,
524
+ hidden_dropout = 0.0,
525
+ attention_dropout = 0.0,
526
+ no_persist_layer_norm = False,
527
+ layernorm_epsilon = 1e-5,
528
+ pre_layernorm_epsilon = 1e-5,
529
+ image_size = 224,
530
+ patch_size = 14,
531
+ recompute_list = []
532
+ )
533
+
534
+ def build_clip_l():
535
+ return VitModel(
536
+ cfg=vit_model_cfg,
537
+ freeze_embed=False,
538
+ freeze_pre_norm=False,
539
+ )
540
+
541
+
542
+
543
+
544
+
545
+ #=========================Sam-Vary=================================
546
+
547
+
548
+ def get_abs_pos_sam(abs_pos, tgt_size):
549
+
550
+ dtype = abs_pos.dtype
551
+
552
+ src_size = abs_pos.size(1)
553
+
554
+ if src_size != tgt_size:
555
+ old_pos_embed = abs_pos.permute(0, 3, 1, 2)
556
+ old_pos_embed = old_pos_embed.to(torch.float32)
557
+ new_pos_embed = F.interpolate(
558
+ old_pos_embed,
559
+ size=(tgt_size, tgt_size),
560
+ mode='bicubic',
561
+ antialias=True,
562
+ align_corners=False,
563
+ ).to(dtype)
564
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
565
+ return new_pos_embed
566
+ else:
567
+ return abs_pos
568
+
569
+
570
+
571
+
572
+ class MLPBlock(nn.Module):
573
+ def __init__(
574
+ self,
575
+ embedding_dim: int,
576
+ mlp_dim: int,
577
+ act: Type[nn.Module] = nn.GELU,
578
+ ) -> None:
579
+ super().__init__()
580
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
581
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
582
+ self.act = act()
583
+
584
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
585
+ return self.lin2(self.act(self.lin1(x)))
586
+
587
+
588
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
589
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
590
+ class LayerNorm2d(nn.Module):
591
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
592
+ super().__init__()
593
+ self.weight = nn.Parameter(torch.ones(num_channels))
594
+ self.bias = nn.Parameter(torch.zeros(num_channels))
595
+ self.eps = eps
596
+
597
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
598
+ u = x.mean(1, keepdim=True)
599
+ s = (x - u).pow(2).mean(1, keepdim=True)
600
+ x = (x - u) / torch.sqrt(s + self.eps)
601
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
602
+ return x
603
+
604
+
605
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
606
+ class ImageEncoderViT(nn.Module):
607
+ def __init__(
608
+ self,
609
+ img_size: int = 1024,
610
+ patch_size: int = 16,
611
+ in_chans: int = 3,
612
+ embed_dim: int = 768,
613
+ depth: int = 12,
614
+ num_heads: int = 12,
615
+ mlp_ratio: float = 4.0,
616
+ out_chans: int = 256,
617
+ qkv_bias: bool = True,
618
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
619
+ act_layer: Type[nn.Module] = nn.GELU,
620
+ use_abs_pos: bool = True,
621
+ use_rel_pos: bool = False,
622
+ rel_pos_zero_init: bool = True,
623
+ window_size: int = 0,
624
+ global_attn_indexes: Tuple[int, ...] = (),
625
+ ) -> None:
626
+ """
627
+ Args:
628
+ img_size (int): Input image size.
629
+ patch_size (int): Patch size.
630
+ in_chans (int): Number of input image channels.
631
+ embed_dim (int): Patch embedding dimension.
632
+ depth (int): Depth of ViT.
633
+ num_heads (int): Number of attention heads in each ViT block.
634
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
635
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
636
+ norm_layer (nn.Module): Normalization layer.
637
+ act_layer (nn.Module): Activation layer.
638
+ use_abs_pos (bool): If True, use absolute positional embeddings.
639
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
640
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
641
+ window_size (int): Window size for window attention blocks.
642
+ global_attn_indexes (list): Indexes for blocks using global attention.
643
+ """
644
+ super().__init__()
645
+ self.img_size = img_size
646
+
647
+ self.patch_embed = PatchEmbed(
648
+ kernel_size=(patch_size, patch_size),
649
+ stride=(patch_size, patch_size),
650
+ in_chans=in_chans,
651
+ embed_dim=embed_dim,
652
+ )
653
+
654
+ self.pos_embed: Optional[nn.Parameter] = None
655
+ if use_abs_pos:
656
+ # Initialize absolute positional embedding with pretrain image size.
657
+ self.pos_embed = nn.Parameter(
658
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
659
+ )
660
+
661
+ self.blocks = nn.ModuleList()
662
+ for i in range(depth):
663
+ block = Block(
664
+ dim=embed_dim,
665
+ num_heads=num_heads,
666
+ mlp_ratio=mlp_ratio,
667
+ qkv_bias=qkv_bias,
668
+ norm_layer=norm_layer,
669
+ act_layer=act_layer,
670
+ use_rel_pos=use_rel_pos,
671
+ rel_pos_zero_init=rel_pos_zero_init,
672
+ window_size=window_size if i not in global_attn_indexes else 0,
673
+ input_size=(img_size // patch_size, img_size // patch_size),
674
+ )
675
+ self.blocks.append(block)
676
+
677
+ self.neck = nn.Sequential(
678
+ nn.Conv2d(
679
+ embed_dim,
680
+ out_chans,
681
+ kernel_size=1,
682
+ bias=False,
683
+ ),
684
+ LayerNorm2d(out_chans),
685
+ nn.Conv2d(
686
+ out_chans,
687
+ out_chans,
688
+ kernel_size=3,
689
+ padding=1,
690
+ bias=False,
691
+ ),
692
+ LayerNorm2d(out_chans),
693
+ )
694
+
695
+ self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
696
+ self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
697
+
698
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
699
+ x = self.patch_embed(x)
700
+ if self.pos_embed is not None:
701
+ # x = x + self.pos_embed
702
+ x = x + get_abs_pos_sam(self.pos_embed, x.size(1))
703
+
704
+ for blk in self.blocks:
705
+ x = blk(x)
706
+
707
+ x = self.neck(x.permute(0, 3, 1, 2))
708
+ x2 = self.net_2(x)
709
+ x3 = self.net_3(x2.clone())
710
+
711
+ return x3
712
+
713
+
714
+ class Block(nn.Module):
715
+ """Transformer blocks with support of window attention and residual propagation blocks"""
716
+
717
+ def __init__(
718
+ self,
719
+ dim: int,
720
+ num_heads: int,
721
+ mlp_ratio: float = 4.0,
722
+ qkv_bias: bool = True,
723
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
724
+ act_layer: Type[nn.Module] = nn.GELU,
725
+ use_rel_pos: bool = False,
726
+ rel_pos_zero_init: bool = True,
727
+ window_size: int = 0,
728
+ input_size: Optional[Tuple[int, int]] = None,
729
+ ) -> None:
730
+ """
731
+ Args:
732
+ dim (int): Number of input channels.
733
+ num_heads (int): Number of attention heads in each ViT block.
734
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
735
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
736
+ norm_layer (nn.Module): Normalization layer.
737
+ act_layer (nn.Module): Activation layer.
738
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
739
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
740
+ window_size (int): Window size for window attention blocks. If it equals 0, then
741
+ use global attention.
742
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
743
+ positional parameter size.
744
+ """
745
+ super().__init__()
746
+ self.norm1 = norm_layer(dim)
747
+ self.attn = Attention(
748
+ dim,
749
+ num_heads=num_heads,
750
+ qkv_bias=qkv_bias,
751
+ use_rel_pos=use_rel_pos,
752
+ rel_pos_zero_init=rel_pos_zero_init,
753
+ input_size=input_size if window_size == 0 else (window_size, window_size),
754
+ )
755
+
756
+ self.norm2 = norm_layer(dim)
757
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
758
+
759
+ self.window_size = window_size
760
+
761
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
762
+ shortcut = x
763
+ x = self.norm1(x)
764
+ # Window partition
765
+ if self.window_size > 0:
766
+ H, W = x.shape[1], x.shape[2]
767
+ x, pad_hw = window_partition(x, self.window_size)
768
+
769
+ x = self.attn(x)
770
+ # Reverse window partition
771
+ if self.window_size > 0:
772
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
773
+
774
+ x = shortcut + x
775
+ x = x + self.mlp(self.norm2(x))
776
+
777
+ return x
778
+
779
+
780
+ class Attention(nn.Module):
781
+ """Multi-head Attention block with relative position embeddings."""
782
+
783
+ def __init__(
784
+ self,
785
+ dim: int,
786
+ num_heads: int = 8,
787
+ qkv_bias: bool = True,
788
+ use_rel_pos: bool = False,
789
+ rel_pos_zero_init: bool = True,
790
+ input_size: Optional[Tuple[int, int]] = None,
791
+ ) -> None:
792
+ """
793
+ Args:
794
+ dim (int): Number of input channels.
795
+ num_heads (int): Number of attention heads.
796
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
797
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
798
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
799
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
800
+ positional parameter size.
801
+ """
802
+ super().__init__()
803
+ self.num_heads = num_heads
804
+ head_dim = dim // num_heads
805
+ self.scale = head_dim**-0.5
806
+
807
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
808
+ self.proj = nn.Linear(dim, dim)
809
+
810
+ self.use_rel_pos = use_rel_pos
811
+ if self.use_rel_pos:
812
+ assert (
813
+ input_size is not None
814
+ ), "Input size must be provided if using relative positional encoding."
815
+ # initialize relative positional embeddings
816
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
817
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
818
+
819
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
820
+ B, H, W, _ = x.shape
821
+ # qkv with shape (3, B, nHead, H * W, C)
822
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
823
+ # q, k, v with shape (B * nHead, H * W, C)
824
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
825
+
826
+ rel_h, rel_w = None, None
827
+ if self.use_rel_pos:
828
+ rel_h, rel_w = add_decomposed_rel_pos(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
829
+
830
+ q = q.view(B, self.num_heads, H * W, -1)
831
+ k = k.view(B, self.num_heads, H * W, -1)
832
+ v = v.view(B, self.num_heads, H * W, -1)
833
+
834
+ if self.use_rel_pos:
835
+ rel_h = rel_h.view(B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3))
836
+ rel_w = rel_w.view(B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3))
837
+ attn_bias = (rel_h + rel_w).view(B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4))
838
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
839
+ # x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
840
+ else:
841
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
842
+
843
+ x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
844
+
845
+ x = self.proj(x)
846
+
847
+ return x
848
+
849
+
850
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
851
+ """
852
+ Partition into non-overlapping windows with padding if needed.
853
+ Args:
854
+ x (tensor): input tokens with [B, H, W, C].
855
+ window_size (int): window size.
856
+
857
+ Returns:
858
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
859
+ (Hp, Wp): padded height and width before partition
860
+ """
861
+ B, H, W, C = x.shape
862
+
863
+ pad_h = (window_size - H % window_size) % window_size
864
+ pad_w = (window_size - W % window_size) % window_size
865
+ if pad_h > 0 or pad_w > 0:
866
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
867
+ Hp, Wp = H + pad_h, W + pad_w
868
+
869
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
870
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
871
+ return windows, (Hp, Wp)
872
+
873
+
874
+ def window_unpartition(
875
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
876
+ ) -> torch.Tensor:
877
+ """
878
+ Window unpartition into original sequences and removing padding.
879
+ Args:
880
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
881
+ window_size (int): window size.
882
+ pad_hw (Tuple): padded height and width (Hp, Wp).
883
+ hw (Tuple): original height and width (H, W) before padding.
884
+
885
+ Returns:
886
+ x: unpartitioned sequences with [B, H, W, C].
887
+ """
888
+ Hp, Wp = pad_hw
889
+ H, W = hw
890
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
891
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
892
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
893
+
894
+ if Hp > H or Wp > W:
895
+ x = x[:, :H, :W, :].contiguous()
896
+ return x
897
+
898
+
899
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
900
+ """
901
+ Get relative positional embeddings according to the relative positions of
902
+ query and key sizes.
903
+ Args:
904
+ q_size (int): size of query q.
905
+ k_size (int): size of key k.
906
+ rel_pos (Tensor): relative position embeddings (L, C).
907
+
908
+ Returns:
909
+ Extracted positional embeddings according to relative positions.
910
+ """
911
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
912
+ # Interpolate rel pos if needed.
913
+ if rel_pos.shape[0] != max_rel_dist:
914
+ # Interpolate rel pos.
915
+ dtype = rel_pos.dtype
916
+ rel_pos = rel_pos.to(torch.float32)
917
+ rel_pos_resized = F.interpolate(
918
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
919
+ size=max_rel_dist,
920
+ mode="linear",
921
+ ).to(dtype)
922
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
923
+ else:
924
+ rel_pos_resized = rel_pos
925
+
926
+ # Scale the coords with short length if shapes for q and k are different.
927
+ q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(k_size / q_size, 1.0)
928
+ k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(q_size / k_size, 1.0)
929
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
930
+
931
+ return rel_pos_resized[relative_coords.long()]
932
+
933
+
934
+ def add_decomposed_rel_pos(
935
+ q: torch.Tensor,
936
+ rel_pos_h: torch.Tensor,
937
+ rel_pos_w: torch.Tensor,
938
+ q_size: Tuple[int, int],
939
+ k_size: Tuple[int, int],
940
+ ) -> torch.Tensor:
941
+ """
942
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
943
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
944
+ Args:
945
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
946
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
947
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
948
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
949
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
950
+
951
+ Returns:
952
+ attn (Tensor): attention map with added relative positional embeddings.
953
+ """
954
+ q_h, q_w = q_size
955
+ k_h, k_w = k_size
956
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
957
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
958
+
959
+ B, _, dim = q.shape
960
+ r_q = q.reshape(B, q_h, q_w, dim)
961
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
962
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
963
+ rel_h = rel_h.unsqueeze(-1)
964
+ rel_w = rel_w.unsqueeze(-2)
965
+ rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
966
+ rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
967
+
968
+ return rel_h, rel_w
969
+
970
+
971
+ class PatchEmbed(nn.Module):
972
+ """
973
+ Image to Patch Embedding.
974
+ """
975
+
976
+ def __init__(
977
+ self,
978
+ kernel_size: Tuple[int, int] = (16, 16),
979
+ stride: Tuple[int, int] = (16, 16),
980
+ padding: Tuple[int, int] = (0, 0),
981
+ in_chans: int = 3,
982
+ embed_dim: int = 768,
983
+ ) -> None:
984
+ """
985
+ Args:
986
+ kernel_size (Tuple): kernel size of the projection layer.
987
+ stride (Tuple): stride of the projection layer.
988
+ padding (Tuple): padding size of the projection layer.
989
+ in_chans (int): Number of input image channels.
990
+ embed_dim (int): Patch embedding dimension.
991
+ """
992
+ super().__init__()
993
+
994
+ self.proj = nn.Conv2d(
995
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
996
+ )
997
+
998
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
999
+ x = self.proj(x)
1000
+ # B C H W -> B H W C
1001
+ x = x.permute(0, 2, 3, 1)
1002
+ return x
1003
+
1004
+
1005
+ def build_sam_vit_b(checkpoint=None):
1006
+ return _build_sam(
1007
+ encoder_embed_dim=768,
1008
+ encoder_depth=12,
1009
+ encoder_num_heads=12,
1010
+ encoder_global_attn_indexes=[2, 5, 8, 11],
1011
+ checkpoint=checkpoint,
1012
+ )
1013
+
1014
+ def build_sam_fast_vit_b(checkpoint=None, compile_mode='max-autotune', dtype=torch.bfloat16):
1015
+ image_encoder = build_sam_vit_b(checkpoint).eval().to(dtype)
1016
+ # sam = _apply_eval_dtype_sam(sam, dtype)
1017
+ image_encoder = torch.compile(image_encoder, mode=compile_mode)
1018
+ return image_encoder
1019
+
1020
+
1021
+ def _build_sam(
1022
+ encoder_embed_dim,
1023
+ encoder_depth,
1024
+ encoder_num_heads,
1025
+ encoder_global_attn_indexes,
1026
+ checkpoint=None,
1027
+ ):
1028
+ prompt_embed_dim = 256
1029
+ image_size = 1024
1030
+ vit_patch_size = 16
1031
+ image_embedding_size = image_size // vit_patch_size
1032
+ image_encoder=ImageEncoderViT(
1033
+ depth=encoder_depth,
1034
+ embed_dim=encoder_embed_dim,
1035
+ img_size=image_size,
1036
+ mlp_ratio=4,
1037
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
1038
+ num_heads=encoder_num_heads,
1039
+ patch_size=vit_patch_size,
1040
+ qkv_bias=True,
1041
+ use_rel_pos=True,
1042
+ global_attn_indexes=encoder_global_attn_indexes,
1043
+ window_size=14,
1044
+ out_chans=prompt_embed_dim,
1045
+ )
1046
+ image_encoder.eval()
1047
+ if checkpoint is not None:
1048
+ # with open(checkpoint, "rb") as f:
1049
+ state_dict = torch.load(checkpoint)
1050
+ # print(state_dict.keys())
1051
+ # for key in state_dict:
1052
+ # image_encoder.load_state_dict({k[14:]: v for k, v in state_dict.items() if 'image_encoder' in k}, strict=False)
1053
+ # ocr-anyting
1054
+ # image_encoder.load_state_dict(state_dict, strict=True)
1055
+ # tob
1056
+ image_encoder.load_state_dict({k[30:]: v for k, v in state_dict.items() if 'vision_tower_high' in k}, strict=True)
1057
+ print(checkpoint)
1058
+ return image_encoder
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1169e7cdc28ff2fb6186556acb2175db148ad26a62097df4c45a17e523180d3f
3
+ size 6672547120
modeling_deepseekocr.py ADDED
@@ -0,0 +1,1043 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT License modified from prithivMLmods/DeepSeek-OCR-Latest-BF16.I64
2
+ import os
3
+ import math
4
+ import re
5
+ from tqdm import tqdm
6
+ from abc import ABC
7
+ from typing import List, Optional, Tuple, Union
8
+
9
+ from addict import Dict
10
+ from PIL import Image, ImageOps, ImageDraw, ImageFont
11
+ import numpy as np
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ from torch.nn import CrossEntropyLoss
16
+ from torchvision import transforms
17
+
18
+ from transformers.cache_utils import Cache
19
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
20
+ from transformers import DeepseekV2Model, DeepseekV2ForCausalLM
21
+ from transformers import DeepseekV2Config
22
+ from transformers.models.deepseek_v2.modeling_deepseek_v2 import (
23
+ DeepseekV2Attention, DeepseekV2MLP, DeepseekV2MoE, DeepseekV2RMSNorm, DeepseekV2DecoderLayer)
24
+ from transformers.models.llama.modeling_llama import LlamaAttention, LlamaRotaryEmbedding
25
+ from transformers import TextStreamer
26
+ from .deepencoder import build_sam_vit_b, build_clip_l, MlpProjector
27
+ from .conversation import get_conv_template
28
+
29
+ torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
30
+
31
+ def load_image(image_path):
32
+
33
+ try:
34
+ image = Image.open(image_path)
35
+
36
+ corrected_image = ImageOps.exif_transpose(image)
37
+
38
+ return corrected_image
39
+
40
+ except Exception as e:
41
+ print(f"error: {e}")
42
+ try:
43
+ return Image.open(image_path)
44
+ except:
45
+ return None
46
+
47
+
48
+ def re_match(text):
49
+ pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
50
+ matches = re.findall(pattern, text, re.DOTALL)
51
+
52
+ # pattern1 = r'<\|ref\|>.*?<\|/ref\|>\n'
53
+ # new_text1 = re.sub(pattern1, '', text, flags=re.DOTALL)
54
+
55
+ mathes_image = []
56
+ mathes_other = []
57
+ for a_match in matches:
58
+ if '<|ref|>image<|/ref|>' in a_match[0]:
59
+ mathes_image.append(a_match[0])
60
+ else:
61
+ mathes_other.append(a_match[0])
62
+ return matches, mathes_image, mathes_other
63
+
64
+
65
+ def extract_coordinates_and_label(ref_text, image_width, image_height):
66
+
67
+ try:
68
+ label_type = ref_text[1]
69
+ cor_list = eval(ref_text[2])
70
+ except Exception as e:
71
+ print(e)
72
+ return None
73
+
74
+ return (label_type, cor_list)
75
+
76
+
77
+ def draw_bounding_boxes(image, refs, ouput_path):
78
+
79
+ image_width, image_height = image.size
80
+
81
+ img_draw = image.copy()
82
+ draw = ImageDraw.Draw(img_draw)
83
+
84
+ overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
85
+ draw2 = ImageDraw.Draw(overlay)
86
+
87
+ # try:
88
+ # except IOError:
89
+ # try:
90
+ # font = ImageFont.truetype("DejaVuSans.ttf", 20)
91
+ # except IOError:
92
+ font = ImageFont.load_default()
93
+
94
+ img_idx = 0
95
+
96
+ for i, ref in enumerate(refs):
97
+ try:
98
+ result = extract_coordinates_and_label(ref, image_width, image_height)
99
+ if result:
100
+ label_type, points_list = result
101
+
102
+ color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
103
+
104
+ color_a = color + (20, )
105
+ for points in points_list:
106
+ x1, y1, x2, y2 = points
107
+
108
+ x1 = int(x1 / 999 * image_width)
109
+ y1 = int(y1 / 999 * image_height)
110
+
111
+ x2 = int(x2 / 999 * image_width)
112
+ y2 = int(y2 / 999 * image_height)
113
+
114
+ if label_type == 'image':
115
+ try:
116
+ cropped = image.crop((x1, y1, x2, y2))
117
+ cropped.save(f"{ouput_path}/images/{img_idx}.jpg")
118
+ except Exception as e:
119
+ print(e)
120
+ pass
121
+ img_idx += 1
122
+
123
+ try:
124
+ if label_type == 'title':
125
+ draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
126
+ draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
127
+ else:
128
+ draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
129
+ draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
130
+ text_x = x1
131
+ text_y = max(0, y1 - 15)
132
+
133
+
134
+ text_bbox = draw.textbbox((0, 0), label_type, font=font)
135
+ text_width = text_bbox[2] - text_bbox[0]
136
+ text_height = text_bbox[3] - text_bbox[1]
137
+ draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
138
+ fill=(255, 255, 255, 30))
139
+
140
+ draw.text((text_x, text_y), label_type, font=font, fill=color)
141
+ except:
142
+ pass
143
+ except:
144
+ continue
145
+ img_draw.paste(overlay, (0, 0), overlay)
146
+ return img_draw
147
+
148
+
149
+ def process_image_with_refs(image, ref_texts, output_path):
150
+
151
+ result_image = draw_bounding_boxes(image, ref_texts, output_path)
152
+
153
+ return result_image
154
+
155
+
156
+
157
+
158
+
159
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
160
+ best_ratio_diff = float('inf')
161
+ best_ratio = (1, 1)
162
+ area = width * height
163
+ for ratio in target_ratios:
164
+ target_aspect_ratio = ratio[0] / ratio[1]
165
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
166
+ if ratio_diff < best_ratio_diff:
167
+ best_ratio_diff = ratio_diff
168
+ best_ratio = ratio
169
+ elif ratio_diff == best_ratio_diff:
170
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
171
+ best_ratio = ratio
172
+ # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
173
+ return best_ratio
174
+
175
+
176
+ def dynamic_preprocess(image, min_num=2, max_num=9, image_size=640, use_thumbnail=False):
177
+ orig_width, orig_height = image.size
178
+ aspect_ratio = orig_width / orig_height
179
+
180
+ # calculate the existing image aspect ratio
181
+ target_ratios = set(
182
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
183
+ i * j <= max_num and i * j >= min_num)
184
+ # print(target_ratios)
185
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
186
+
187
+ # find the closest aspect ratio to the target
188
+ target_aspect_ratio = find_closest_aspect_ratio(
189
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
190
+
191
+ # print(target_aspect_ratio)
192
+ # calculate the target width and height
193
+ target_width = image_size * target_aspect_ratio[0]
194
+ target_height = image_size * target_aspect_ratio[1]
195
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
196
+
197
+ # resize the image
198
+ resized_img = image.resize((target_width, target_height))
199
+ processed_images = []
200
+ for i in range(blocks):
201
+ box = (
202
+ (i % (target_width // image_size)) * image_size,
203
+ (i // (target_width // image_size)) * image_size,
204
+ ((i % (target_width // image_size)) + 1) * image_size,
205
+ ((i // (target_width // image_size)) + 1) * image_size
206
+ )
207
+ # split the image
208
+ split_img = resized_img.crop(box)
209
+ processed_images.append(split_img)
210
+ assert len(processed_images) == blocks
211
+ if use_thumbnail and len(processed_images) != 1:
212
+ thumbnail_img = image.resize((image_size, image_size))
213
+ processed_images.append(thumbnail_img)
214
+ return processed_images, target_aspect_ratio
215
+
216
+
217
+
218
+ def normalize_transform(mean, std):
219
+ if mean is None and std is None:
220
+ transform = None
221
+ elif mean is None and std is not None:
222
+ mean = [0.] * len(std)
223
+ transform = transforms.Normalize(mean=mean, std=std)
224
+ elif mean is not None and std is None:
225
+ std = [1.] * len(mean)
226
+ transform = transforms.Normalize(mean=mean, std=std)
227
+ else:
228
+ transform = transforms.Normalize(mean=mean, std=std)
229
+
230
+ return transform
231
+
232
+
233
+
234
+ def format_messages(
235
+ conversations: List[Dict[str, str]],
236
+ sft_format: str = "deepseek",
237
+ system_prompt: str = "",
238
+ ):
239
+ """
240
+ Applies the SFT template to conversation.
241
+
242
+ Args:
243
+ conversations (List[Dict]): A List of messages.
244
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
245
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
246
+
247
+ Returns:
248
+ sft_prompt (str): The formatted text.
249
+ """
250
+
251
+ conv = get_conv_template(sft_format)
252
+ conv.set_system_message(system_prompt)
253
+ for message in conversations:
254
+ conv.append_message(message["role"], message["content"].strip())
255
+ sft_prompt = conv.get_prompt().strip()
256
+
257
+ return sft_prompt
258
+
259
+
260
+ def text_encode(tokenizer, text: str, bos: bool = True, eos: bool = False):
261
+ t = tokenizer.encode(text, add_special_tokens=False)
262
+ bos_id = 0
263
+ eos_id = 1
264
+ if bos:
265
+ t = [bos_id] + t
266
+ if eos:
267
+ t = t + [eos_id]
268
+
269
+ return t
270
+
271
+ def load_pil_images(conversations: List[Dict[str, str]]) -> List[Image.Image]:
272
+ """
273
+
274
+ Args:
275
+ conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
276
+ [
277
+ {
278
+ "role": "User",
279
+ "content": "<image_placeholder>\nExtract all information from this image and convert them into markdown format.",
280
+ "images": ["./examples/table_datasets.png"]
281
+ },
282
+ {"role": "Assistant", "content": ""},
283
+ ]
284
+
285
+ Returns:
286
+ pil_images (List[PIL.Image.Image]): the list of PIL images.
287
+
288
+ """
289
+
290
+ pil_images = []
291
+
292
+ for message in conversations:
293
+ if "images" not in message:
294
+ continue
295
+
296
+ for image_path in message["images"]:
297
+ # print('----------------')
298
+ # print(image_path)
299
+ # print('----------------')
300
+ # exit()
301
+
302
+ # pil_img = Image.open(image_path)
303
+ pil_img = load_image(image_path)
304
+ pil_img = pil_img.convert("RGB")
305
+ pil_images.append(pil_img)
306
+
307
+ return pil_images
308
+
309
+
310
+ class BaseTransform(ABC):
311
+
312
+ def set_rng(self, *args, **kwargs):
313
+ pass
314
+
315
+ def __call__(self, *args, **kwargs) -> torch.Tensor:
316
+ pass
317
+
318
+ @property
319
+ def default_shape(self):
320
+ raise NotImplementedError
321
+
322
+
323
+ class BasicImageTransform(BaseTransform):
324
+ def __init__(
325
+ self,
326
+ mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
327
+ std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
328
+ normalize: bool = True
329
+ ):
330
+ self.mean = mean
331
+ self.std = std
332
+
333
+ transform_pipelines = [
334
+ transforms.ToTensor()
335
+ ]
336
+
337
+ normalize = normalize_transform(mean, std) if normalize else nn.Identity()
338
+ if normalize is not None:
339
+ transform_pipelines.append(normalize)
340
+
341
+ self.transform = transforms.Compose(transform_pipelines)
342
+
343
+ def __call__(self, x):
344
+ x = self.transform(x)
345
+ return x
346
+
347
+ class NoEOSTextStreamer(TextStreamer):
348
+ def on_finalized_text(self, text: str, stream_end: bool = False):
349
+
350
+ eos_text = self.tokenizer.decode([self.tokenizer.eos_token_id], skip_special_tokens=False)
351
+ text = text.replace(eos_text, "\n")
352
+ print(text, flush=True, end="")
353
+
354
+
355
+ def decoder_layer_init(self, config: DeepseekV2Config, layer_idx: int):
356
+ nn.Module.__init__(self)
357
+ self.hidden_size = config.hidden_size
358
+
359
+ if config.use_mla:
360
+ self.self_attn = DeepseekV2Attention(config=config, layer_idx=layer_idx)
361
+ else:
362
+ config.head_dim = config.hidden_size // config.num_attention_heads
363
+ self.self_attn = LlamaAttention(config, layer_idx)
364
+ self.mlp = DeepseekV2MoE(config) if layer_idx >= config.first_k_dense_replace else DeepseekV2MLP(config)
365
+
366
+ self.input_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
367
+ self.post_attention_layernorm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+
369
+
370
+ DeepseekV2DecoderLayer.__init__ = decoder_layer_init
371
+
372
+ class DeepseekOCRConfig(DeepseekV2Config):
373
+ model_type = "DeepseekOCR"
374
+
375
+ class DeepseekOCRModel(DeepseekV2Model):
376
+ config_class = DeepseekOCRConfig
377
+
378
+ def __init__(self, config: DeepseekV2Config):
379
+ super(DeepseekOCRModel, self).__init__(config)
380
+
381
+ self.sam_model = build_sam_vit_b()
382
+ self.vision_model = build_clip_l()
383
+ # self.conv_2 = nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=2, stride=2)
384
+ n_embed = 1280
385
+ self.projector = MlpProjector(Dict(projector_type="linear", input_dim=2048, n_embed=n_embed))
386
+ embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
387
+ self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
388
+ self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
389
+
390
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
391
+
392
+ def forward(
393
+ self,
394
+ input_ids: torch.LongTensor = None,
395
+ attention_mask: Optional[torch.Tensor] = None,
396
+ position_ids: Optional[torch.LongTensor] = None,
397
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
398
+ inputs_embeds: Optional[torch.FloatTensor] = None,
399
+ use_cache: Optional[bool] = None,
400
+ output_attentions: Optional[bool] = None,
401
+ output_hidden_states: Optional[bool] = None,
402
+ images: Optional[torch.FloatTensor] = None,
403
+ images_seq_mask: Optional[torch.FloatTensor] = None,
404
+ images_spatial_crop: Optional[torch.FloatTensor] = None,
405
+ return_dict: Optional[bool] = None,
406
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
407
+
408
+
409
+
410
+ if inputs_embeds is None:
411
+ # inputs_embeds = self.embed_tokens(input_ids)
412
+ inputs_embeds = self.get_input_embeddings()(input_ids)
413
+
414
+ inputs_embeds = inputs_embeds.clone()
415
+
416
+ sam_model = getattr(self, 'sam_model', None)
417
+ # sam_model = self.sam_model
418
+ vision_model = getattr(self, 'vision_model', None)
419
+
420
+
421
+
422
+ if sam_model is not None and (input_ids.shape[1] != 1 or self.training) and torch.sum(images[0][1]).item() != 0:
423
+
424
+ idx = 0
425
+
426
+ # sam_model = torch.jit.script(sam_model)
427
+
428
+ # start_time = time.time()
429
+ for image, crop_shape in zip(images, images_spatial_crop):
430
+ images_in_this_batch = []
431
+
432
+ patches = image[0]
433
+ image_ori = image[1]
434
+
435
+ with torch.no_grad():
436
+ # with torch.inference_mode():
437
+
438
+ if torch.sum(patches).item() != 0:
439
+ # P, C, H, W = patches.shape
440
+ crop_flag = 1
441
+ local_features_1 = sam_model(patches)
442
+
443
+ local_features_2 = vision_model(patches, local_features_1)
444
+ # vit_time = time.time()
445
+ local_features = torch.cat((local_features_2[:, 1:], local_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
446
+ local_features = self.projector(local_features)
447
+
448
+
449
+ global_features_1 = sam_model(image_ori)
450
+ global_features_2 = vision_model(image_ori, global_features_1)
451
+ global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
452
+ global_features = self.projector(global_features)
453
+
454
+ print('=====================')
455
+ print('BASE: ', global_features.shape)
456
+ print('PATCHES: ', local_features.shape)
457
+ print('=====================')
458
+
459
+ _, hw, n_dim = global_features.shape
460
+ h = w = int(hw ** 0.5)
461
+
462
+ _2, hw2, n_dim2 = local_features.shape
463
+ h2 = w2 = int(hw2 ** 0.5)
464
+
465
+ width_crop_num, height_crop_num = crop_shape[0], crop_shape[1]
466
+
467
+ global_features = global_features.view(h, w, n_dim)
468
+
469
+ global_features = torch.cat(
470
+ [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
471
+ )
472
+
473
+ global_features = global_features.view(-1, n_dim)
474
+
475
+
476
+ local_features = local_features.view(height_crop_num, width_crop_num, h2, w2, n_dim2).permute(0, 2, 1, 3, 4).reshape(height_crop_num*h2, width_crop_num*w2, n_dim2)
477
+ local_features = torch.cat(
478
+ [local_features, self.image_newline[None, None, :].expand(height_crop_num * h2, 1, n_dim2)], dim=1
479
+ )
480
+ local_features = local_features.view(-1, n_dim2)
481
+
482
+ global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
483
+
484
+ # end_time = time.time()
485
+
486
+ # print('sam: ', sam_time - start_time)
487
+ # print('vit: ', vit_time - sam_time)
488
+ # print('all: ', end_time - start_time)
489
+
490
+ # exit()
491
+
492
+ else:
493
+ global_features_1 = sam_model(image_ori)
494
+ global_features_2 = vision_model(image_ori, global_features_1)
495
+ global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
496
+ global_features = self.projector(global_features)
497
+ _, hw, n_dim = global_features.shape
498
+ h = w = int(hw ** 0.5)
499
+
500
+
501
+ global_features = global_features.view(h, w, n_dim)
502
+
503
+ global_features = torch.cat(
504
+ [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
505
+ )
506
+
507
+ global_features = global_features.view(-1, n_dim)
508
+
509
+ global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)
510
+
511
+ images_in_this_batch.append(global_local_features)
512
+
513
+
514
+ if images_in_this_batch:
515
+ images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
516
+ images_in_this_batch = images_in_this_batch.to(
517
+ device=inputs_embeds.device, dtype=inputs_embeds.dtype
518
+ )
519
+ mask = images_seq_mask[idx].unsqueeze(-1).to(inputs_embeds.device) # bool [T, 1]
520
+ updated_row = inputs_embeds[idx].masked_scatter(mask, images_in_this_batch)
521
+ inputs_embeds[idx] = updated_row
522
+
523
+ idx += 1
524
+
525
+ return super(DeepseekOCRModel, self).forward(
526
+ input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
527
+ inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
528
+ output_attentions=output_attentions, output_hidden_states=output_hidden_states,
529
+ return_dict=return_dict
530
+ )
531
+
532
+
533
+ class DeepseekOCRForCausalLM(DeepseekV2ForCausalLM):
534
+
535
+ config_class = DeepseekOCRConfig
536
+ # supports_gradient_checkpointing = True
537
+
538
+ def __init__(self, config):
539
+ super(DeepseekV2ForCausalLM, self).__init__(config)
540
+ self.model = DeepseekOCRModel(config)
541
+
542
+ self.vocab_size = config.vocab_size
543
+
544
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
545
+
546
+ # Initialize weights and apply final processing
547
+ self.post_init()
548
+
549
+ def get_model(self):
550
+ return self.model
551
+
552
+
553
+ def forward(
554
+ self,
555
+ input_ids: torch.LongTensor = None,
556
+ attention_mask: Optional[torch.Tensor] = None,
557
+ position_ids: Optional[torch.LongTensor] = None,
558
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
559
+ inputs_embeds: Optional[torch.FloatTensor] = None,
560
+ labels: Optional[torch.LongTensor] = None,
561
+ use_cache: Optional[bool] = None,
562
+ output_attentions: Optional[bool] = None,
563
+ output_hidden_states: Optional[bool] = None,
564
+ images: Optional[torch.FloatTensor] = None,
565
+ images_seq_mask: Optional[torch.FloatTensor] = None,
566
+ images_spatial_crop: Optional[torch.FloatTensor] = None,
567
+ return_dict: Optional[bool] = None,
568
+
569
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
570
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
571
+ output_hidden_states = (
572
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
573
+ )
574
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
575
+
576
+
577
+
578
+ outputs = self.model(
579
+ input_ids=input_ids,
580
+ past_key_values=past_key_values,
581
+ attention_mask=attention_mask,
582
+ position_ids=position_ids,
583
+ inputs_embeds=inputs_embeds,
584
+ use_cache=use_cache,
585
+ output_attentions=output_attentions,
586
+ output_hidden_states=output_hidden_states,
587
+ images=images,
588
+ images_seq_mask = images_seq_mask,
589
+ images_spatial_crop = images_spatial_crop,
590
+ return_dict=return_dict
591
+
592
+ )
593
+
594
+ hidden_states = outputs[0]
595
+ logits = self.lm_head(hidden_states)
596
+ logits = logits.float()
597
+
598
+ # logits
599
+
600
+ loss = None
601
+ if labels is not None:
602
+ # Shift so that tokens < n predict n
603
+ shift_logits = logits[..., :-1, :].contiguous()
604
+ shift_labels = labels[..., 1:].contiguous()
605
+ # Flatten the tokens
606
+ loss_fct = CrossEntropyLoss()
607
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
608
+ shift_labels = shift_labels.view(-1)
609
+ # Enable model parallelism
610
+ shift_labels = shift_labels.to(shift_logits.device)
611
+ loss = loss_fct(shift_logits, shift_labels)
612
+
613
+ if not return_dict:
614
+ output = (logits,) + outputs[1:]
615
+ return (loss,) + output if loss is not None else output
616
+
617
+ return CausalLMOutputWithPast(
618
+ loss=loss,
619
+ logits=logits,
620
+ past_key_values=outputs.past_key_values,
621
+ hidden_states=outputs.hidden_states,
622
+ attentions=outputs.attentions,
623
+ )
624
+
625
+
626
+ def prepare_inputs_for_generation(
627
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
628
+ ):
629
+ # Omit tokens covered by past_key_values
630
+ past_length = 0
631
+ if past_key_values is not None:
632
+ if isinstance(past_key_values, Cache):
633
+ cache_length = past_key_values.get_seq_length()
634
+ past_length = past_key_values.get_seq_length()
635
+ max_cache_length = None
636
+ else:
637
+ cache_length = past_length = past_key_values[0][0].shape[2]
638
+ max_cache_length = None
639
+
640
+ # Keep only the unprocessed tokens:
641
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
642
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
643
+ # input)
644
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
645
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
646
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
647
+ # input_ids based on the past_length.
648
+ elif past_length < input_ids.shape[1]:
649
+ input_ids = input_ids[:, past_length:]
650
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
651
+
652
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
653
+ if (
654
+ max_cache_length is not None
655
+ and attention_mask is not None
656
+ and cache_length + input_ids.shape[1] > max_cache_length
657
+ ):
658
+ attention_mask = attention_mask[:, -max_cache_length:]
659
+
660
+ position_ids = kwargs.get("position_ids", None)
661
+ if attention_mask is not None and position_ids is None:
662
+ # create position_ids on the fly for batch generation
663
+ position_ids = attention_mask.long().cumsum(-1) - 1
664
+ position_ids.masked_fill_(attention_mask == 0, 1)
665
+ if past_key_values:
666
+ position_ids = position_ids[:, -input_ids.shape[1] :]
667
+
668
+ # if self.generation_config.cache_implementation == "static":
669
+ # # generation with static cache
670
+ # cache_position = kwargs.get("cache_position", None)
671
+ # if cache_position is None:
672
+ # past_length = 0
673
+ # else:
674
+ # past_length = cache_position[-1] + 1
675
+ # input_ids = input_ids[:, past_length:]
676
+ # position_ids = position_ids[:, past_length:]
677
+
678
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
679
+ # same goes for position ids. Could also help with continued generation.
680
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
681
+
682
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
683
+ if inputs_embeds is not None and past_key_values is None:
684
+ model_inputs = {"inputs_embeds": inputs_embeds}
685
+ else:
686
+ model_inputs = {"input_ids": input_ids}
687
+
688
+ model_inputs.update(
689
+ {
690
+ "position_ids": position_ids,
691
+ "past_key_values": past_key_values,
692
+ "use_cache": kwargs.get("use_cache"),
693
+ "attention_mask": attention_mask,
694
+ "images": kwargs.get("images", None),
695
+ "images_seq_mask": kwargs.get("images_seq_mask", None),
696
+ "images_spatial_crop": kwargs.get("images_spatial_crop", None),
697
+ }
698
+ )
699
+ return model_inputs
700
+
701
+
702
+ def disable_torch_init(self):
703
+ """
704
+ Disable the redundant torch default initialization to accelerate model creation.
705
+ """
706
+ import torch
707
+ setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
708
+ setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
709
+
710
+
711
+
712
+ def infer(self, tokenizer, prompt='', image_file='', output_path = '', base_size=1024, image_size=640, crop_mode=True, test_compress=False, save_results=False, eval_mode=False):
713
+ self.disable_torch_init()
714
+
715
+ os.makedirs(output_path, exist_ok=True)
716
+ os.makedirs(f'{output_path}/images', exist_ok=True)
717
+
718
+ if prompt and image_file:
719
+ conversation = [
720
+ {
721
+ "role": "<|User|>",
722
+ # "content": "<image>\n<|grounding|>Given the layout of the image. ",
723
+ "content": f'{prompt}',
724
+ # "content": "君不见黄河之水天上来的下一句是什么?",
725
+ # "content": "<image>\nFree OCR. ",
726
+ # "content": "<image>\nParse the figure. ",
727
+ # "content": "<image>\nExtract the text in the image. ",
728
+ "images": [f'{image_file}'],
729
+ },
730
+ {"role": "<|Assistant|>", "content": ""},
731
+ ]
732
+
733
+ elif prompt:
734
+ conversation = [
735
+ {
736
+ "role": "<|User|>",
737
+ # "content": "<image>\n<|grounding|>Given the layout of the image. ",
738
+ "content": f'{prompt}',
739
+ # "content": "君不见黄河之水天上来的下一句是什么?",
740
+ # "content": "<image>\nFree OCR. ",
741
+ # "content": "<image>\nParse the figure. ",
742
+ # "content": "<image>\nExtract the text in the image. ",
743
+ # "images": [f'{image_file}'],
744
+ },
745
+ {"role": "<|Assistant|>", "content": ""},
746
+ ]
747
+ else:
748
+ assert False, f'prompt is none!'
749
+
750
+ prompt = format_messages(conversations=conversation, sft_format='plain', system_prompt='')
751
+
752
+ patch_size = 16
753
+ downsample_ratio = 4
754
+ images = load_pil_images(conversation)
755
+
756
+ valid_img_tokens = 0
757
+ ratio = 1
758
+
759
+ image_draw = images[0].copy()
760
+
761
+ w,h = image_draw.size
762
+ # print(w, h)
763
+ ratio = 1 - ((max(w, h) - min(w, h)) / (max(w, h)))
764
+
765
+
766
+ image_transform=BasicImageTransform(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), normalize=True)
767
+ images_seq_mask = []
768
+
769
+ image_token = '<image>'
770
+ image_token_id = 128815
771
+ text_splits = prompt.split(image_token)
772
+
773
+ images_list, images_crop_list, images_seq_mask = [], [], []
774
+ tokenized_str = []
775
+ images_spatial_crop = []
776
+ for text_sep, image in zip(text_splits, images):
777
+
778
+ tokenized_sep = text_encode(tokenizer, text_sep, bos=False, eos=False)
779
+ tokenized_str += tokenized_sep
780
+ images_seq_mask += [False] * len(tokenized_sep)
781
+
782
+ if crop_mode:
783
+
784
+ if image.size[0] <= 640 and image.size[1] <= 640:
785
+ crop_ratio = [1, 1]
786
+
787
+ else:
788
+ if crop_mode:
789
+ # best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
790
+ images_crop_raw, crop_ratio = dynamic_preprocess(image)
791
+ else:
792
+ # best_width, best_height = self.image_size, self.image_size
793
+ crop_ratio = [1, 1]
794
+
795
+ """process the global view"""
796
+ # image = image.resize((base_size, base_size))
797
+ global_view = ImageOps.pad(image, (base_size, base_size),
798
+ color=tuple(int(x * 255) for x in image_transform.mean))
799
+
800
+ if base_size == 1024:
801
+ valid_img_tokens += int(256 * ratio)
802
+ elif base_size == 1280:
803
+ valid_img_tokens += int(400 * ratio)
804
+ # elif base_size == 640:
805
+ # valid_img_tokens += int(100 * ratio)
806
+
807
+
808
+
809
+
810
+
811
+ images_list.append(image_transform(global_view).to(torch_dtype))
812
+
813
+ # global_view_tensor = image_transform(global_view).to(torch_dtype)
814
+
815
+ width_crop_num, height_crop_num = crop_ratio
816
+
817
+ images_spatial_crop.append([width_crop_num, height_crop_num])
818
+
819
+
820
+ if width_crop_num > 1 or height_crop_num > 1:
821
+ """process the local views"""
822
+
823
+ for i in range(len(images_crop_raw)):
824
+ images_crop_list.append(image_transform(images_crop_raw[i]).to(torch_dtype))
825
+
826
+ if image_size == 640:
827
+ valid_img_tokens += len(images_crop_list) * 100
828
+
829
+ num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
830
+ num_queries_base = math.ceil((base_size // patch_size) / downsample_ratio)
831
+
832
+
833
+
834
+ """add image tokens"""
835
+
836
+
837
+
838
+ tokenized_image = ([image_token_id] * num_queries_base + [image_token_id]) * num_queries_base
839
+ tokenized_image += [image_token_id]
840
+ if width_crop_num > 1 or height_crop_num > 1:
841
+ tokenized_image += ([image_token_id] * (num_queries * width_crop_num) + [image_token_id]) * (
842
+ num_queries * height_crop_num)
843
+ tokenized_str += tokenized_image
844
+ images_seq_mask += [True] * len(tokenized_image)
845
+ # num_image_tokens.append(len(tokenized_image))
846
+
847
+ else:
848
+ # best_width, best_height = self.image_size, self.image_size
849
+ # print(image.size, (best_width, best_height)) # check the select_best_resolutions func
850
+
851
+ """process the global view"""
852
+ if image_size <= 640:
853
+ print('directly resize')
854
+ image = image.resize((image_size, image_size))
855
+ # else:
856
+ global_view = ImageOps.pad(image, (image_size, image_size),
857
+ color=tuple(int(x * 255) for x in image_transform.mean))
858
+ images_list.append(image_transform(global_view).to(torch_dtype))
859
+
860
+ if base_size == 1024:
861
+ valid_img_tokens += int(256 * ratio)
862
+ elif base_size == 1280:
863
+ valid_img_tokens += int(400 * ratio)
864
+ elif base_size == 640:
865
+ valid_img_tokens += int(100 * 1)
866
+ elif base_size == 512:
867
+ valid_img_tokens += int(64 * 1)
868
+
869
+ width_crop_num, height_crop_num = 1, 1
870
+
871
+ images_spatial_crop.append([width_crop_num, height_crop_num])
872
+
873
+
874
+ """add image tokens"""
875
+ num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
876
+
877
+ tokenized_image = ([image_token_id] * num_queries + [image_token_id]) * num_queries
878
+ tokenized_image += [image_token_id]
879
+ # tokenized_image += ([self.image_token_id] * (num_queries * width_crop_num) + [self.image_token_id]) * (
880
+ # num_queries * height_crop_num)
881
+ tokenized_str += tokenized_image
882
+ images_seq_mask += [True] * len(tokenized_image)
883
+ # num_image_tokens.append(len(tokenized_image))
884
+
885
+
886
+ """process the last text split"""
887
+ tokenized_sep = text_encode(tokenizer, text_splits[-1], bos=False, eos=False)
888
+ tokenized_str += tokenized_sep
889
+ images_seq_mask += [False] * len(tokenized_sep)
890
+
891
+ """add the bos tokens"""
892
+ bos_id = 0
893
+ tokenized_str = [bos_id] + tokenized_str
894
+ images_seq_mask = [False] + images_seq_mask
895
+
896
+
897
+
898
+ input_ids = torch.LongTensor(tokenized_str)
899
+
900
+ images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
901
+
902
+
903
+ if len(images_list) == 0:
904
+ images_ori = torch.zeros((1, 3, image_size, image_size))
905
+ images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
906
+ images_crop = torch.zeros((1, 3, base_size, base_size))
907
+
908
+ else:
909
+ images_ori = torch.stack(images_list, dim=0)
910
+ images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
911
+ if images_crop_list:
912
+ images_crop = torch.stack(images_crop_list, dim=0)
913
+ else:
914
+ images_crop = torch.zeros((1, 3, base_size, base_size))
915
+
916
+
917
+
918
+ if not eval_mode:
919
+ streamer = NoEOSTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
920
+ with torch.autocast("cuda", dtype=torch_dtype):
921
+ with torch.no_grad():
922
+ output_ids = self.generate(
923
+ input_ids.unsqueeze(0).cuda(),
924
+ images=[(images_crop.cuda(), images_ori.cuda())],
925
+ images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
926
+ images_spatial_crop = images_spatial_crop,
927
+ # do_sample=False,
928
+ # num_beams = 1,
929
+ temperature=0.0,
930
+ eos_token_id=tokenizer.eos_token_id,
931
+ streamer=streamer,
932
+ max_new_tokens=8192,
933
+ no_repeat_ngram_size = 20,
934
+ use_cache = True
935
+ )
936
+
937
+ else:
938
+ with torch.autocast("cuda", dtype=torch_dtype):
939
+ with torch.no_grad():
940
+ output_ids = self.generate(
941
+ input_ids.unsqueeze(0).cuda(),
942
+ images=[(images_crop.cuda(), images_ori.cuda())],
943
+ images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
944
+ images_spatial_crop = images_spatial_crop,
945
+ # do_sample=False,
946
+ # num_beams = 1,
947
+ temperature=0.0,
948
+ eos_token_id=tokenizer.eos_token_id,
949
+ max_new_tokens=8192,
950
+ no_repeat_ngram_size = 35,
951
+ use_cache = True
952
+ )
953
+
954
+
955
+ if '<image>' in conversation[0]['content'] and eval_mode:
956
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
957
+ stop_str = '<|end▁of▁sentence|>'
958
+ if outputs.endswith(stop_str):
959
+ outputs = outputs[:-len(stop_str)]
960
+ # re_match
961
+ outputs = outputs.strip()
962
+
963
+ return outputs
964
+
965
+ if '<image>' in conversation[0]['content'] and test_compress:
966
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
967
+ pure_texts_outputs_token_length = len(text_encode(tokenizer, outputs, bos=False, eos=False))
968
+ print('='*50)
969
+ print('image size: ', (w, h))
970
+ print('valid image tokens: ', int(valid_img_tokens))
971
+ print('output texts tokens (valid): ', pure_texts_outputs_token_length)
972
+ print('compression ratio: ', round(pure_texts_outputs_token_length/valid_img_tokens, 2))
973
+ print('='*50)
974
+
975
+
976
+ if '<image>' in conversation[0]['content'] and save_results:
977
+ outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
978
+ stop_str = '<|end▁of▁sentence|>'
979
+
980
+ print('='*15 + 'save results:' + '='*15)
981
+
982
+ # # # # conv.messages[-1][-1] = outputs
983
+ if outputs.endswith(stop_str):
984
+ outputs = outputs[:-len(stop_str)]
985
+ outputs = outputs.strip()
986
+
987
+ matches_ref, matches_images, mathes_other = re_match(outputs)
988
+ # print(matches_ref)
989
+ result = process_image_with_refs(image_draw, matches_ref, output_path)
990
+
991
+
992
+ for idx, a_match_image in enumerate(tqdm(matches_images, desc="image")):
993
+ outputs = outputs.replace(a_match_image, '![](images/' + str(idx) + '.jpg)\n')
994
+
995
+ for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
996
+ outputs = outputs.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:')
997
+
998
+
999
+ # if 'structural formula' in conversation[0]['content']:
1000
+ # outputs = '<smiles>' + outputs + '</smiles>'
1001
+ with open(f'{output_path}/result.mmd', 'w', encoding = 'utf-8') as afile:
1002
+ afile.write(outputs)
1003
+
1004
+ if 'line_type' in outputs:
1005
+ import matplotlib.pyplot as plt
1006
+ lines = eval(outputs)['Line']['line']
1007
+
1008
+ line_type = eval(outputs)['Line']['line_type']
1009
+ # print(lines)
1010
+
1011
+ endpoints = eval(outputs)['Line']['line_endpoint']
1012
+
1013
+ fig, ax = plt.subplots(figsize=(3,3), dpi=200)
1014
+ ax.set_xlim(-15, 15)
1015
+ ax.set_ylim(-15, 15)
1016
+
1017
+ for idx, line in enumerate(lines):
1018
+ try:
1019
+ p0 = eval(line.split(' -- ')[0])
1020
+ p1 = eval(line.split(' -- ')[-1])
1021
+
1022
+ if line_type[idx] == '--':
1023
+ ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color='k')
1024
+ else:
1025
+ ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth = 0.8, color = 'k')
1026
+
1027
+ ax.scatter(p0[0], p0[1], s=5, color = 'k')
1028
+ ax.scatter(p1[0], p1[1], s=5, color = 'k')
1029
+ except:
1030
+ pass
1031
+
1032
+ for endpoint in endpoints:
1033
+
1034
+ label = endpoint.split(': ')[0]
1035
+ (x, y) = eval(endpoint.split(': ')[1])
1036
+ ax.annotate(label, (x, y), xytext=(1, 1), textcoords='offset points',
1037
+ fontsize=5, fontweight='light')
1038
+
1039
+
1040
+ plt.savefig(f'{output_path}/geo.jpg')
1041
+ plt.close()
1042
+
1043
+ result.save(f"{output_path}/result_with_boxes.jpg")
modeling_deepseekv2.py ADDED
@@ -0,0 +1,1996 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model and compatible with both DeepSeekV2 and DeepSeekV3"""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+ import numpy as np
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ import torch.distributed as dist
30
+ from einops import repeat
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.cache_utils import Cache, DynamicCache
36
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
37
+ try:
38
+ from transformers.models.llama.modeling_llama import LlamaAttention
39
+ except:
40
+ LlamaAttention = None
41
+ try:
42
+ from transformers.models.llama.modeling_llama import LlamaFlashAttention2
43
+ except:
44
+ LlamaFlashAttention2 = None
45
+ from transformers.modeling_outputs import (
46
+ BaseModelOutputWithPast,
47
+ CausalLMOutputWithPast,
48
+ SequenceClassifierOutputWithPast,
49
+ )
50
+ from transformers.modeling_utils import PreTrainedModel
51
+ from transformers.pytorch_utils import (
52
+ ALL_LAYERNORM_LAYERS,
53
+ is_torch_greater_or_equal_than_1_13,
54
+ )
55
+ from transformers.utils import (
56
+ add_start_docstrings,
57
+ add_start_docstrings_to_model_forward,
58
+ is_flash_attn_2_available,
59
+ is_flash_attn_greater_or_equal_2_10,
60
+ logging,
61
+ replace_return_docstrings,
62
+ )
63
+ from transformers.utils.import_utils import is_torch_fx_available
64
+
65
+ from .configuration_deepseek_v2 import DeepseekV2Config
66
+
67
+ if is_flash_attn_2_available():
68
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
69
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
70
+
71
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
72
+ # It means that the function will not be traced through and simply appear as a node in the graph.
73
+ if is_torch_fx_available():
74
+ if not is_torch_greater_or_equal_than_1_13:
75
+ import torch.fx
76
+
77
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
78
+
79
+ logger = logging.get_logger(__name__)
80
+
81
+ _CONFIG_FOR_DOC = "DeepseekV2Config"
82
+
83
+
84
+ def _get_unpad_data(attention_mask):
85
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
86
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
87
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
88
+ cu_seqlens = F.pad(
89
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
90
+ )
91
+ return (
92
+ indices,
93
+ cu_seqlens,
94
+ max_seqlen_in_batch,
95
+ )
96
+
97
+
98
+ class DeepseekV2RMSNorm(nn.Module):
99
+ def __init__(self, hidden_size, eps=1e-6):
100
+ """
101
+ DeepseekV2RMSNorm is equivalent to T5LayerNorm
102
+ """
103
+ super().__init__()
104
+ self.weight = nn.Parameter(torch.ones(hidden_size))
105
+ self.variance_epsilon = eps
106
+
107
+ def forward(self, hidden_states):
108
+ input_dtype = hidden_states.dtype
109
+ hidden_states = hidden_states.to(torch.float32)
110
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
111
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
112
+ return self.weight * hidden_states.to(input_dtype)
113
+
114
+
115
+ ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
116
+
117
+
118
+
119
+
120
+ class DeepseekV2RotaryEmbedding(nn.Module):
121
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
122
+ super().__init__()
123
+
124
+ self.dim = dim
125
+ self.max_position_embeddings = max_position_embeddings
126
+ self.base = base
127
+ inv_freq = 1.0 / (
128
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
129
+ )
130
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
131
+
132
+ # Build here to make `torch.jit.trace` work.
133
+ self._set_cos_sin_cache(
134
+ seq_len=max_position_embeddings,
135
+ device=self.inv_freq.device,
136
+ dtype=torch.get_default_dtype(),
137
+ )
138
+ self.max_seq_len_cached = None
139
+
140
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
141
+ self.max_seq_len_cached = seq_len
142
+ t = torch.arange(
143
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
144
+ )
145
+
146
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
147
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
148
+ emb = torch.cat((freqs, freqs), dim=-1)
149
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
150
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
151
+
152
+ def forward(self, x, seq_len=None):
153
+ # x: [bs, num_attention_heads, seq_len, head_size]
154
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
155
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
156
+
157
+ return (
158
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
159
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
160
+ )
161
+
162
+
163
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
164
+ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
165
+ """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
166
+
167
+ def __init__(
168
+ self,
169
+ dim,
170
+ max_position_embeddings=2048,
171
+ base=10000,
172
+ device=None,
173
+ scaling_factor=1.0,
174
+ ):
175
+ self.scaling_factor = scaling_factor
176
+ super().__init__(dim, max_position_embeddings, base, device)
177
+
178
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
179
+ self.max_seq_len_cached = seq_len
180
+ t = torch.arange(
181
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
182
+ )
183
+ t = t / self.scaling_factor
184
+
185
+ freqs = torch.outer(t, self.inv_freq)
186
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
187
+ emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
189
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
190
+
191
+
192
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
193
+ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
194
+ """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
195
+
196
+ def __init__(
197
+ self,
198
+ dim,
199
+ max_position_embeddings=2048,
200
+ base=10000,
201
+ device=None,
202
+ scaling_factor=1.0,
203
+ ):
204
+ self.scaling_factor = scaling_factor
205
+ super().__init__(dim, max_position_embeddings, base, device)
206
+
207
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
208
+ self.max_seq_len_cached = seq_len
209
+
210
+ if seq_len > self.max_position_embeddings:
211
+ base = self.base * (
212
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
213
+ - (self.scaling_factor - 1)
214
+ ) ** (self.dim / (self.dim - 2))
215
+ inv_freq = 1.0 / (
216
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
217
+ )
218
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
219
+
220
+ t = torch.arange(
221
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
222
+ )
223
+
224
+ freqs = torch.outer(t, self.inv_freq)
225
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
226
+ emb = torch.cat((freqs, freqs), dim=-1)
227
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
228
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
229
+
230
+
231
+ # Inverse dim formula to find dim based on number of rotations
232
+ def yarn_find_correction_dim(
233
+ num_rotations, dim, base=10000, max_position_embeddings=2048
234
+ ):
235
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
236
+ 2 * math.log(base)
237
+ )
238
+
239
+
240
+ # Find dim range bounds based on rotations
241
+ def yarn_find_correction_range(
242
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
243
+ ):
244
+ low = math.floor(
245
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
246
+ )
247
+ high = math.ceil(
248
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
249
+ )
250
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
251
+
252
+
253
+ def yarn_get_mscale(scale=1, mscale=1):
254
+ if scale <= 1:
255
+ return 1.0
256
+ return 0.1 * mscale * math.log(scale) + 1.0
257
+
258
+
259
+ def yarn_linear_ramp_mask(min, max, dim):
260
+ if min == max:
261
+ max += 0.001 # Prevent singularity
262
+
263
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
264
+ ramp_func = torch.clamp(linear_func, 0, 1)
265
+ return ramp_func
266
+
267
+
268
+ class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
269
+
270
+ def __init__(
271
+ self,
272
+ dim,
273
+ max_position_embeddings=2048,
274
+ base=10000,
275
+ device=None,
276
+ scaling_factor=1.0,
277
+ original_max_position_embeddings=4096,
278
+ beta_fast=32,
279
+ beta_slow=1,
280
+ mscale=1,
281
+ mscale_all_dim=0,
282
+ ):
283
+ self.scaling_factor = scaling_factor
284
+ self.original_max_position_embeddings = original_max_position_embeddings
285
+ self.beta_fast = beta_fast
286
+ self.beta_slow = beta_slow
287
+ self.mscale = mscale
288
+ self.mscale_all_dim = mscale_all_dim
289
+ super().__init__(dim, max_position_embeddings, base, device)
290
+
291
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
292
+ self.max_seq_len_cached = seq_len
293
+ dim = self.dim
294
+
295
+ freq_extra = 1.0 / (
296
+ self.base
297
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
298
+ )
299
+ freq_inter = 1.0 / (
300
+ self.scaling_factor
301
+ * self.base
302
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
303
+ )
304
+
305
+ low, high = yarn_find_correction_range(
306
+ self.beta_fast,
307
+ self.beta_slow,
308
+ dim,
309
+ self.base,
310
+ self.original_max_position_embeddings,
311
+ )
312
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
313
+ device=device, dtype=torch.float32
314
+ )
315
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
316
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
317
+
318
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
319
+
320
+ freqs = torch.outer(t, inv_freq)
321
+
322
+ _mscale = float(
323
+ yarn_get_mscale(self.scaling_factor, self.mscale)
324
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
325
+ )
326
+
327
+ emb = torch.cat((freqs, freqs), dim=-1)
328
+ self.register_buffer(
329
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
330
+ )
331
+ self.register_buffer(
332
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
333
+ )
334
+
335
+
336
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
337
+ def rotate_half(x):
338
+ """Rotates half the hidden dims of the input."""
339
+ x1 = x[..., : x.shape[-1] // 2]
340
+ x2 = x[..., x.shape[-1] // 2 :]
341
+ return torch.cat((-x2, x1), dim=-1)
342
+
343
+
344
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
345
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
346
+ """Applies Rotary Position Embedding to the query and key tensors.
347
+
348
+ Args:
349
+ q (`torch.Tensor`): The query tensor.
350
+ k (`torch.Tensor`): The key tensor.
351
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
352
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
353
+ position_ids (`torch.Tensor`):
354
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
355
+ used to pass offsetted position ids when working with a KV-cache.
356
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
357
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
358
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
359
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
360
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
361
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
362
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
363
+ Returns:
364
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
365
+ """
366
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
367
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
368
+
369
+
370
+ # print()
371
+
372
+ b, h, s, d = q.shape
373
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
374
+
375
+ b, h, s, d = k.shape
376
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
377
+
378
+ q_embed = (q * cos) + (rotate_half(q) * sin)
379
+ k_embed = (k * cos) + (rotate_half(k) * sin)
380
+
381
+
382
+ return q_embed, k_embed
383
+
384
+
385
+ class DeepseekV2MLP(nn.Module):
386
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
387
+ super().__init__()
388
+ self.config = config
389
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
390
+ self.intermediate_size = (
391
+ config.intermediate_size if intermediate_size is None else intermediate_size
392
+ )
393
+
394
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
395
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
396
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
397
+ self.act_fn = ACT2FN[config.hidden_act]
398
+
399
+ def forward(self, x):
400
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
401
+ return down_proj
402
+
403
+
404
+ class MoEGate(nn.Module):
405
+ def __init__(self, config):
406
+ super().__init__()
407
+ self.config = config
408
+ self.top_k = config.num_experts_per_tok
409
+ self.n_routed_experts = config.n_routed_experts
410
+ self.routed_scaling_factor = config.routed_scaling_factor
411
+ self.scoring_func = config.scoring_func
412
+ self.alpha = config.aux_loss_alpha
413
+ self.seq_aux = config.seq_aux
414
+ self.topk_method = config.topk_method
415
+ self.n_group = config.n_group
416
+ self.topk_group = config.topk_group
417
+
418
+ # topk selection algorithm
419
+ self.norm_topk_prob = config.norm_topk_prob
420
+ self.gating_dim = config.hidden_size
421
+ self.weight = nn.Parameter(
422
+ torch.empty((self.n_routed_experts, self.gating_dim))
423
+ )
424
+ if self.topk_method == "noaux_tc":
425
+ self.e_score_correction_bias = nn.Parameter(
426
+ torch.empty((self.n_routed_experts))
427
+ )
428
+ self.reset_parameters()
429
+
430
+ def reset_parameters(self) -> None:
431
+ import torch.nn.init as init
432
+
433
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
434
+
435
+ def forward(self, hidden_states):
436
+ bsz, seq_len, h = hidden_states.shape
437
+ ### compute gating score
438
+ hidden_states = hidden_states.view(-1, h)
439
+ logits = F.linear(
440
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
441
+ )
442
+ if self.scoring_func == "softmax":
443
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
444
+ elif self.scoring_func == "sigmoid":
445
+ scores = logits.sigmoid()
446
+ else:
447
+ raise NotImplementedError(
448
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
449
+ )
450
+
451
+ ### select top-k experts
452
+ if self.topk_method == "greedy":
453
+ topk_weight, topk_idx = torch.topk(
454
+ scores, k=self.top_k, dim=-1, sorted=False
455
+ )
456
+ elif self.topk_method == "group_limited_greedy":
457
+ group_scores = (
458
+ scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
459
+ ) # [n, n_group]
460
+ group_idx = torch.topk(
461
+ group_scores, k=self.topk_group, dim=-1, sorted=False
462
+ )[
463
+ 1
464
+ ] # [n, top_k_group]
465
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
466
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
467
+ score_mask = (
468
+ group_mask.unsqueeze(-1)
469
+ .expand(
470
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
471
+ )
472
+ .reshape(bsz * seq_len, -1)
473
+ ) # [n, e]
474
+ tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
475
+ topk_weight, topk_idx = torch.topk(
476
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
477
+ )
478
+ elif self.topk_method == "noaux_tc":
479
+ assert not self.training
480
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
481
+ group_scores = (
482
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
483
+ ) # [n, n_group]
484
+ group_idx = torch.topk(
485
+ group_scores, k=self.topk_group, dim=-1, sorted=False
486
+ )[
487
+ 1
488
+ ] # [n, top_k_group]
489
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
490
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
491
+ score_mask = (
492
+ group_mask.unsqueeze(-1)
493
+ .expand(
494
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
495
+ )
496
+ .reshape(bsz * seq_len, -1)
497
+ ) # [n, e]
498
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
499
+ _, topk_idx = torch.topk(
500
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
501
+ )
502
+ topk_weight = scores.gather(1, topk_idx)
503
+
504
+ ### norm gate to sum 1
505
+ if self.top_k > 1 and self.norm_topk_prob:
506
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
507
+ topk_weight = topk_weight / denominator * self.routed_scaling_factor
508
+ else:
509
+ topk_weight = topk_weight * self.routed_scaling_factor
510
+ ### expert-level computation auxiliary loss
511
+ if self.training and self.alpha > 0.0:
512
+ scores_for_aux = scores
513
+ aux_topk = self.top_k
514
+ # always compute aux loss based on the naive greedy topk method
515
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
516
+ if self.seq_aux:
517
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
518
+ ce = torch.zeros(
519
+ bsz, self.n_routed_experts, device=hidden_states.device
520
+ )
521
+ ce.scatter_add_(
522
+ 1,
523
+ topk_idx_for_aux_loss,
524
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
525
+ ).div_(seq_len * aux_topk / self.n_routed_experts)
526
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
527
+ dim=1
528
+ ).mean() * self.alpha
529
+ else:
530
+ mask_ce = F.one_hot(
531
+ topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
532
+ )
533
+ ce = mask_ce.float().mean(0)
534
+ Pi = scores_for_aux.mean(0)
535
+ fi = ce * self.n_routed_experts
536
+ aux_loss = (Pi * fi).sum() * self.alpha
537
+ else:
538
+ aux_loss = None
539
+ return topk_idx, topk_weight, aux_loss
540
+
541
+
542
+ class AddAuxiliaryLoss(torch.autograd.Function):
543
+ """
544
+ The trick function of adding auxiliary (aux) loss,
545
+ which includes the gradient of the aux loss during backpropagation.
546
+ """
547
+
548
+ @staticmethod
549
+ def forward(ctx, x, loss):
550
+ assert loss.numel() == 1
551
+ ctx.dtype = loss.dtype
552
+ ctx.required_aux_loss = loss.requires_grad
553
+ return x
554
+
555
+ @staticmethod
556
+ def backward(ctx, grad_output):
557
+ grad_loss = None
558
+ if ctx.required_aux_loss:
559
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
560
+ return grad_output, grad_loss
561
+
562
+
563
+ class DeepseekV2MoE(nn.Module):
564
+ """
565
+ A mixed expert module containing shared experts.
566
+ """
567
+
568
+ def __init__(self, config):
569
+ super().__init__()
570
+ self.config = config
571
+ self.num_experts_per_tok = config.num_experts_per_tok
572
+
573
+ if hasattr(config, "ep_size") and config.ep_size > 1:
574
+ assert config.ep_size == dist.get_world_size()
575
+ self.ep_size = config.ep_size
576
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
577
+ self.ep_rank = dist.get_rank()
578
+ self.experts = nn.ModuleList(
579
+ [
580
+ (
581
+ DeepseekV2MLP(
582
+ config, intermediate_size=config.moe_intermediate_size
583
+ )
584
+ if i >= self.ep_rank * self.experts_per_rank
585
+ and i < (self.ep_rank + 1) * self.experts_per_rank
586
+ else None
587
+ )
588
+ for i in range(config.n_routed_experts)
589
+ ]
590
+ )
591
+ else:
592
+ self.ep_size = 1
593
+ self.experts_per_rank = config.n_routed_experts
594
+ self.ep_rank = 0
595
+ self.experts = nn.ModuleList(
596
+ [
597
+ DeepseekV2MLP(
598
+ config, intermediate_size=config.moe_intermediate_size
599
+ )
600
+ for i in range(config.n_routed_experts)
601
+ ]
602
+ )
603
+ self.gate = MoEGate(config)
604
+ if config.n_shared_experts is not None:
605
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
606
+ self.shared_experts = DeepseekV2MLP(
607
+ config=config, intermediate_size=intermediate_size
608
+ )
609
+
610
+ def forward(self, hidden_states):
611
+ identity = hidden_states
612
+ orig_shape = hidden_states.shape
613
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
614
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
615
+ flat_topk_idx = topk_idx.view(-1)
616
+ if self.training:
617
+ hidden_states = hidden_states.repeat_interleave(
618
+ self.num_experts_per_tok, dim=0
619
+ )
620
+ y = torch.empty_like(hidden_states)
621
+ for i, expert in enumerate(self.experts):
622
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
623
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
624
+ y = y.to(hidden_states.dtype).view(*orig_shape)
625
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
626
+ else:
627
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
628
+ if self.config.n_shared_experts is not None:
629
+ y = y + self.shared_experts(identity)
630
+ return y
631
+
632
+ @torch.no_grad()
633
+ def moe_infer(self, x, topk_ids, topk_weight):
634
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
635
+ cnts.scatter_(1, topk_ids, 1)
636
+ tokens_per_expert = cnts.sum(dim=0)
637
+ idxs = topk_ids.view(-1).argsort()
638
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
639
+ sorted_tokens_shape = sorted_tokens.shape
640
+ if self.ep_size > 1:
641
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
642
+ tokens_per_expert_group = tokens_per_expert.new_empty(
643
+ tokens_per_expert.shape[0]
644
+ )
645
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
646
+ output_splits = (
647
+ tokens_per_expert_group.view(self.ep_size, -1)
648
+ .sum(1)
649
+ .cpu()
650
+ .numpy()
651
+ .tolist()
652
+ )
653
+ gathered_tokens = sorted_tokens.new_empty(
654
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
655
+ )
656
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
657
+ dist.all_to_all(
658
+ list(gathered_tokens.split(output_splits)),
659
+ list(sorted_tokens.split(input_split_sizes)),
660
+ )
661
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
662
+ self.ep_size, self.experts_per_rank
663
+ ).sum(dim=0)
664
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
665
+ s = 0
666
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
667
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
668
+ s += k
669
+ gatherd_idxs = gatherd_idxs.argsort()
670
+ sorted_tokens = gathered_tokens[gatherd_idxs]
671
+ tokens_per_expert = tokens_per_expert_post_gather
672
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
673
+
674
+ outputs = []
675
+ start_idx = 0
676
+ for i, num_tokens in enumerate(tokens_per_expert):
677
+ end_idx = start_idx + num_tokens
678
+ if num_tokens == 0:
679
+ continue
680
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
681
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
682
+ expert_out = expert(tokens_for_this_expert)
683
+ outputs.append(expert_out)
684
+ start_idx = end_idx
685
+
686
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
687
+ if self.ep_size > 1:
688
+ new_x = torch.empty_like(outs)
689
+ new_x[gatherd_idxs] = outs
690
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
691
+ dist.all_to_all(
692
+ list(gathered_tokens.split(input_split_sizes)),
693
+ list(new_x.split(output_splits)),
694
+ )
695
+ outs = gathered_tokens
696
+
697
+ new_x = torch.empty_like(outs)
698
+ new_x[idxs] = outs
699
+ final_out = (
700
+ new_x.view(*topk_ids.shape, -1)
701
+ .type(topk_weight.dtype)
702
+ .mul_(topk_weight.unsqueeze(dim=-1))
703
+ .sum(dim=1)
704
+ .type(new_x.dtype)
705
+ )
706
+ return final_out
707
+
708
+
709
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
710
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
711
+ """
712
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
713
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
714
+ """
715
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
716
+ if n_rep == 1:
717
+ return hidden_states
718
+ hidden_states = hidden_states[:, :, None, :, :].expand(
719
+ batch, num_key_value_heads, n_rep, slen, head_dim
720
+ )
721
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
722
+
723
+
724
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
725
+ class DeepseekV2Attention(nn.Module):
726
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
727
+
728
+ def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
729
+ super().__init__()
730
+ self.config = config
731
+ self.layer_idx = layer_idx
732
+ if layer_idx is None:
733
+ logger.warning_once(
734
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
735
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
736
+ "when creating this class."
737
+ )
738
+
739
+ self.attention_dropout = config.attention_dropout
740
+ self.hidden_size = config.hidden_size
741
+ self.num_heads = config.num_attention_heads
742
+
743
+ self.max_position_embeddings = config.max_position_embeddings
744
+ self.rope_theta = config.rope_theta
745
+ self.q_lora_rank = config.q_lora_rank
746
+ self.qk_rope_head_dim = config.qk_rope_head_dim
747
+ self.kv_lora_rank = config.kv_lora_rank
748
+ self.v_head_dim = config.v_head_dim
749
+ self.qk_nope_head_dim = config.qk_nope_head_dim
750
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
751
+
752
+ self.is_causal = True
753
+
754
+ if self.q_lora_rank is None:
755
+ self.q_proj = nn.Linear(
756
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
757
+ )
758
+ else:
759
+ self.q_a_proj = nn.Linear(
760
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
761
+ )
762
+ self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
763
+ self.q_b_proj = nn.Linear(
764
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
765
+ )
766
+ # config.kv_lora_rank + config.qk_rope_head_dim,
767
+ self.kv_a_proj_with_mqa = nn.Linear(
768
+ self.hidden_size,
769
+ config.kv_lora_rank + config.qk_rope_head_dim,
770
+ bias=config.attention_bias,
771
+ )
772
+ self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
773
+ self.kv_b_proj = nn.Linear(
774
+ config.kv_lora_rank,
775
+ self.num_heads
776
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
777
+ bias=False,
778
+ )
779
+
780
+ self.o_proj = nn.Linear(
781
+ self.num_heads * self.v_head_dim,
782
+ self.hidden_size,
783
+ bias=config.attention_bias,
784
+ )
785
+ self._init_rope()
786
+
787
+ self.softmax_scale = self.q_head_dim ** (-0.5)
788
+ if self.config.rope_scaling is not None:
789
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
790
+ scaling_factor = self.config.rope_scaling["factor"]
791
+ if mscale_all_dim:
792
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
793
+ self.softmax_scale = self.softmax_scale * mscale * mscale
794
+
795
+ def _init_rope(self):
796
+ if self.config.rope_scaling is None:
797
+ self.rotary_emb = DeepseekV2RotaryEmbedding(
798
+ self.qk_rope_head_dim,
799
+ max_position_embeddings=self.max_position_embeddings,
800
+ base=self.rope_theta,
801
+ )
802
+ # self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
803
+ # self.qk_rope_head_dim,
804
+ # max_position_embeddings=self.max_position_embeddings,
805
+ # scaling_factor=scaling_factor,
806
+ # base=self.rope_theta,
807
+ # )
808
+ else:
809
+ scaling_type = self.config.rope_scaling["type"]
810
+ scaling_factor = self.config.rope_scaling["factor"]
811
+ if scaling_type == "linear":
812
+ self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
813
+ self.qk_rope_head_dim,
814
+ max_position_embeddings=self.max_position_embeddings,
815
+ scaling_factor=scaling_factor,
816
+ base=self.rope_theta,
817
+ )
818
+ elif scaling_type == "dynamic":
819
+ self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
820
+ self.qk_rope_head_dim,
821
+ max_position_embeddings=self.max_position_embeddings,
822
+ scaling_factor=scaling_factor,
823
+ base=self.rope_theta,
824
+ )
825
+ elif scaling_type == "yarn":
826
+ kwargs = {
827
+ key: self.config.rope_scaling[key]
828
+ for key in [
829
+ "original_max_position_embeddings",
830
+ "beta_fast",
831
+ "beta_slow",
832
+ "mscale",
833
+ "mscale_all_dim",
834
+ ]
835
+ if key in self.config.rope_scaling
836
+ }
837
+ self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
838
+ self.qk_rope_head_dim,
839
+ max_position_embeddings=self.max_position_embeddings,
840
+ scaling_factor=scaling_factor,
841
+ base=self.rope_theta,
842
+ **kwargs,
843
+ )
844
+ else:
845
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
846
+
847
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
848
+ return (
849
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
850
+ .transpose(1, 2)
851
+ .contiguous()
852
+ )
853
+
854
+ def forward(
855
+ self,
856
+ hidden_states: torch.Tensor,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_value: Optional[Cache] = None,
860
+ output_attentions: bool = False,
861
+ use_cache: bool = False,
862
+ **kwargs,
863
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
864
+ if "padding_mask" in kwargs:
865
+ warnings.warn(
866
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
867
+ )
868
+ bsz, q_len, _ = hidden_states.size()
869
+
870
+ if self.q_lora_rank is None:
871
+ q = self.q_proj(hidden_states)
872
+ else:
873
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
874
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
875
+
876
+
877
+ q_nope, q_pe = torch.split(
878
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
879
+ )
880
+
881
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
882
+ compressed_kv, k_pe = torch.split(
883
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
884
+ )
885
+ compressed_kv = self.kv_a_layernorm(compressed_kv)
886
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
887
+
888
+ kv_seq_len = k_pe.shape[-2]
889
+ if past_key_value is not None:
890
+ if self.layer_idx is None:
891
+ raise ValueError(
892
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
893
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
894
+ "with a layer index."
895
+ )
896
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
897
+
898
+ cos, sin = self.rotary_emb(q_pe, seq_len=kv_seq_len)
899
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
900
+
901
+ if past_key_value is not None:
902
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
903
+ compressed_kv = compressed_kv.unsqueeze(1)
904
+ k_pe, compressed_kv = past_key_value.update(k_pe, compressed_kv, self.layer_idx, cache_kwargs)
905
+ compressed_kv = compressed_kv.squeeze(1)
906
+
907
+ kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
908
+ q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :]
909
+ out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :]
910
+
911
+ q_nope = torch.matmul(q_nope, q_absorb)
912
+ attn_weights = (torch.matmul(q_pe, k_pe.mT) +
913
+ torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT)) * self.softmax_scale
914
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
915
+ raise ValueError(
916
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
917
+ f" {attn_weights.size()}"
918
+ )
919
+ assert attention_mask is not None
920
+ if attention_mask is not None:
921
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
922
+ raise ValueError(
923
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
924
+ )
925
+ attn_weights = attn_weights + attention_mask
926
+
927
+ # upcast attention to fp32
928
+ attn_weights = nn.functional.softmax(
929
+ attn_weights, dim=-1, dtype=torch.float32
930
+ ).to(q_pe.dtype)
931
+ attn_weights = nn.functional.dropout(
932
+ attn_weights, p=self.attention_dropout, training=self.training
933
+ )
934
+ attn_output = torch.einsum('bhql,blc->bhqc', attn_weights, compressed_kv)
935
+
936
+ attn_output = torch.matmul(attn_output, out_absorb.mT)
937
+
938
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
939
+ raise ValueError(
940
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
941
+ f" {attn_output.size()}"
942
+ )
943
+
944
+ attn_output = attn_output.transpose(1, 2).contiguous()
945
+
946
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
947
+
948
+ attn_output = self.o_proj(attn_output)
949
+
950
+ if not output_attentions:
951
+ attn_weights = None
952
+
953
+ return attn_output, attn_weights, past_key_value
954
+
955
+
956
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
957
+ class DeepseekV2FlashAttention2(DeepseekV2Attention):
958
+ """
959
+ DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
960
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
961
+ flash attention and deal with padding tokens in case the input contains any of them.
962
+ """
963
+
964
+ def __init__(self, *args, **kwargs):
965
+ super().__init__(*args, **kwargs)
966
+
967
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
968
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
969
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
970
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
971
+
972
+ def forward(
973
+ self,
974
+ hidden_states: torch.Tensor,
975
+ attention_mask: Optional[torch.LongTensor] = None,
976
+ position_ids: Optional[torch.LongTensor] = None,
977
+ past_key_value: Optional[Cache] = None,
978
+ output_attentions: bool = False,
979
+ use_cache: bool = False,
980
+ **kwargs,
981
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
982
+ # DeepseekV2FlashAttention2 attention does not support output_attentions
983
+ if "padding_mask" in kwargs:
984
+ warnings.warn(
985
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
986
+ )
987
+
988
+ # overwrite attention_mask with padding_mask
989
+ attention_mask = kwargs.pop("padding_mask")
990
+
991
+ output_attentions = False
992
+
993
+ bsz, q_len, _ = hidden_states.size()
994
+
995
+ if self.q_lora_rank is None:
996
+ q = self.q_proj(hidden_states)
997
+ else:
998
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
999
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
1000
+ q_nope, q_pe = torch.split(
1001
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
1002
+ )
1003
+
1004
+ # Flash attention requires the input to have the shape
1005
+ # batch_size x seq_length x head_dim x hidden_dim
1006
+ # therefore we just need to keep the original shape
1007
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
1008
+ compressed_kv, k_pe = torch.split(
1009
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
1010
+ )
1011
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
1012
+ kv = (
1013
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
1014
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
1015
+ .transpose(1, 2)
1016
+ )
1017
+
1018
+ k_nope, value_states = torch.split(
1019
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
1020
+ )
1021
+ kv_seq_len = value_states.shape[-2]
1022
+
1023
+ kv_seq_len = value_states.shape[-2]
1024
+ if past_key_value is not None:
1025
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1026
+
1027
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1028
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
1029
+
1030
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1031
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
1032
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
1033
+
1034
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1035
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
1036
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
1037
+
1038
+ if self.q_head_dim != self.v_head_dim:
1039
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
1040
+
1041
+ # TODO: support compressed_kv for kv_cache (instead of key_states, value_states) in flash_attention version
1042
+ if past_key_value is not None:
1043
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1044
+ key_states, value_states = past_key_value.update(
1045
+ key_states, value_states, self.layer_idx, cache_kwargs
1046
+ )
1047
+
1048
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1049
+ # to be able to avoid many of these transpose/reshape/view.
1050
+ query_states = query_states.transpose(1, 2)
1051
+ key_states = key_states.transpose(1, 2)
1052
+ value_states = value_states.transpose(1, 2)
1053
+
1054
+ dropout_rate = self.attention_dropout if self.training else 0.0
1055
+
1056
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1057
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
1058
+ # cast them back in the correct dtype just to be sure everything works as expected.
1059
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1060
+ # in fp32. (DeepseekV2RMSNorm handles it correctly)
1061
+
1062
+ input_dtype = query_states.dtype
1063
+ if input_dtype == torch.float32:
1064
+ # Handle the case where the model is quantized
1065
+ if hasattr(self.config, "_pre_quantization_dtype"):
1066
+ target_dtype = self.config._pre_quantization_dtype
1067
+ elif torch.is_autocast_enabled():
1068
+ target_dtype = torch.get_autocast_gpu_dtype()
1069
+ else:
1070
+ target_dtype = (
1071
+ self.q_proj.weight.dtype
1072
+ if self.q_lora_rank is None
1073
+ else self.q_a_proj.weight.dtype
1074
+ )
1075
+
1076
+ logger.warning_once(
1077
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1078
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1079
+ f" {target_dtype}."
1080
+ )
1081
+
1082
+ query_states = query_states.to(target_dtype)
1083
+ key_states = key_states.to(target_dtype)
1084
+ value_states = value_states.to(target_dtype)
1085
+
1086
+ attn_output = self._flash_attention_forward(
1087
+ query_states,
1088
+ key_states,
1089
+ value_states,
1090
+ attention_mask,
1091
+ q_len,
1092
+ dropout=dropout_rate,
1093
+ softmax_scale=self.softmax_scale,
1094
+ )
1095
+ if self.q_head_dim != self.v_head_dim:
1096
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1097
+
1098
+ attn_output = attn_output.reshape(
1099
+ bsz, q_len, self.num_heads * self.v_head_dim
1100
+ ).contiguous()
1101
+ attn_output = self.o_proj(attn_output)
1102
+
1103
+ if not output_attentions:
1104
+ attn_weights = None
1105
+
1106
+ return attn_output, attn_weights, past_key_value
1107
+
1108
+ def _flash_attention_forward(
1109
+ self,
1110
+ query_states,
1111
+ key_states,
1112
+ value_states,
1113
+ attention_mask,
1114
+ query_length,
1115
+ dropout=0.0,
1116
+ softmax_scale=None,
1117
+ ):
1118
+ """
1119
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1120
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1121
+
1122
+ Args:
1123
+ query_states (`torch.Tensor`):
1124
+ Input query states to be passed to Flash Attention API
1125
+ key_states (`torch.Tensor`):
1126
+ Input key states to be passed to Flash Attention API
1127
+ value_states (`torch.Tensor`):
1128
+ Input value states to be passed to Flash Attention API
1129
+ attention_mask (`torch.Tensor`):
1130
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1131
+ position of padding tokens and 1 for the position of non-padding tokens.
1132
+ dropout (`int`, *optional*):
1133
+ Attention dropout
1134
+ softmax_scale (`float`, *optional*):
1135
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1136
+ """
1137
+ if not self._flash_attn_uses_top_left_mask:
1138
+ causal = self.is_causal
1139
+ else:
1140
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1141
+ causal = self.is_causal and query_length != 1
1142
+
1143
+ # Contains at least one padding token in the sequence
1144
+ if attention_mask is not None:
1145
+ batch_size = query_states.shape[0]
1146
+ (
1147
+ query_states,
1148
+ key_states,
1149
+ value_states,
1150
+ indices_q,
1151
+ cu_seq_lens,
1152
+ max_seq_lens,
1153
+ ) = self._upad_input(
1154
+ query_states, key_states, value_states, attention_mask, query_length
1155
+ )
1156
+
1157
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1158
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1159
+
1160
+ attn_output_unpad = flash_attn_varlen_func(
1161
+ query_states,
1162
+ key_states,
1163
+ value_states,
1164
+ cu_seqlens_q=cu_seqlens_q,
1165
+ cu_seqlens_k=cu_seqlens_k,
1166
+ max_seqlen_q=max_seqlen_in_batch_q,
1167
+ max_seqlen_k=max_seqlen_in_batch_k,
1168
+ dropout_p=dropout,
1169
+ softmax_scale=softmax_scale,
1170
+ causal=causal,
1171
+ )
1172
+
1173
+ attn_output = pad_input(
1174
+ attn_output_unpad, indices_q, batch_size, query_length
1175
+ )
1176
+ else:
1177
+ attn_output = flash_attn_func(
1178
+ query_states,
1179
+ key_states,
1180
+ value_states,
1181
+ dropout,
1182
+ softmax_scale=softmax_scale,
1183
+ causal=causal,
1184
+ )
1185
+
1186
+ return attn_output
1187
+
1188
+ def _upad_input(
1189
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1190
+ ):
1191
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1192
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1193
+
1194
+ key_layer = index_first_axis(
1195
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1196
+ indices_k,
1197
+ )
1198
+ value_layer = index_first_axis(
1199
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1200
+ indices_k,
1201
+ )
1202
+ if query_length == kv_seq_len:
1203
+ query_layer = index_first_axis(
1204
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1205
+ indices_k,
1206
+ )
1207
+ cu_seqlens_q = cu_seqlens_k
1208
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1209
+ indices_q = indices_k
1210
+ elif query_length == 1:
1211
+ max_seqlen_in_batch_q = 1
1212
+ cu_seqlens_q = torch.arange(
1213
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1214
+ ) # There is a memcpy here, that is very bad.
1215
+ indices_q = cu_seqlens_q[:-1]
1216
+ query_layer = query_layer.squeeze(1)
1217
+ else:
1218
+ # The -q_len: slice assumes left padding.
1219
+ attention_mask = attention_mask[:, -query_length:]
1220
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1221
+ query_layer, attention_mask
1222
+ )
1223
+
1224
+ return (
1225
+ query_layer,
1226
+ key_layer,
1227
+ value_layer,
1228
+ indices_q,
1229
+ (cu_seqlens_q, cu_seqlens_k),
1230
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1231
+ )
1232
+
1233
+
1234
+ ATTENTION_CLASSES = {
1235
+ "eager": DeepseekV2Attention,
1236
+ "flash_attention_2": DeepseekV2FlashAttention2,
1237
+
1238
+ "mla_eager": DeepseekV2Attention,
1239
+ "mla_flash_attention_2": DeepseekV2FlashAttention2,
1240
+
1241
+ "mha_eager": LlamaAttention,
1242
+ "mha_flash_attention_2": LlamaFlashAttention2
1243
+ }
1244
+
1245
+
1246
+ class DeepseekV2DecoderLayer(nn.Module):
1247
+ def __init__(self, config: DeepseekV2Config, layer_idx: int):
1248
+ super().__init__()
1249
+ self.hidden_size = config.hidden_size
1250
+
1251
+
1252
+ if config.use_mla:
1253
+ attn_implementation = "mla_" + config._attn_implementation
1254
+ else:
1255
+ attn_implementation = "mha_" + config._attn_implementation
1256
+
1257
+ self.self_attn = ATTENTION_CLASSES[attn_implementation](
1258
+ config=config, layer_idx=layer_idx
1259
+ )
1260
+
1261
+ self.mlp = (
1262
+ DeepseekV2MoE(config)
1263
+ if (
1264
+ config.n_routed_experts is not None
1265
+ and layer_idx >= config.first_k_dense_replace
1266
+ and layer_idx % config.moe_layer_freq == 0
1267
+ )
1268
+ else DeepseekV2MLP(config)
1269
+ )
1270
+ self.input_layernorm = DeepseekV2RMSNorm(
1271
+ config.hidden_size, eps=config.rms_norm_eps
1272
+ )
1273
+ self.post_attention_layernorm = DeepseekV2RMSNorm(
1274
+ config.hidden_size, eps=config.rms_norm_eps
1275
+ )
1276
+
1277
+ def forward(
1278
+ self,
1279
+ hidden_states: torch.Tensor,
1280
+ attention_mask: Optional[torch.Tensor] = None,
1281
+ position_ids: Optional[torch.LongTensor] = None,
1282
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1283
+ output_attentions: Optional[bool] = False,
1284
+ use_cache: Optional[bool] = False,
1285
+ **kwargs,
1286
+ ) -> Tuple[
1287
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1288
+ ]:
1289
+ """
1290
+ Args:
1291
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1292
+ attention_mask (`torch.FloatTensor`, *optional*):
1293
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1294
+ query_sequence_length, key_sequence_length)` if default attention is used.
1295
+ output_attentions (`bool`, *optional*):
1296
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1297
+ returned tensors for more detail.
1298
+ use_cache (`bool`, *optional*):
1299
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1300
+ (see `past_key_values`).
1301
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1302
+ """
1303
+ if "padding_mask" in kwargs:
1304
+ warnings.warn(
1305
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1306
+ )
1307
+ residual = hidden_states
1308
+
1309
+ hidden_states = self.input_layernorm(hidden_states)
1310
+
1311
+ # Self Attention
1312
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1313
+ hidden_states=hidden_states,
1314
+ attention_mask=attention_mask,
1315
+ position_ids=position_ids,
1316
+ past_key_value=past_key_value,
1317
+ output_attentions=output_attentions,
1318
+ use_cache=use_cache,
1319
+ **kwargs,
1320
+ )
1321
+ hidden_states = residual + hidden_states
1322
+
1323
+ # Fully Connected
1324
+ residual = hidden_states
1325
+ hidden_states = self.post_attention_layernorm(hidden_states)
1326
+ hidden_states = self.mlp(hidden_states)
1327
+ hidden_states = residual + hidden_states
1328
+
1329
+ outputs = (hidden_states,)
1330
+
1331
+ if output_attentions:
1332
+ outputs += (self_attn_weights,)
1333
+
1334
+ if use_cache:
1335
+ outputs += (present_key_value,)
1336
+
1337
+ return outputs
1338
+
1339
+
1340
+ DeepseekV2_START_DOCSTRING = r"""
1341
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1342
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1343
+ etc.)
1344
+
1345
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1346
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1347
+ and behavior.
1348
+
1349
+ Parameters:
1350
+ config ([`DeepseekV2Config`]):
1351
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1352
+ load the weights associated with the model, only the configuration. Check out the
1353
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1354
+ """
1355
+
1356
+
1357
+ @add_start_docstrings(
1358
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1359
+ DeepseekV2_START_DOCSTRING,
1360
+ )
1361
+ class DeepseekV2PreTrainedModel(PreTrainedModel):
1362
+ config_class = DeepseekV2Config
1363
+ base_model_prefix = "model"
1364
+ supports_gradient_checkpointing = True
1365
+ _no_split_modules = ["DeepseekV2DecoderLayer"]
1366
+ _skip_keys_device_placement = "past_key_values"
1367
+ _supports_flash_attn_2 = True
1368
+ _supports_cache_class = True
1369
+
1370
+ def _init_weights(self, module):
1371
+ std = self.config.initializer_range
1372
+ if isinstance(module, nn.Linear):
1373
+ module.weight.data.normal_(mean=0.0, std=std)
1374
+ if module.bias is not None:
1375
+ module.bias.data.zero_()
1376
+ elif isinstance(module, nn.Embedding):
1377
+ module.weight.data.normal_(mean=0.0, std=std)
1378
+ if module.padding_idx is not None:
1379
+ module.weight.data[module.padding_idx].zero_()
1380
+
1381
+
1382
+ DeepseekV2_INPUTS_DOCSTRING = r"""
1383
+ Args:
1384
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1385
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1386
+ it.
1387
+
1388
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1389
+ [`PreTrainedTokenizer.__call__`] for details.
1390
+
1391
+ [What are input IDs?](../glossary#input-ids)
1392
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1393
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1394
+
1395
+ - 1 for tokens that are **not masked**,
1396
+ - 0 for tokens that are **masked**.
1397
+
1398
+ [What are attention masks?](../glossary#attention-mask)
1399
+
1400
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1401
+ [`PreTrainedTokenizer.__call__`] for details.
1402
+
1403
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1404
+ `past_key_values`).
1405
+
1406
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1407
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1408
+ information on the default strategy.
1409
+
1410
+ - 1 indicates the head is **not masked**,
1411
+ - 0 indicates the head is **masked**.
1412
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1413
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1414
+ config.n_positions - 1]`.
1415
+
1416
+ [What are position IDs?](../glossary#position-ids)
1417
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1418
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1419
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1420
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1421
+
1422
+ Two formats are allowed:
1423
+ - a [`~cache_utils.Cache`] instance;
1424
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1425
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1426
+ cache format.
1427
+
1428
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1429
+ legacy cache format will be returned.
1430
+
1431
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1432
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1433
+ of shape `(batch_size, sequence_length)`.
1434
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1435
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1436
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1437
+ model's internal embedding lookup matrix.
1438
+ use_cache (`bool`, *optional*):
1439
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1440
+ `past_key_values`).
1441
+ output_attentions (`bool`, *optional*):
1442
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1443
+ tensors for more detail.
1444
+ output_hidden_states (`bool`, *optional*):
1445
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1446
+ more detail.
1447
+ return_dict (`bool`, *optional*):
1448
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1449
+ """
1450
+
1451
+
1452
+ @add_start_docstrings(
1453
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1454
+ DeepseekV2_START_DOCSTRING,
1455
+ )
1456
+ class DeepseekV2Model(DeepseekV2PreTrainedModel):
1457
+ """
1458
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1459
+
1460
+ Args:
1461
+ config: DeepseekV2Config
1462
+ """
1463
+
1464
+ def __init__(self, config: DeepseekV2Config):
1465
+ super().__init__(config)
1466
+ self.padding_idx = config.pad_token_id
1467
+ self.vocab_size = config.vocab_size
1468
+
1469
+ self.embed_tokens = nn.Embedding(
1470
+ config.vocab_size, config.hidden_size, self.padding_idx
1471
+ )
1472
+ self.layers = nn.ModuleList(
1473
+ [
1474
+ DeepseekV2DecoderLayer(config, layer_idx)
1475
+ for layer_idx in range(config.num_hidden_layers)
1476
+ ]
1477
+ )
1478
+ # print(config._attn_implementation)
1479
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1480
+ self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1481
+
1482
+ self.gradient_checkpointing = False
1483
+ # Initialize weights and apply final processing
1484
+ self.post_init()
1485
+
1486
+ def get_input_embeddings(self):
1487
+ return self.embed_tokens
1488
+
1489
+ def set_input_embeddings(self, value):
1490
+ self.embed_tokens = value
1491
+
1492
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1493
+ def forward(
1494
+ self,
1495
+ input_ids: torch.LongTensor = None,
1496
+ attention_mask: Optional[torch.Tensor] = None,
1497
+ position_ids: Optional[torch.LongTensor] = None,
1498
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1499
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1500
+ use_cache: Optional[bool] = None,
1501
+ output_attentions: Optional[bool] = None,
1502
+ output_hidden_states: Optional[bool] = None,
1503
+ return_dict: Optional[bool] = None,
1504
+ cache_position: Optional[torch.LongTensor] = None
1505
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1506
+ output_attentions = (
1507
+ output_attentions
1508
+ if output_attentions is not None
1509
+ else self.config.output_attentions
1510
+ )
1511
+ output_hidden_states = (
1512
+ output_hidden_states
1513
+ if output_hidden_states is not None
1514
+ else self.config.output_hidden_states
1515
+ )
1516
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1517
+
1518
+ return_dict = (
1519
+ return_dict if return_dict is not None else self.config.use_return_dict
1520
+ )
1521
+
1522
+ # retrieve input_ids and inputs_embeds
1523
+ if input_ids is not None and inputs_embeds is not None:
1524
+ raise ValueError(
1525
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1526
+ )
1527
+ elif input_ids is not None:
1528
+ batch_size, seq_length = input_ids.shape[:2]
1529
+ elif inputs_embeds is not None:
1530
+ batch_size, seq_length = inputs_embeds.shape[:2]
1531
+ else:
1532
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1533
+
1534
+ if self.gradient_checkpointing and self.training:
1535
+ if use_cache:
1536
+ logger.warning_once(
1537
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1538
+ )
1539
+ use_cache = False
1540
+
1541
+ past_key_values_length = 0
1542
+ if use_cache:
1543
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1544
+ if use_legacy_cache:
1545
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1546
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1547
+
1548
+ if position_ids is None:
1549
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1550
+ position_ids = torch.arange(
1551
+ past_key_values_length,
1552
+ seq_length + past_key_values_length,
1553
+ dtype=torch.long,
1554
+ device=device,
1555
+ )
1556
+ position_ids = position_ids.unsqueeze(0)
1557
+
1558
+ if inputs_embeds is None:
1559
+ inputs_embeds = self.embed_tokens(input_ids)
1560
+
1561
+ if self._use_flash_attention_2:
1562
+ # 2d mask is passed through the layers
1563
+ attention_mask = (
1564
+ attention_mask
1565
+ if (attention_mask is not None and 0 in attention_mask)
1566
+ else None
1567
+ )
1568
+ else:
1569
+ # 4d mask is passed through the layers
1570
+ attention_mask = _prepare_4d_causal_attention_mask(
1571
+ attention_mask,
1572
+ (batch_size, seq_length),
1573
+ inputs_embeds,
1574
+ past_key_values_length,
1575
+ )
1576
+
1577
+ # embed positions
1578
+ hidden_states = inputs_embeds
1579
+
1580
+ # decoder layers
1581
+ all_hidden_states = () if output_hidden_states else None
1582
+ all_self_attns = () if output_attentions else None
1583
+ next_decoder_cache = None
1584
+
1585
+ for decoder_layer in self.layers:
1586
+ if output_hidden_states:
1587
+ all_hidden_states += (hidden_states,)
1588
+
1589
+ if self.gradient_checkpointing and self.training:
1590
+ layer_outputs = self._gradient_checkpointing_func(
1591
+ decoder_layer.__call__,
1592
+ hidden_states,
1593
+ attention_mask,
1594
+ position_ids,
1595
+ past_key_values,
1596
+ output_attentions,
1597
+ use_cache,
1598
+ )
1599
+ else:
1600
+ layer_outputs = decoder_layer(
1601
+ hidden_states,
1602
+ attention_mask=attention_mask,
1603
+ position_ids=position_ids,
1604
+ past_key_value=past_key_values,
1605
+ output_attentions=output_attentions,
1606
+ use_cache=use_cache,
1607
+ )
1608
+
1609
+ hidden_states = layer_outputs[0]
1610
+
1611
+ if use_cache:
1612
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1613
+
1614
+ if output_attentions:
1615
+ all_self_attns += (layer_outputs[1],)
1616
+
1617
+ hidden_states = self.norm(hidden_states)
1618
+
1619
+ # add hidden states from the last decoder layer
1620
+ if output_hidden_states:
1621
+ all_hidden_states += (hidden_states,)
1622
+
1623
+ next_cache = None
1624
+ if use_cache:
1625
+ next_cache = (
1626
+ next_decoder_cache.to_legacy_cache()
1627
+ if use_legacy_cache
1628
+ else next_decoder_cache
1629
+ )
1630
+ if not return_dict:
1631
+ return tuple(
1632
+ v
1633
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1634
+ if v is not None
1635
+ )
1636
+ return BaseModelOutputWithPast(
1637
+ last_hidden_state=hidden_states,
1638
+ past_key_values=next_cache,
1639
+ hidden_states=all_hidden_states,
1640
+ attentions=all_self_attns,
1641
+ )
1642
+
1643
+
1644
+ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1645
+ _tied_weights_keys = ["lm_head.weight"]
1646
+
1647
+ def __init__(self, config):
1648
+ super().__init__(config)
1649
+ self.model = DeepseekV2Model(config)
1650
+ self.vocab_size = config.vocab_size
1651
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1652
+
1653
+ # Initialize weights and apply final processing
1654
+ self.post_init()
1655
+
1656
+ def get_input_embeddings(self):
1657
+ return self.model.embed_tokens
1658
+
1659
+ def set_input_embeddings(self, value):
1660
+ self.model.embed_tokens = value
1661
+
1662
+ def get_output_embeddings(self):
1663
+ return self.lm_head
1664
+
1665
+ def set_output_embeddings(self, new_embeddings):
1666
+ self.lm_head = new_embeddings
1667
+
1668
+ def set_decoder(self, decoder):
1669
+ self.model = decoder
1670
+
1671
+ def get_decoder(self):
1672
+ return self.model
1673
+
1674
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1675
+ @replace_return_docstrings(
1676
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1677
+ )
1678
+ def forward(
1679
+ self,
1680
+ input_ids: torch.LongTensor = None,
1681
+ attention_mask: Optional[torch.Tensor] = None,
1682
+ position_ids: Optional[torch.LongTensor] = None,
1683
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1684
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1685
+ labels: Optional[torch.LongTensor] = None,
1686
+ use_cache: Optional[bool] = None,
1687
+ output_attentions: Optional[bool] = None,
1688
+ output_hidden_states: Optional[bool] = None,
1689
+ return_dict: Optional[bool] = None,
1690
+ cache_position: Optional[torch.LongTensor] = None
1691
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1692
+ r"""
1693
+ Args:
1694
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1695
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1696
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1697
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1698
+
1699
+ Returns:
1700
+
1701
+ Example:
1702
+
1703
+ ```python
1704
+ >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1705
+
1706
+ >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1707
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1708
+
1709
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1710
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1711
+
1712
+ >>> # Generate
1713
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1714
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1715
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1716
+ ```"""
1717
+ output_attentions = (
1718
+ output_attentions
1719
+ if output_attentions is not None
1720
+ else self.config.output_attentions
1721
+ )
1722
+ output_hidden_states = (
1723
+ output_hidden_states
1724
+ if output_hidden_states is not None
1725
+ else self.config.output_hidden_states
1726
+ )
1727
+ return_dict = (
1728
+ return_dict if return_dict is not None else self.config.use_return_dict
1729
+ )
1730
+
1731
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1732
+ outputs = self.model(
1733
+ input_ids=input_ids,
1734
+ attention_mask=attention_mask,
1735
+ position_ids=position_ids,
1736
+ past_key_values=past_key_values,
1737
+ inputs_embeds=inputs_embeds,
1738
+ use_cache=use_cache,
1739
+ output_attentions=output_attentions,
1740
+ output_hidden_states=output_hidden_states,
1741
+ return_dict=return_dict,
1742
+ cache_position=cache_position
1743
+ )
1744
+
1745
+ hidden_states = outputs[0]
1746
+ logits = self.lm_head(hidden_states)
1747
+ logits = logits.float()
1748
+
1749
+ loss = None
1750
+ if labels is not None:
1751
+ # Shift so that tokens < n predict n
1752
+ shift_logits = logits[..., :-1, :].contiguous()
1753
+ shift_labels = labels[..., 1:].contiguous()
1754
+ # Flatten the tokens
1755
+ loss_fct = CrossEntropyLoss()
1756
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1757
+ shift_labels = shift_labels.view(-1)
1758
+ # Enable model parallelism
1759
+ shift_labels = shift_labels.to(shift_logits.device)
1760
+ loss = loss_fct(shift_logits, shift_labels)
1761
+
1762
+ if not return_dict:
1763
+ output = (logits,) + outputs[1:]
1764
+ return (loss,) + output if loss is not None else output
1765
+
1766
+ return CausalLMOutputWithPast(
1767
+ loss=loss,
1768
+ logits=logits,
1769
+ past_key_values=outputs.past_key_values,
1770
+ hidden_states=outputs.hidden_states,
1771
+ attentions=outputs.attentions,
1772
+ )
1773
+
1774
+ def prepare_inputs_for_generation(
1775
+ self,
1776
+ input_ids,
1777
+ past_key_values=None,
1778
+ attention_mask=None,
1779
+ inputs_embeds=None,
1780
+ **kwargs,
1781
+ ):
1782
+ past_length = 0
1783
+ if past_key_values is not None:
1784
+ if isinstance(past_key_values, Cache):
1785
+ cache_length = past_key_values.get_seq_length()
1786
+ past_length = past_key_values.seen_tokens
1787
+ max_cache_length = past_key_values.get_max_length()
1788
+ else:
1789
+ cache_length = past_length = past_key_values[0][0].shape[2]
1790
+ max_cache_length = None
1791
+
1792
+ # Keep only the unprocessed tokens:
1793
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1794
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1795
+ # input)
1796
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1797
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
1798
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1799
+ # input_ids based on the past_length.
1800
+ elif past_length < input_ids.shape[1]:
1801
+ input_ids = input_ids[:, past_length:]
1802
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1803
+
1804
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1805
+ if (
1806
+ max_cache_length is not None
1807
+ and attention_mask is not None
1808
+ and cache_length + input_ids.shape[1] > max_cache_length
1809
+ ):
1810
+ attention_mask = attention_mask[:, -max_cache_length:]
1811
+
1812
+ position_ids = kwargs.get("position_ids", None)
1813
+ if attention_mask is not None and position_ids is None:
1814
+ # create position_ids on the fly for batch generation
1815
+ position_ids = attention_mask.long().cumsum(-1) - 1
1816
+ position_ids.masked_fill_(attention_mask == 0, 1)
1817
+ if past_key_values:
1818
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1819
+
1820
+ if self.generation_config.cache_implementation == "static":
1821
+ # generation with static cache
1822
+ cache_position = kwargs.get("cache_position", None)
1823
+ if cache_position is None:
1824
+ past_length = 0
1825
+ else:
1826
+ past_length = cache_position[-1] + 1
1827
+ input_ids = input_ids[:, past_length:]
1828
+ position_ids = position_ids[:, past_length:]
1829
+
1830
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
1831
+ # same goes for position ids. Could also help with continued generation.
1832
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
1833
+
1834
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1835
+ if inputs_embeds is not None and past_key_values is None:
1836
+ model_inputs = {"inputs_embeds": inputs_embeds}
1837
+ else:
1838
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1839
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1840
+ # TODO: use `next_tokens` directly instead.
1841
+ model_inputs = {"input_ids": input_ids.contiguous()}
1842
+
1843
+ model_inputs.update(
1844
+ {
1845
+ "position_ids": position_ids.contiguous(),
1846
+ "cache_position": cache_position,
1847
+ "past_key_values": past_key_values,
1848
+ "use_cache": kwargs.get("use_cache"),
1849
+ "attention_mask": attention_mask,
1850
+ }
1851
+ )
1852
+ return model_inputs
1853
+
1854
+ @staticmethod
1855
+ def _reorder_cache(past_key_values, beam_idx):
1856
+ reordered_past = ()
1857
+ for layer_past in past_key_values:
1858
+ reordered_past += (
1859
+ tuple(
1860
+ past_state.index_select(0, beam_idx.to(past_state.device))
1861
+ for past_state in layer_past
1862
+ ),
1863
+ )
1864
+ return reordered_past
1865
+
1866
+
1867
+ @add_start_docstrings(
1868
+ """
1869
+ The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1870
+
1871
+ [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1872
+ (e.g. GPT-2) do.
1873
+
1874
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1875
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1876
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1877
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1878
+ each row of the batch).
1879
+ """,
1880
+ DeepseekV2_START_DOCSTRING,
1881
+ )
1882
+ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1883
+ def __init__(self, config):
1884
+ super().__init__(config)
1885
+ self.num_labels = config.num_labels
1886
+ self.model = DeepseekV2Model(config)
1887
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1888
+
1889
+ # Initialize weights and apply final processing
1890
+ self.post_init()
1891
+
1892
+ def get_input_embeddings(self):
1893
+ return self.model.embed_tokens
1894
+
1895
+ def set_input_embeddings(self, value):
1896
+ self.model.embed_tokens = value
1897
+
1898
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1899
+ def forward(
1900
+ self,
1901
+ input_ids: torch.LongTensor = None,
1902
+ attention_mask: Optional[torch.Tensor] = None,
1903
+ position_ids: Optional[torch.LongTensor] = None,
1904
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1905
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1906
+ labels: Optional[torch.LongTensor] = None,
1907
+ use_cache: Optional[bool] = None,
1908
+ output_attentions: Optional[bool] = None,
1909
+ output_hidden_states: Optional[bool] = None,
1910
+ return_dict: Optional[bool] = None,
1911
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1912
+ r"""
1913
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1914
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1915
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1916
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1917
+ """
1918
+ return_dict = (
1919
+ return_dict if return_dict is not None else self.config.use_return_dict
1920
+ )
1921
+
1922
+ transformer_outputs = self.model(
1923
+ input_ids,
1924
+ attention_mask=attention_mask,
1925
+ position_ids=position_ids,
1926
+ past_key_values=past_key_values,
1927
+ inputs_embeds=inputs_embeds,
1928
+ use_cache=use_cache,
1929
+ output_attentions=output_attentions,
1930
+ output_hidden_states=output_hidden_states,
1931
+ return_dict=return_dict,
1932
+ )
1933
+ hidden_states = transformer_outputs[0]
1934
+ logits = self.score(hidden_states)
1935
+
1936
+ if input_ids is not None:
1937
+ batch_size = input_ids.shape[0]
1938
+ else:
1939
+ batch_size = inputs_embeds.shape[0]
1940
+
1941
+ if self.config.pad_token_id is None and batch_size != 1:
1942
+ raise ValueError(
1943
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1944
+ )
1945
+ if self.config.pad_token_id is None:
1946
+ sequence_lengths = -1
1947
+ else:
1948
+ if input_ids is not None:
1949
+ sequence_lengths = (
1950
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1951
+ ).to(logits.device)
1952
+ else:
1953
+ sequence_lengths = -1
1954
+
1955
+ pooled_logits = logits[
1956
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1957
+ ]
1958
+
1959
+ loss = None
1960
+ if labels is not None:
1961
+ labels = labels.to(logits.device)
1962
+ if self.config.problem_type is None:
1963
+ if self.num_labels == 1:
1964
+ self.config.problem_type = "regression"
1965
+ elif self.num_labels > 1 and (
1966
+ labels.dtype == torch.long or labels.dtype == torch.int
1967
+ ):
1968
+ self.config.problem_type = "single_label_classification"
1969
+ else:
1970
+ self.config.problem_type = "multi_label_classification"
1971
+
1972
+ if self.config.problem_type == "regression":
1973
+ loss_fct = MSELoss()
1974
+ if self.num_labels == 1:
1975
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1976
+ else:
1977
+ loss = loss_fct(pooled_logits, labels)
1978
+ elif self.config.problem_type == "single_label_classification":
1979
+ loss_fct = CrossEntropyLoss()
1980
+ loss = loss_fct(
1981
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1982
+ )
1983
+ elif self.config.problem_type == "multi_label_classification":
1984
+ loss_fct = BCEWithLogitsLoss()
1985
+ loss = loss_fct(pooled_logits, labels)
1986
+ if not return_dict:
1987
+ output = (pooled_logits,) + transformer_outputs[1:]
1988
+ return ((loss,) + output) if loss is not None else output
1989
+
1990
+ return SequenceClassifierOutputWithPast(
1991
+ loss=loss,
1992
+ logits=pooled_logits,
1993
+ past_key_values=transformer_outputs.past_key_values,
1994
+ hidden_states=transformer_outputs.hidden_states,
1995
+ attentions=transformer_outputs.attentions,
1996
+ )
processor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_special_token": false,
3
+ "candidate_resolutions": [
4
+ [
5
+ 1024,
6
+ 1024
7
+ ]
8
+ ],
9
+ "downsample_ratio": 4,
10
+ "ignore_id": -100,
11
+ "image_mean": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "image_std": [
17
+ 0.5,
18
+ 0.5,
19
+ 0.5
20
+ ],
21
+ "image_token": "<image>",
22
+ "mask_prompt": false,
23
+ "normalize": true,
24
+ "pad_token": "<\uff5c\u2581pad\u2581\uff5c>",
25
+ "patch_size": 16,
26
+ "processor_class": "DeepseekVLV2Processor",
27
+ "sft_format": "deepseek"
28
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|User|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|Assistant|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<|begin▁of▁sentence|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "<|end▁of▁sentence|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<|▁pad▁|>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff