Upload folder using huggingface_hub
Browse files- README.md +535 -8
- dynamic_uint8.onnx +2 -2
README.md
CHANGED
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Qwen3-Embedding-0.6B-onnx-uint8
|
2 |
|
3 |
This is an onnx version of https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
|
@@ -9,6 +21,508 @@ This model is compatible with qdrant fastembed, please note these details:
|
|
9 |
- Execute model without pooling and without normalization
|
10 |
- Pay attention to the example query format in the code below
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Benchmarks
|
13 |
|
14 |
I used beir-qdrant with the scifact dataset.
|
@@ -19,13 +533,8 @@ I welcome any additional benchmarks by the community, please feel free to share
|
|
19 |
|
20 |
If someone wants to sponsor me with an NVIDIA GPU I can have a much faster turnaround time with my model experiments and explore some different quantization strategies.
|
21 |
|
22 |
-
edit: I've done pretty extensive testing, including comparing benchmarks to:
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
and haven't been able to surpass this initial model.
|
27 |
-
|
28 |
-
onnx f32 model with f32 output:
|
29 |
|
30 |
```
|
31 |
ndcg: {'NDCG@1': 0.57, 'NDCG@3': 0.65655, 'NDCG@5': 0.68177, 'NDCG@10': 0.69999, 'NDCG@100': 0.72749, 'NDCG@1000': 0.73301}
|
@@ -33,7 +542,7 @@ recall: {'Recall@1': 0.53828, 'Recall@3': 0.71517, 'Recall@5': 0.77883, 'Recall@
|
|
33 |
precision: {'P@1': 0.57, 'P@3': 0.26111, 'P@5': 0.17467, 'P@10': 0.09467, 'P@100': 0.01083, 'P@1000': 0.00113}
|
34 |
```
|
35 |
|
36 |
-
onnx dynamic uint8 model with f32 output:
|
37 |
|
38 |
```
|
39 |
ndcg: {'NDCG@1': 0.52333, 'NDCG@3': 0.58087, 'NDCG@5': 0.59811, 'NDCG@10': 0.6249, 'NDCG@100': 0.66025, 'NDCG@1000': 0.67023}
|
@@ -41,7 +550,9 @@ recall: {'Recall@1': 0.4965, 'Recall@3': 0.62211, 'Recall@5': 0.66622, 'Recall@1
|
|
41 |
precision: {'P@1': 0.52333, 'P@3': 0.22889, 'P@5': 0.15, 'P@10': 0.085, 'P@100': 0.0103, 'P@1000': 0.00111}
|
42 |
```
|
43 |
|
44 |
-
onnx dynamic uint8 model with uint8 output (
|
|
|
|
|
45 |
|
46 |
```
|
47 |
ndcg: {'NDCG@1': 0.52667, 'NDCG@3': 0.58478, 'NDCG@5': 0.60006, 'NDCG@10': 0.62646, 'NDCG@100': 0.66175, 'NDCG@1000': 0.67171}
|
@@ -49,6 +560,22 @@ recall: {'Recall@1': 0.49983, 'Recall@3': 0.62711, 'Recall@5': 0.66706, 'Recall@
|
|
49 |
precision: {'P@1': 0.52667, 'P@3': 0.23111, 'P@5': 0.15, 'P@10': 0.085, 'P@100': 0.0103, 'P@1000': 0.00111}
|
50 |
```
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Example inference/benchmark code and how to use the model with Fastembed
|
53 |
|
54 |
After installing beir-qdrant make sure to upgrade fastembed.
|
|
|
1 |
+
# Update
|
2 |
+
|
3 |
+
I've improved the quality of the model, but size increased from 571MiB to 624MiB.
|
4 |
+
|
5 |
+
There's now only a ~1% difference in retrieval performance between this model and the full f32 model.
|
6 |
+
|
7 |
+
This model is ~6% more accurate at retrieval than the onnx-community uint8 model with f32 output.
|
8 |
+
|
9 |
+
This model is somewhere around 3.5% more accurate at retrieval than the previous version of this model.
|
10 |
+
|
11 |
+
Inference speed was the same on my hardware vs. previous model (Ryzen CPU).
|
12 |
+
|
13 |
# Qwen3-Embedding-0.6B-onnx-uint8
|
14 |
|
15 |
This is an onnx version of https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
|
|
|
21 |
- Execute model without pooling and without normalization
|
22 |
- Pay attention to the example query format in the code below
|
23 |
|
24 |
+
# Quantization method
|
25 |
+
|
26 |
+
I created a little onnx model instrumentation framework to assist in quantization. I generated calibration data, created an instrumented onnx model, and recorded the range of values for every tensor in the model during inference. I tested different criteria for excluding nodes until I settled on what I felt was a good size/accuracy tradeoff. I ended up excluding 484 of the most sensitive nodes from quantization.
|
27 |
+
|
28 |
+
After that I generated 1 million tokens of calibration data and recorded the range of float32 outputs seen during inference.
|
29 |
+
|
30 |
+
The range I found: -0.3009805381298065 to 0.3952634334564209
|
31 |
+
|
32 |
+
I used that range for an assymmetric linear quantization from float32 -> uint8.
|
33 |
+
|
34 |
+
<details>
|
35 |
+
<summary>Here are the nodes I excluded</summary>
|
36 |
+
|
37 |
+
```python
|
38 |
+
["/0/auto_model/ConstantOfShape",
|
39 |
+
"/0/auto_model/Constant_28",
|
40 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Pow",
|
41 |
+
"/0/auto_model/layers.26/input_layernorm/Pow",
|
42 |
+
"/0/auto_model/layers.25/input_layernorm/Pow",
|
43 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Pow",
|
44 |
+
"/0/auto_model/layers.24/input_layernorm/Pow",
|
45 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Pow",
|
46 |
+
"/0/auto_model/layers.23/input_layernorm/Pow",
|
47 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Pow",
|
48 |
+
"/0/auto_model/layers.22/input_layernorm/Pow",
|
49 |
+
"/0/auto_model/layers.3/input_layernorm/Pow",
|
50 |
+
"/0/auto_model/layers.4/input_layernorm/Pow",
|
51 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Pow",
|
52 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Pow",
|
53 |
+
"/0/auto_model/layers.5/input_layernorm/Pow",
|
54 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Pow",
|
55 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Pow",
|
56 |
+
"/0/auto_model/layers.6/input_layernorm/Pow",
|
57 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Pow",
|
58 |
+
"/0/auto_model/layers.7/input_layernorm/Pow",
|
59 |
+
"/0/auto_model/layers.8/input_layernorm/Pow",
|
60 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Pow",
|
61 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Pow",
|
62 |
+
"/0/auto_model/layers.9/input_layernorm/Pow",
|
63 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Pow",
|
64 |
+
"/0/auto_model/layers.21/input_layernorm/Pow",
|
65 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Pow",
|
66 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Pow",
|
67 |
+
"/0/auto_model/layers.10/input_layernorm/Pow",
|
68 |
+
"/0/auto_model/layers.20/input_layernorm/Pow",
|
69 |
+
"/0/auto_model/layers.11/input_layernorm/Pow",
|
70 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Pow",
|
71 |
+
"/0/auto_model/layers.12/input_layernorm/Pow",
|
72 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Pow",
|
73 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Pow",
|
74 |
+
"/0/auto_model/layers.13/input_layernorm/Pow",
|
75 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Pow",
|
76 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Pow",
|
77 |
+
"/0/auto_model/layers.14/input_layernorm/Pow",
|
78 |
+
"/0/auto_model/layers.19/input_layernorm/Pow",
|
79 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Pow",
|
80 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Pow",
|
81 |
+
"/0/auto_model/layers.15/input_layernorm/Pow",
|
82 |
+
"/0/auto_model/layers.16/input_layernorm/Pow",
|
83 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Pow",
|
84 |
+
"/0/auto_model/layers.18/input_layernorm/Pow",
|
85 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Pow",
|
86 |
+
"/0/auto_model/layers.17/input_layernorm/Pow",
|
87 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Pow",
|
88 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Pow",
|
89 |
+
"/0/auto_model/layers.27/input_layernorm/Pow",
|
90 |
+
"/0/auto_model/norm/Pow",
|
91 |
+
"/0/auto_model/layers.25/post_attention_layernorm/ReduceMean",
|
92 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Add",
|
93 |
+
"/0/auto_model/layers.26/input_layernorm/Add",
|
94 |
+
"/0/auto_model/layers.26/input_layernorm/ReduceMean",
|
95 |
+
"/0/auto_model/layers.25/input_layernorm/ReduceMean",
|
96 |
+
"/0/auto_model/layers.25/input_layernorm/Add",
|
97 |
+
"/0/auto_model/layers.24/post_attention_layernorm/ReduceMean",
|
98 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Add",
|
99 |
+
"/0/auto_model/layers.24/input_layernorm/Add",
|
100 |
+
"/0/auto_model/layers.24/input_layernorm/ReduceMean",
|
101 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Add",
|
102 |
+
"/0/auto_model/layers.23/post_attention_layernorm/ReduceMean",
|
103 |
+
"/0/auto_model/layers.23/input_layernorm/ReduceMean",
|
104 |
+
"/0/auto_model/layers.23/input_layernorm/Add",
|
105 |
+
"/0/auto_model/layers.22/post_attention_layernorm/ReduceMean",
|
106 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Add",
|
107 |
+
"/0/auto_model/layers.26/post_attention_layernorm/ReduceMean",
|
108 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Add",
|
109 |
+
"/0/auto_model/layers.22/input_layernorm/ReduceMean",
|
110 |
+
"/0/auto_model/layers.22/input_layernorm/Add",
|
111 |
+
"/0/auto_model/layers.3/input_layernorm/Add",
|
112 |
+
"/0/auto_model/layers.3/input_layernorm/ReduceMean",
|
113 |
+
"/0/auto_model/layers.21/post_attention_layernorm/ReduceMean",
|
114 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Add",
|
115 |
+
"/0/auto_model/layers.4/input_layernorm/Add",
|
116 |
+
"/0/auto_model/layers.4/input_layernorm/ReduceMean",
|
117 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Add",
|
118 |
+
"/0/auto_model/layers.3/post_attention_layernorm/ReduceMean",
|
119 |
+
"/0/auto_model/layers.5/input_layernorm/Add",
|
120 |
+
"/0/auto_model/layers.5/input_layernorm/ReduceMean",
|
121 |
+
"/0/auto_model/layers.4/post_attention_layernorm/ReduceMean",
|
122 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Add",
|
123 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Add",
|
124 |
+
"/0/auto_model/layers.5/post_attention_layernorm/ReduceMean",
|
125 |
+
"/0/auto_model/layers.6/input_layernorm/Add",
|
126 |
+
"/0/auto_model/layers.6/input_layernorm/ReduceMean",
|
127 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Add",
|
128 |
+
"/0/auto_model/layers.6/post_attention_layernorm/ReduceMean",
|
129 |
+
"/0/auto_model/layers.7/input_layernorm/Add",
|
130 |
+
"/0/auto_model/layers.7/input_layernorm/ReduceMean",
|
131 |
+
"/0/auto_model/layers.8/input_layernorm/ReduceMean",
|
132 |
+
"/0/auto_model/layers.8/input_layernorm/Add",
|
133 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Add",
|
134 |
+
"/0/auto_model/layers.7/post_attention_layernorm/ReduceMean",
|
135 |
+
"/0/auto_model/layers.9/input_layernorm/Add",
|
136 |
+
"/0/auto_model/layers.9/input_layernorm/ReduceMean",
|
137 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Add",
|
138 |
+
"/0/auto_model/layers.8/post_attention_layernorm/ReduceMean",
|
139 |
+
"/0/auto_model/layers.21/input_layernorm/Add",
|
140 |
+
"/0/auto_model/layers.21/input_layernorm/ReduceMean",
|
141 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Add",
|
142 |
+
"/0/auto_model/layers.20/post_attention_layernorm/ReduceMean",
|
143 |
+
"/0/auto_model/layers.9/post_attention_layernorm/ReduceMean",
|
144 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Add",
|
145 |
+
"/0/auto_model/layers.10/input_layernorm/ReduceMean",
|
146 |
+
"/0/auto_model/layers.10/input_layernorm/Add",
|
147 |
+
"/0/auto_model/layers.20/input_layernorm/Add",
|
148 |
+
"/0/auto_model/layers.20/input_layernorm/ReduceMean",
|
149 |
+
"/0/auto_model/layers.11/input_layernorm/ReduceMean",
|
150 |
+
"/0/auto_model/layers.11/input_layernorm/Add",
|
151 |
+
"/0/auto_model/layers.10/post_attention_layernorm/ReduceMean",
|
152 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Add",
|
153 |
+
"/0/auto_model/layers.12/input_layernorm/ReduceMean",
|
154 |
+
"/0/auto_model/layers.12/input_layernorm/Add",
|
155 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Add",
|
156 |
+
"/0/auto_model/layers.11/post_attention_layernorm/ReduceMean",
|
157 |
+
"/0/auto_model/layers.12/post_attention_layernorm/ReduceMean",
|
158 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Add",
|
159 |
+
"/0/auto_model/layers.13/input_layernorm/Add",
|
160 |
+
"/0/auto_model/layers.13/input_layernorm/ReduceMean",
|
161 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Add",
|
162 |
+
"/0/auto_model/layers.19/post_attention_layernorm/ReduceMean",
|
163 |
+
"/0/auto_model/layers.13/post_attention_layernorm/ReduceMean",
|
164 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Add",
|
165 |
+
"/0/auto_model/layers.14/input_layernorm/Add",
|
166 |
+
"/0/auto_model/layers.14/input_layernorm/ReduceMean",
|
167 |
+
"/0/auto_model/layers.19/input_layernorm/ReduceMean",
|
168 |
+
"/0/auto_model/layers.19/input_layernorm/Add",
|
169 |
+
"/0/auto_model/layers.18/post_attention_layernorm/ReduceMean",
|
170 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Add",
|
171 |
+
"/0/auto_model/layers.14/post_attention_layernorm/ReduceMean",
|
172 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Add",
|
173 |
+
"/0/auto_model/layers.15/input_layernorm/ReduceMean",
|
174 |
+
"/0/auto_model/layers.15/input_layernorm/Add",
|
175 |
+
"/0/auto_model/layers.16/input_layernorm/Add",
|
176 |
+
"/0/auto_model/layers.16/input_layernorm/ReduceMean",
|
177 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Add",
|
178 |
+
"/0/auto_model/layers.15/post_attention_layernorm/ReduceMean",
|
179 |
+
"/0/auto_model/layers.18/input_layernorm/Add",
|
180 |
+
"/0/auto_model/layers.18/input_layernorm/ReduceMean",
|
181 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Add",
|
182 |
+
"/0/auto_model/layers.17/post_attention_layernorm/ReduceMean",
|
183 |
+
"/0/auto_model/layers.17/input_layernorm/ReduceMean",
|
184 |
+
"/0/auto_model/layers.17/input_layernorm/Add",
|
185 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Add",
|
186 |
+
"/0/auto_model/layers.16/post_attention_layernorm/ReduceMean",
|
187 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Add",
|
188 |
+
"/0/auto_model/layers.27/post_attention_layernorm/ReduceMean",
|
189 |
+
"/0/auto_model/layers.27/input_layernorm/Add",
|
190 |
+
"/0/auto_model/layers.27/input_layernorm/ReduceMean",
|
191 |
+
"/0/auto_model/layers.27/self_attn/q_norm/Pow",
|
192 |
+
"/0/auto_model/layers.14/self_attn/k_norm/Pow",
|
193 |
+
"/0/auto_model/layers.26/self_attn/q_norm/Pow",
|
194 |
+
"/0/auto_model/layers.25/self_attn/q_norm/Pow",
|
195 |
+
"/0/auto_model/layers.26/self_attn/k_norm/Pow",
|
196 |
+
"/0/auto_model/layers.8/self_attn/k_norm/Pow",
|
197 |
+
"/0/auto_model/layers.24/self_attn/k_norm/Pow",
|
198 |
+
"/0/auto_model/layers.24/self_attn/q_norm/Pow",
|
199 |
+
"/0/auto_model/layers.25/self_attn/k_norm/Pow",
|
200 |
+
"/0/auto_model/layers.23/self_attn/q_norm/Pow",
|
201 |
+
"/0/auto_model/layers.27/self_attn/k_norm/Pow",
|
202 |
+
"/0/auto_model/layers.12/self_attn/k_norm/Pow",
|
203 |
+
"/0/auto_model/layers.13/self_attn/k_norm/Pow",
|
204 |
+
"/0/auto_model/layers.2/mlp/down_proj/MatMul",
|
205 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Cast",
|
206 |
+
"/0/auto_model/layers.3/Add",
|
207 |
+
"/0/auto_model/layers.3/Add_1",
|
208 |
+
"/0/auto_model/layers.4/input_layernorm/Cast",
|
209 |
+
"/0/auto_model/layers.3/input_layernorm/Cast",
|
210 |
+
"/0/auto_model/layers.2/Add_1",
|
211 |
+
"/0/auto_model/layers.4/Add",
|
212 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Cast",
|
213 |
+
"/0/auto_model/layers.5/input_layernorm/Cast",
|
214 |
+
"/0/auto_model/layers.4/Add_1",
|
215 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Cast",
|
216 |
+
"/0/auto_model/layers.5/Add",
|
217 |
+
"/0/auto_model/layers.5/Add_1",
|
218 |
+
"/0/auto_model/layers.6/input_layernorm/Cast",
|
219 |
+
"/0/auto_model/layers.7/Add_1",
|
220 |
+
"/0/auto_model/layers.8/input_layernorm/Cast",
|
221 |
+
"/0/auto_model/layers.7/Add",
|
222 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Cast",
|
223 |
+
"/0/auto_model/layers.6/Add",
|
224 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Cast",
|
225 |
+
"/0/auto_model/layers.6/Add_1",
|
226 |
+
"/0/auto_model/layers.7/input_layernorm/Cast",
|
227 |
+
"/0/auto_model/layers.8/Add",
|
228 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Cast",
|
229 |
+
"/0/auto_model/layers.9/input_layernorm/Cast",
|
230 |
+
"/0/auto_model/layers.8/Add_1",
|
231 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Cast",
|
232 |
+
"/0/auto_model/layers.9/Add",
|
233 |
+
"/0/auto_model/layers.9/Add_1",
|
234 |
+
"/0/auto_model/layers.10/input_layernorm/Cast",
|
235 |
+
"/0/auto_model/layers.11/input_layernorm/Cast",
|
236 |
+
"/0/auto_model/layers.10/Add_1",
|
237 |
+
"/0/auto_model/layers.10/Add",
|
238 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Cast",
|
239 |
+
"/0/auto_model/layers.11/Add",
|
240 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Cast",
|
241 |
+
"/0/auto_model/layers.11/Add_1",
|
242 |
+
"/0/auto_model/layers.12/input_layernorm/Cast",
|
243 |
+
"/0/auto_model/layers.12/Add",
|
244 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Cast",
|
245 |
+
"/0/auto_model/layers.12/Add_1",
|
246 |
+
"/0/auto_model/layers.13/input_layernorm/Cast",
|
247 |
+
"/0/auto_model/layers.13/Add",
|
248 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Cast",
|
249 |
+
"/0/auto_model/layers.14/input_layernorm/Cast",
|
250 |
+
"/0/auto_model/layers.13/Add_1",
|
251 |
+
"/0/auto_model/layers.14/Add_1",
|
252 |
+
"/0/auto_model/layers.15/input_layernorm/Cast",
|
253 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Cast",
|
254 |
+
"/0/auto_model/layers.14/Add",
|
255 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Cast",
|
256 |
+
"/0/auto_model/layers.15/Add_1",
|
257 |
+
"/0/auto_model/layers.16/input_layernorm/Cast",
|
258 |
+
"/0/auto_model/layers.15/Add",
|
259 |
+
"/0/auto_model/layers.17/input_layernorm/Cast",
|
260 |
+
"/0/auto_model/layers.16/Add_1",
|
261 |
+
"/0/auto_model/layers.16/Add",
|
262 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Cast",
|
263 |
+
"/0/auto_model/layers.19/input_layernorm/Cast",
|
264 |
+
"/0/auto_model/layers.18/Add_1",
|
265 |
+
"/0/auto_model/layers.18/input_layernorm/Cast",
|
266 |
+
"/0/auto_model/layers.17/Add_1",
|
267 |
+
"/0/auto_model/layers.17/Add",
|
268 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Cast",
|
269 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Cast",
|
270 |
+
"/0/auto_model/layers.18/Add",
|
271 |
+
"/0/auto_model/layers.19/Add",
|
272 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Cast",
|
273 |
+
"/0/auto_model/layers.22/Add_1",
|
274 |
+
"/0/auto_model/layers.23/input_layernorm/Cast",
|
275 |
+
"/0/auto_model/layers.20/Add_1",
|
276 |
+
"/0/auto_model/layers.21/input_layernorm/Cast",
|
277 |
+
"/0/auto_model/layers.21/Add_1",
|
278 |
+
"/0/auto_model/layers.22/input_layernorm/Cast",
|
279 |
+
"/0/auto_model/layers.19/Add_1",
|
280 |
+
"/0/auto_model/layers.20/input_layernorm/Cast",
|
281 |
+
"/0/auto_model/layers.24/input_layernorm/Cast",
|
282 |
+
"/0/auto_model/layers.23/Add_1",
|
283 |
+
"/0/auto_model/layers.22/Add",
|
284 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Cast",
|
285 |
+
"/0/auto_model/layers.21/Add",
|
286 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Cast",
|
287 |
+
"/0/auto_model/layers.20/Add",
|
288 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Cast",
|
289 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Cast",
|
290 |
+
"/0/auto_model/layers.23/Add",
|
291 |
+
"/0/auto_model/layers.25/input_layernorm/Cast",
|
292 |
+
"/0/auto_model/layers.24/Add_1",
|
293 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Cast",
|
294 |
+
"/0/auto_model/layers.24/Add",
|
295 |
+
"/0/auto_model/layers.25/Add",
|
296 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Cast",
|
297 |
+
"/0/auto_model/layers.25/Add_1",
|
298 |
+
"/0/auto_model/layers.26/input_layernorm/Cast",
|
299 |
+
"/0/auto_model/layers.26/Add",
|
300 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Cast",
|
301 |
+
"/0/auto_model/layers.21/self_attn/q_norm/Pow",
|
302 |
+
"/0/auto_model/layers.26/Add_1",
|
303 |
+
"/0/auto_model/layers.27/input_layernorm/Cast",
|
304 |
+
"/0/auto_model/layers.27/Add",
|
305 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Cast",
|
306 |
+
"/0/auto_model/norm/Add",
|
307 |
+
"/0/auto_model/norm/ReduceMean",
|
308 |
+
"/0/auto_model/layers.23/self_attn/k_norm/Pow",
|
309 |
+
"/0/auto_model/layers.21/self_attn/k_norm/Pow",
|
310 |
+
"/0/auto_model/layers.22/self_attn/k_norm/Pow",
|
311 |
+
"/0/auto_model/layers.10/self_attn/k_norm/Pow",
|
312 |
+
"/0/auto_model/layers.19/self_attn/q_norm/Pow",
|
313 |
+
"/0/auto_model/layers.2/mlp/Mul",
|
314 |
+
"/0/auto_model/layers.22/self_attn/q_norm/Pow",
|
315 |
+
"/0/auto_model/layers.11/self_attn/k_norm/Pow",
|
316 |
+
"/0/auto_model/layers.20/self_attn/q_norm/Pow",
|
317 |
+
"/0/auto_model/layers.20/self_attn/k_norm/Pow",
|
318 |
+
"/0/auto_model/layers.18/self_attn/q_norm/Pow",
|
319 |
+
"/0/auto_model/layers.17/self_attn/q_norm/Pow",
|
320 |
+
"/0/auto_model/layers.27/mlp/down_proj/MatMul",
|
321 |
+
"/0/auto_model/layers.19/self_attn/k_norm/Pow",
|
322 |
+
"/0/auto_model/layers.27/Add_1",
|
323 |
+
"/0/auto_model/norm/Cast",
|
324 |
+
"/0/auto_model/layers.16/self_attn/k_norm/Pow",
|
325 |
+
"/0/auto_model/layers.18/self_attn/k_norm/Pow",
|
326 |
+
"/0/auto_model/layers.11/self_attn/q_norm/Pow",
|
327 |
+
"/0/auto_model/layers.9/self_attn/q_norm/Pow",
|
328 |
+
"/0/auto_model/layers.26/self_attn/q_norm/Add",
|
329 |
+
"/0/auto_model/layers.26/self_attn/q_norm/ReduceMean",
|
330 |
+
"/0/auto_model/layers.14/self_attn/k_norm/Add",
|
331 |
+
"/0/auto_model/layers.14/self_attn/k_norm/ReduceMean",
|
332 |
+
"/0/auto_model/layers.16/self_attn/q_norm/Pow",
|
333 |
+
"/0/auto_model/layers.27/mlp/Mul",
|
334 |
+
"/0/auto_model/layers.27/self_attn/q_norm/ReduceMean",
|
335 |
+
"/0/auto_model/layers.27/self_attn/q_norm/Add",
|
336 |
+
"/0/auto_model/layers.9/self_attn/k_norm/Pow",
|
337 |
+
"/0/auto_model/layers.17/self_attn/k_norm/Pow",
|
338 |
+
"/0/auto_model/layers.26/self_attn/k_norm/ReduceMean",
|
339 |
+
"/0/auto_model/layers.26/self_attn/k_norm/Add",
|
340 |
+
"/0/auto_model/layers.25/self_attn/k_norm/Add",
|
341 |
+
"/0/auto_model/layers.25/self_attn/k_norm/ReduceMean",
|
342 |
+
"/0/auto_model/layers.13/self_attn/k_norm/Add",
|
343 |
+
"/0/auto_model/layers.13/self_attn/k_norm/ReduceMean",
|
344 |
+
"/0/auto_model/layers.10/self_attn/q_norm/Pow",
|
345 |
+
"/0/auto_model/layers.25/input_layernorm/Mul_1",
|
346 |
+
"/0/auto_model/layers.27/self_attn/k_norm/ReduceMean",
|
347 |
+
"/0/auto_model/layers.27/self_attn/k_norm/Add",
|
348 |
+
"/0/auto_model/layers.26/input_layernorm/Mul_1",
|
349 |
+
"/0/auto_model/layers.15/self_attn/q_norm/Pow",
|
350 |
+
"/0/auto_model/layers.12/self_attn/k_norm/Add",
|
351 |
+
"/0/auto_model/layers.12/self_attn/k_norm/ReduceMean",
|
352 |
+
"/0/auto_model/layers.25/self_attn/q_norm/Add",
|
353 |
+
"/0/auto_model/layers.25/self_attn/q_norm/ReduceMean",
|
354 |
+
"/0/auto_model/layers.24/input_layernorm/Mul_1",
|
355 |
+
"/0/auto_model/layers.12/self_attn/q_norm/Pow",
|
356 |
+
"/0/auto_model/layers.24/self_attn/q_norm/ReduceMean",
|
357 |
+
"/0/auto_model/layers.24/self_attn/q_norm/Add",
|
358 |
+
"/0/auto_model/layers.24/self_attn/k_norm/ReduceMean",
|
359 |
+
"/0/auto_model/layers.24/self_attn/k_norm/Add",
|
360 |
+
"/0/auto_model/layers.22/mlp/Mul",
|
361 |
+
"/0/auto_model/layers.2/post_attention_layernorm/Pow",
|
362 |
+
"/0/auto_model/layers.23/mlp/Mul",
|
363 |
+
"/0/auto_model/layers.24/mlp/Mul",
|
364 |
+
"/0/auto_model/layers.23/input_layernorm/Mul_1",
|
365 |
+
"/0/auto_model/layers.14/self_attn/q_norm/Pow",
|
366 |
+
"/0/auto_model/layers.14/self_attn/k_proj/MatMul",
|
367 |
+
"/0/auto_model/layers.14/self_attn/k_norm/Cast",
|
368 |
+
"/0/auto_model/layers.14/self_attn/Reshape_1",
|
369 |
+
"/0/auto_model/layers.21/mlp/Mul",
|
370 |
+
"/0/auto_model/layers.3/post_attention_layernorm/Sqrt",
|
371 |
+
"/0/auto_model/layers.3/input_layernorm/Sqrt",
|
372 |
+
"/0/auto_model/layers.4/input_layernorm/Sqrt",
|
373 |
+
"/0/auto_model/layers.5/input_layernorm/Sqrt",
|
374 |
+
"/0/auto_model/layers.4/post_attention_layernorm/Sqrt",
|
375 |
+
"/0/auto_model/layers.5/post_attention_layernorm/Sqrt",
|
376 |
+
"/0/auto_model/layers.6/input_layernorm/Sqrt",
|
377 |
+
"/0/auto_model/layers.6/post_attention_layernorm/Sqrt",
|
378 |
+
"/0/auto_model/layers.8/input_layernorm/Sqrt",
|
379 |
+
"/0/auto_model/layers.8/post_attention_layernorm/Sqrt",
|
380 |
+
"/0/auto_model/layers.7/post_attention_layernorm/Sqrt",
|
381 |
+
"/0/auto_model/layers.7/input_layernorm/Sqrt",
|
382 |
+
"/0/auto_model/layers.9/input_layernorm/Sqrt",
|
383 |
+
"/0/auto_model/layers.10/input_layernorm/Sqrt",
|
384 |
+
"/0/auto_model/layers.9/post_attention_layernorm/Sqrt",
|
385 |
+
"/0/auto_model/layers.11/input_layernorm/Sqrt",
|
386 |
+
"/0/auto_model/layers.10/post_attention_layernorm/Sqrt",
|
387 |
+
"/0/auto_model/layers.12/post_attention_layernorm/Sqrt",
|
388 |
+
"/0/auto_model/layers.11/post_attention_layernorm/Sqrt",
|
389 |
+
"/0/auto_model/layers.12/input_layernorm/Sqrt",
|
390 |
+
"/0/auto_model/layers.13/input_layernorm/Sqrt",
|
391 |
+
"/0/auto_model/layers.14/input_layernorm/Sqrt",
|
392 |
+
"/0/auto_model/layers.13/post_attention_layernorm/Sqrt",
|
393 |
+
"/0/auto_model/layers.15/input_layernorm/Sqrt",
|
394 |
+
"/0/auto_model/layers.14/post_attention_layernorm/Sqrt",
|
395 |
+
"/0/auto_model/layers.16/input_layernorm/Sqrt",
|
396 |
+
"/0/auto_model/layers.15/post_attention_layernorm/Sqrt",
|
397 |
+
"/0/auto_model/layers.17/input_layernorm/Sqrt",
|
398 |
+
"/0/auto_model/layers.16/post_attention_layernorm/Sqrt",
|
399 |
+
"/0/auto_model/layers.19/input_layernorm/Sqrt",
|
400 |
+
"/0/auto_model/layers.17/post_attention_layernorm/Sqrt",
|
401 |
+
"/0/auto_model/layers.18/input_layernorm/Sqrt",
|
402 |
+
"/0/auto_model/layers.18/post_attention_layernorm/Sqrt",
|
403 |
+
"/0/auto_model/layers.19/post_attention_layernorm/Sqrt",
|
404 |
+
"/0/auto_model/layers.23/input_layernorm/Sqrt",
|
405 |
+
"/0/auto_model/layers.20/input_layernorm/Sqrt",
|
406 |
+
"/0/auto_model/layers.21/input_layernorm/Sqrt",
|
407 |
+
"/0/auto_model/layers.22/input_layernorm/Sqrt",
|
408 |
+
"/0/auto_model/layers.22/post_attention_layernorm/Sqrt",
|
409 |
+
"/0/auto_model/layers.24/input_layernorm/Sqrt",
|
410 |
+
"/0/auto_model/layers.20/post_attention_layernorm/Sqrt",
|
411 |
+
"/0/auto_model/layers.21/post_attention_layernorm/Sqrt",
|
412 |
+
"/0/auto_model/layers.23/post_attention_layernorm/Sqrt",
|
413 |
+
"/0/auto_model/layers.25/input_layernorm/Sqrt",
|
414 |
+
"/0/auto_model/layers.24/post_attention_layernorm/Sqrt",
|
415 |
+
"/0/auto_model/layers.25/post_attention_layernorm/Sqrt",
|
416 |
+
"/0/auto_model/layers.26/input_layernorm/Sqrt",
|
417 |
+
"/0/auto_model/layers.26/post_attention_layernorm/Sqrt",
|
418 |
+
"/0/auto_model/layers.15/self_attn/k_norm/Pow",
|
419 |
+
"/0/auto_model/layers.27/input_layernorm/Sqrt",
|
420 |
+
"/0/auto_model/layers.27/post_attention_layernorm/Sqrt",
|
421 |
+
"/0/auto_model/layers.2/input_layernorm/Pow",
|
422 |
+
"/0/auto_model/layers.26/mlp/Mul",
|
423 |
+
"/0/auto_model/layers.23/self_attn/q_norm/Add",
|
424 |
+
"/0/auto_model/layers.23/self_attn/q_norm/ReduceMean",
|
425 |
+
"/0/auto_model/layers.13/self_attn/q_norm/Pow",
|
426 |
+
"/0/auto_model/layers.21/self_attn/q_norm/Add",
|
427 |
+
"/0/auto_model/layers.21/self_attn/q_norm/ReduceMean",
|
428 |
+
"/0/auto_model/layers.6/self_attn/q_norm/Pow",
|
429 |
+
"/0/auto_model/layers.27/self_attn/Reshape_7",
|
430 |
+
"/0/auto_model/layers.27/self_attn/MatMul_1",
|
431 |
+
"/0/auto_model/layers.27/self_attn/Transpose_4",
|
432 |
+
"/0/auto_model/layers.26/self_attn/Expand_1",
|
433 |
+
"/0/auto_model/layers.26/self_attn/Unsqueeze_19",
|
434 |
+
"/0/auto_model/layers.26/self_attn/v_proj/MatMul",
|
435 |
+
"/0/auto_model/layers.26/self_attn/Transpose_2",
|
436 |
+
"/0/auto_model/layers.26/self_attn/Reshape_6",
|
437 |
+
"/0/auto_model/layers.26/self_attn/Reshape_2",
|
438 |
+
"/0/auto_model/layers.11/self_attn/k_norm/ReduceMean",
|
439 |
+
"/0/auto_model/layers.11/self_attn/k_norm/Add",
|
440 |
+
"/0/auto_model/layers.22/input_layernorm/Mul_1",
|
441 |
+
"/0/auto_model/layers.25/mlp/Mul",
|
442 |
+
"/0/auto_model/layers.8/self_attn/k_norm/Cast",
|
443 |
+
"/0/auto_model/layers.8/self_attn/k_proj/MatMul",
|
444 |
+
"/0/auto_model/layers.8/self_attn/Reshape_1",
|
445 |
+
"/0/auto_model/layers.21/input_layernorm/Mul_1",
|
446 |
+
"/0/auto_model/layers.5/self_attn/q_norm/Pow",
|
447 |
+
"/0/auto_model/layers.22/self_attn/q_norm/ReduceMean",
|
448 |
+
"/0/auto_model/layers.22/self_attn/q_norm/Add",
|
449 |
+
"/0/auto_model/layers.22/mlp/down_proj/MatMul",
|
450 |
+
"/0/auto_model/layers.23/self_attn/k_norm/ReduceMean",
|
451 |
+
"/0/auto_model/layers.23/self_attn/k_norm/Add",
|
452 |
+
"/0/auto_model/layers.23/mlp/down_proj/MatMul",
|
453 |
+
"/0/auto_model/layers.26/mlp/down_proj/MatMul",
|
454 |
+
"/0/auto_model/layers.1/self_attn/Add_2",
|
455 |
+
"/0/auto_model/layers.2/self_attn/Add_2",
|
456 |
+
"/0/auto_model/layers.6/self_attn/Add_2",
|
457 |
+
"/0/auto_model/layers.11/self_attn/Add_2",
|
458 |
+
"/0/auto_model/layers.12/self_attn/Add_2",
|
459 |
+
"/0/auto_model/layers.16/self_attn/Add_2",
|
460 |
+
"/0/auto_model/layers.21/self_attn/Add_2",
|
461 |
+
"/0/auto_model/layers.24/self_attn/Add_2",
|
462 |
+
"/0/auto_model/layers.0/self_attn/Add_2",
|
463 |
+
"/0/auto_model/layers.8/self_attn/Add_2",
|
464 |
+
"/0/auto_model/layers.13/self_attn/Add_2",
|
465 |
+
"/0/auto_model/layers.26/self_attn/Add_2",
|
466 |
+
"/0/auto_model/layers.3/self_attn/Add_2",
|
467 |
+
"/0/auto_model/layers.15/self_attn/Add_2",
|
468 |
+
"/0/auto_model/layers.25/self_attn/Add_2",
|
469 |
+
"/0/auto_model/layers.4/self_attn/Add_2",
|
470 |
+
"/0/auto_model/layers.14/self_attn/Add_2",
|
471 |
+
"/0/auto_model/layers.22/self_attn/Add_2",
|
472 |
+
"/0/auto_model/layers.9/self_attn/Add_2",
|
473 |
+
"/0/auto_model/layers.23/self_attn/Add_2",
|
474 |
+
"/0/auto_model/layers.10/self_attn/Add_2",
|
475 |
+
"/0/auto_model/layers.5/self_attn/Add_2",
|
476 |
+
"/0/auto_model/layers.19/self_attn/Add_2",
|
477 |
+
"/0/auto_model/layers.7/self_attn/Add_2",
|
478 |
+
"/0/auto_model/layers.27/self_attn/Add_2",
|
479 |
+
"/0/auto_model/layers.18/self_attn/Add_2",
|
480 |
+
"/0/auto_model/layers.20/self_attn/Add_2",
|
481 |
+
"/0/auto_model/layers.17/self_attn/Add_2",
|
482 |
+
"/0/auto_model/Slice_1",
|
483 |
+
"/0/auto_model/layers.5/self_attn/Slice_4",
|
484 |
+
"/0/auto_model/layers.12/self_attn/Slice_4",
|
485 |
+
"/0/auto_model/layers.18/self_attn/Slice_4",
|
486 |
+
"/0/auto_model/layers.3/self_attn/Slice_4",
|
487 |
+
"/0/auto_model/layers.11/self_attn/Slice_4",
|
488 |
+
"/0/auto_model/layers.22/self_attn/Slice_4",
|
489 |
+
"/0/auto_model/Expand",
|
490 |
+
"/0/auto_model/layers.4/self_attn/Slice_4",
|
491 |
+
"/0/auto_model/Slice_2",
|
492 |
+
"/0/auto_model/layers.8/self_attn/Slice_4",
|
493 |
+
"/0/auto_model/layers.2/self_attn/Slice_4",
|
494 |
+
"/0/auto_model/layers.15/self_attn/Slice_4",
|
495 |
+
"/0/auto_model/layers.26/self_attn/Slice_4",
|
496 |
+
"/0/auto_model/layers.24/self_attn/Slice_4",
|
497 |
+
"/0/auto_model/Expand_1",
|
498 |
+
"/0/auto_model/layers.14/self_attn/Slice_4",
|
499 |
+
"/0/auto_model/layers.21/self_attn/Slice_4",
|
500 |
+
"/0/auto_model/layers.1/self_attn/Slice_4",
|
501 |
+
"/0/auto_model/Reshape_2",
|
502 |
+
"/0/auto_model/layers.19/self_attn/Slice_4",
|
503 |
+
"/0/auto_model/Slice",
|
504 |
+
"/0/auto_model/layers.6/self_attn/Slice_4",
|
505 |
+
"/0/auto_model/layers.0/self_attn/Slice_4",
|
506 |
+
"/0/auto_model/layers.25/self_attn/Slice_4",
|
507 |
+
"/0/auto_model/Unsqueeze_4",
|
508 |
+
"/0/auto_model/layers.10/self_attn/Slice_4",
|
509 |
+
"/0/auto_model/layers.23/self_attn/Slice_4",
|
510 |
+
"/0/auto_model/layers.17/self_attn/Slice_4",
|
511 |
+
"/0/auto_model/Where_1",
|
512 |
+
"/0/auto_model/layers.27/self_attn/Slice_4",
|
513 |
+
"/0/auto_model/layers.20/self_attn/Slice_4",
|
514 |
+
"/0/auto_model/Add",
|
515 |
+
"/0/auto_model/Mul",
|
516 |
+
"/0/auto_model/layers.7/self_attn/Slice_4",
|
517 |
+
"/0/auto_model/layers.13/self_attn/Slice_4",
|
518 |
+
"/0/auto_model/layers.9/self_attn/Slice_4",
|
519 |
+
"/0/auto_model/layers.16/self_attn/Slice_4",
|
520 |
+
"/0/auto_model/Unsqueeze_3",
|
521 |
+
"/0/auto_model/ScatterND"]
|
522 |
+
```
|
523 |
+
|
524 |
+
</details>
|
525 |
+
|
526 |
# Benchmarks
|
527 |
|
528 |
I used beir-qdrant with the scifact dataset.
|
|
|
533 |
|
534 |
If someone wants to sponsor me with an NVIDIA GPU I can have a much faster turnaround time with my model experiments and explore some different quantization strategies.
|
535 |
|
|
|
536 |
|
537 |
+
onnx f32 model with f32 output (baseline):
|
|
|
|
|
|
|
|
|
538 |
|
539 |
```
|
540 |
ndcg: {'NDCG@1': 0.57, 'NDCG@3': 0.65655, 'NDCG@5': 0.68177, 'NDCG@10': 0.69999, 'NDCG@100': 0.72749, 'NDCG@1000': 0.73301}
|
|
|
542 |
precision: {'P@1': 0.57, 'P@3': 0.26111, 'P@5': 0.17467, 'P@10': 0.09467, 'P@100': 0.01083, 'P@1000': 0.00113}
|
543 |
```
|
544 |
|
545 |
+
onnx dynamic uint8 model with f32 output (previous model's parent):
|
546 |
|
547 |
```
|
548 |
ndcg: {'NDCG@1': 0.52333, 'NDCG@3': 0.58087, 'NDCG@5': 0.59811, 'NDCG@10': 0.6249, 'NDCG@100': 0.66025, 'NDCG@1000': 0.67023}
|
|
|
550 |
precision: {'P@1': 0.52333, 'P@3': 0.22889, 'P@5': 0.15, 'P@10': 0.085, 'P@100': 0.0103, 'P@1000': 0.00111}
|
551 |
```
|
552 |
|
553 |
+
onnx dynamic uint8 model with uint8 output (previous model):
|
554 |
+
|
555 |
+
Note: This benchmarking better than it's parent is actually bad. I used more calibration data in the current version to avoid a repeat.
|
556 |
|
557 |
```
|
558 |
ndcg: {'NDCG@1': 0.52667, 'NDCG@3': 0.58478, 'NDCG@5': 0.60006, 'NDCG@10': 0.62646, 'NDCG@100': 0.66175, 'NDCG@1000': 0.67171}
|
|
|
560 |
precision: {'P@1': 0.52667, 'P@3': 0.23111, 'P@5': 0.15, 'P@10': 0.085, 'P@100': 0.0103, 'P@1000': 0.00111}
|
561 |
```
|
562 |
|
563 |
+
onnx dynamic uint8 model with f32 output (this model's parent):
|
564 |
+
|
565 |
+
```
|
566 |
+
ndcg: {'NDCG@1': 0.56, 'NDCG@3': 0.63242, 'NDCG@5': 0.66258, 'NDCG@10': 0.68893, 'NDCG@100': 0.71276, 'NDCG@1000': 0.72}
|
567 |
+
recall: {'Recall@1': 0.53094, 'Recall@3': 0.68117, 'Recall@5': 0.75417, 'Recall@10': 0.83256, 'Recall@100': 0.94, 'Recall@1000': 0.99667}
|
568 |
+
precision: {'P@1': 0.56, 'P@3': 0.24778, 'P@5': 0.16867, 'P@10': 0.094, 'P@100': 0.0107, 'P@1000': 0.00113}
|
569 |
+
```
|
570 |
+
|
571 |
+
onnx dynamic uint8 model with uint8 output (this model):
|
572 |
+
|
573 |
+
```
|
574 |
+
ndcg: {'NDCG@1': 0.56, 'NDCG@3': 0.63119, 'NDCG@5': 0.66314, 'NDCG@10': 0.68867, 'NDCG@100': 0.71236, 'NDCG@1000': 0.7201}
|
575 |
+
recall: {'Recall@1': 0.53094, 'Recall@3': 0.67783, 'Recall@5': 0.75583, 'Recall@10': 0.83089, 'Recall@100': 0.93667, 'Recall@1000': 0.99667}
|
576 |
+
precision: {'P@1': 0.56, 'P@3': 0.24667, 'P@5': 0.16867, 'P@10': 0.094, 'P@100': 0.01067, 'P@1000': 0.00113}
|
577 |
+
```
|
578 |
+
|
579 |
# Example inference/benchmark code and how to use the model with Fastembed
|
580 |
|
581 |
After installing beir-qdrant make sure to upgrade fastembed.
|
dynamic_uint8.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66b8032f385d841b909ec3712a6996e230fe23e548620ca0b41d6d391469c2b0
|
3 |
+
size 654930391
|