Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3
|
| 3 |
+
train: false
|
| 4 |
+
inference: false
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
---
|
| 7 |
+
This is an NVPF4 calibrated weight-only quantized <a href="https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct"> Meta-Llama-3.1-8B-Instruct</a> model, as presented in our <a href="https://mobiusml.github.io/fp4_blogpost/"> blogpost</a>.
|
| 8 |
+
|
| 9 |
+
## Usage
|
| 10 |
+
|
| 11 |
+
### Installation
|
| 12 |
+
```
|
| 13 |
+
pip install safetensors==0.6.0.dev0
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
```Python
|
| 17 |
+
import os, torch
|
| 18 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 19 |
+
from accelerate import init_empty_weights
|
| 20 |
+
from huggingface_hub import snapshot_download
|
| 21 |
+
from os.path import join as pjoin
|
| 22 |
+
from safetensors import safe_open
|
| 23 |
+
|
| 24 |
+
@torch.compile(fullgraph=True)
|
| 25 |
+
def matmul_fp4(x, W_q, scales, group_size, fp4_values):
|
| 26 |
+
def unpack_over_cols(W_q_packed, W_nbits, num_output_cols, dtype):
|
| 27 |
+
n_rows, n_cols = W_q_packed.shape
|
| 28 |
+
device = W_q_packed.device
|
| 29 |
+
shifts = torch.arange(num_output_cols // n_cols, device=device, dtype=W_q_packed.dtype) * W_nbits
|
| 30 |
+
W_q_unpacked = ((W_q_packed.unsqueeze(-1) >> shifts) & ((1 << W_nbits) - 1)).to(dtype)
|
| 31 |
+
W_q_unpacked = W_q_unpacked.view(n_rows, num_output_cols)
|
| 32 |
+
return W_q_unpacked
|
| 33 |
+
|
| 34 |
+
N, K = W_q.shape[0], W_q.shape[1] * 2
|
| 35 |
+
W_q = fp4_values[unpack_over_cols(W_q, W_nbits=4, num_output_cols=K, dtype=torch.int32)]
|
| 36 |
+
W_r = (W_q.float().view([-1, group_size]) * scales.float()).reshape([N, K]).to(x.dtype).T
|
| 37 |
+
return torch.matmul(x, W_r)
|
| 38 |
+
|
| 39 |
+
class AutoModelForCausalLMFP4:
|
| 40 |
+
|
| 41 |
+
@classmethod
|
| 42 |
+
def from_pretrained(
|
| 43 |
+
cls,
|
| 44 |
+
save_dir_or_hub,
|
| 45 |
+
torch_dtype=torch.bfloat16,
|
| 46 |
+
cache_dir=None,
|
| 47 |
+
device_map="cuda:0",
|
| 48 |
+
*args,
|
| 49 |
+
**kwargs
|
| 50 |
+
):
|
| 51 |
+
|
| 52 |
+
#Download snapshot
|
| 53 |
+
if os.path.exists(save_dir_or_hub):
|
| 54 |
+
save_dir = save_dir_or_hub
|
| 55 |
+
else:
|
| 56 |
+
save_dir = snapshot_download(repo_id=save_dir_or_hub, cache_dir=cache_dir)
|
| 57 |
+
|
| 58 |
+
#Create model from config
|
| 59 |
+
config = AutoConfig.from_pretrained(pjoin(save_dir, "config.json"))
|
| 60 |
+
config.torch_dtype = str(torch_dtype).split('.')[-1]
|
| 61 |
+
with init_empty_weights():
|
| 62 |
+
model = AutoModelForCausalLM.from_config(config)
|
| 63 |
+
|
| 64 |
+
#Load and patch
|
| 65 |
+
state_dict = {}
|
| 66 |
+
with safe_open(pjoin(save_dir, "model.safetensors"), framework="pt", device="cpu") as f:
|
| 67 |
+
for key in f.keys():
|
| 68 |
+
tensor = f.get_tensor(key)
|
| 69 |
+
dtype = torch_dtype if tensor.is_floating_point() else tensor.dtype
|
| 70 |
+
state_dict[key] = tensor.to(device=device_map, dtype=dtype, non_blocking=True)
|
| 71 |
+
|
| 72 |
+
cls.patch_model_for_fp4_inference(model=model, torch_dtype=torch_dtype, device=device_map, state_dict=state_dict)
|
| 73 |
+
|
| 74 |
+
return model
|
| 75 |
+
|
| 76 |
+
@classmethod
|
| 77 |
+
def patch_model_for_fp4_inference(cls, model, torch_dtype, device, state_dict):
|
| 78 |
+
|
| 79 |
+
model.fp4_values = torch.tensor(
|
| 80 |
+
[0, 0.5, 1, 1.5, 2, 3, 4, 6, -0, -0.5, -1, -1.5, -2, -3, -4, -6],
|
| 81 |
+
dtype=torch_dtype,
|
| 82 |
+
device=device,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def patch_linearlayers(model, fct):
|
| 86 |
+
for name, layer in model.named_children():
|
| 87 |
+
if isinstance(layer, torch.nn.Linear):
|
| 88 |
+
setattr(model, name, fct(layer, name))
|
| 89 |
+
else:
|
| 90 |
+
patch_linearlayers(layer, fct)
|
| 91 |
+
|
| 92 |
+
def patch_enable_fp4(layer, arg):
|
| 93 |
+
#Load params
|
| 94 |
+
if('lm_head' in layer.name):
|
| 95 |
+
return layer
|
| 96 |
+
|
| 97 |
+
if(hasattr(layer, 'weight')):
|
| 98 |
+
del layer.weight
|
| 99 |
+
for key in ['W_q', 'scales', 'shift', 'post_scale', 'meta']:
|
| 100 |
+
param_tag, param = layer.name + '.' + key, None
|
| 101 |
+
if(param_tag in state_dict):
|
| 102 |
+
param = state_dict[param_tag].tolist() if key in ["meta"] else state_dict[param_tag]
|
| 103 |
+
setattr(layer, key, param)
|
| 104 |
+
|
| 105 |
+
#Set forward pass
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
if(hasattr(self, 'weight')):
|
| 108 |
+
out = torch.matmul(x, self.weight.data.T)
|
| 109 |
+
else:
|
| 110 |
+
out = matmul_fp4(x, self.W_q, self.scales, self.meta[-1], model.fp4_values)
|
| 111 |
+
if(self.post_scale is not None):
|
| 112 |
+
out *= self.post_scale
|
| 113 |
+
if(self.shift is not None):
|
| 114 |
+
out += self.shift
|
| 115 |
+
if(self.bias is not None):
|
| 116 |
+
out += self.bias
|
| 117 |
+
return out
|
| 118 |
+
|
| 119 |
+
layer.forward = lambda x: forward(layer, x)
|
| 120 |
+
|
| 121 |
+
return layer
|
| 122 |
+
|
| 123 |
+
try: #FP4 params will fail here
|
| 124 |
+
model.load_state_dict(state_dict, assign=True)
|
| 125 |
+
except:
|
| 126 |
+
pass
|
| 127 |
+
|
| 128 |
+
for name, module in model.named_modules():
|
| 129 |
+
module.name = name
|
| 130 |
+
patch_linearlayers(model, patch_enable_fp4)
|
| 131 |
+
model = model.to(device)
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
### Usage
|
| 135 |
+
```Python
|
| 136 |
+
model_id = "mobiuslabsgmbh/Llama-3.1-8B-Instruct_mxfp4_weights_calib_demo"
|
| 137 |
+
model = AutoModelForCausalLMFP4.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map='cuda')
|
| 138 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 139 |
+
|
| 140 |
+
# Check the trained params
|
| 141 |
+
# print( model.model.layers[-1].self_attn.v_proj.shift)
|
| 142 |
+
# tensor([ 0.0034, -0.0036, 0.0054, ..., 0.0036, -0.0076, -0.0068],
|
| 143 |
+
# device='cuda:0', dtype=torch.bfloat16)
|
| 144 |
+
|
| 145 |
+
# print( model.model.layers[-1].self_attn.v_proj.post_scale)
|
| 146 |
+
# tensor([1., 1., 1., ..., 1., 1., 1.], device='cuda:0', dtype=torch.bfloat16)
|
| 147 |
+
|
| 148 |
+
outputs = model.generate(
|
| 149 |
+
tokenizer.apply_chat_template(
|
| 150 |
+
[{"role": "user", "content": "Solve the following equation: x^2 + 1 = -1"}],
|
| 151 |
+
tokenize=True,
|
| 152 |
+
add_generation_prompt=True,
|
| 153 |
+
return_tensors="pt",
|
| 154 |
+
).to(model.device),
|
| 155 |
+
max_new_tokens=256,
|
| 156 |
+
)
|
| 157 |
+
print(tokenizer.decode(outputs[0]))
|
| 158 |
+
```
|