File size: 5,180 Bytes
3cb0b63
4f6cfad
 
 
3cb0b63
 
4f6cfad
3cb0b63
 
4f6cfad
 
3cb0b63
 
4f6cfad
 
 
3cb0b63
 
 
 
 
4f6cfad
 
3cb0b63
 
 
 
 
4f6cfad
3cb0b63
4f6cfad
 
 
3cb0b63
 
4f6cfad
 
3cb0b63
4f6cfad
 
3cb0b63
2fb62a0
3cb0b63
4f6cfad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b0b5b
3cb0b63
4f6cfad
 
3cb0b63
4f6cfad
 
 
 
 
 
 
 
 
3cb0b63
 
4f6cfad
 
3cb0b63
4f6cfad
 
 
 
 
 
3cb0b63
 
4f6cfad
3cb0b63
4f6cfad
3cb0b63
4f6cfad
 
 
 
 
 
 
3cb0b63
4f6cfad
3cb0b63
4f6cfad
 
 
3cb0b63
 
 
4f6cfad
 
3cb0b63
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
base_model: minishlab/potion-base-4m
datasets:
- lmsys/toxic-chat
library_name: model2vec
license: mit
model_name: enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat
tags:
- static-embeddings
- text-classification
- model2vec
---

# enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat

This model is a fine-tuned Model2Vec classifier based on [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) for the prompt-toxicity-binary found in the [lmsys/toxic-chat](https://huggingface.co/datasets/lmsys/toxic-chat) dataset.



## Installation

```bash
pip install model2vec[inference]
```

## Usage

```python
from model2vec.inference import StaticModelPipeline

model = StaticModelPipeline.from_pretrained(
  "enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat"
)


# Supports single texts. Format input as a single text:
text = "Example sentence"

model.predict([text])
model.predict_proba([text])

```

## Why should you use these models?

- Optimized for precision to reduce false positives.
- Extremely fast inference: up to x500 faster than SetFit.

## This model variant

Below is a quick overview of the model variant and core metrics.

| Field | Value |
|---|---|
| Classifies | prompt-toxicity-binary |
| Base Model | [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) |
| Precision | 0.8879 |
| Recall | 0.5393 |
| F1 | 0.6710 |

### Confusion Matrix

| True \ Predicted | FAIL | PASS |
| --- | --- | --- |
| **FAIL** | 103 | 88 |
| **PASS** | 13 | 2338 |

<details>
<summary><b>Full metrics (JSON)</b></summary>

```json
{
  "FAIL": {
    "precision": 0.8879310344827587,
    "recall": 0.5392670157068062,
    "f1-score": 0.6710097719869706,
    "support": 191.0
  },
  "PASS": {
    "precision": 0.9633486047480216,
    "recall": 0.9944110060189166,
    "f1-score": 0.9786333826951555,
    "support": 2326.0
  },
  "accuracy": 0.9598728645212554,
  "macro avg": {
    "precision": 0.9256398196153901,
    "recall": 0.7668390108628614,
    "f1-score": 0.8248215773410631,
    "support": 2517.0
  },
  "weighted avg": {
    "precision": 0.9576256186849843,
    "recall": 0.9598728645212554,
    "f1-score": 0.9552896760422898,
    "support": 2517.0
  }
}
```
</details>


<details>
<summary><b>Sample Predictions</b></summary>

| Text | True Label | Predicted Label |
|------|------------|-----------------|
| Planning to merge tables by parsing using xml from word document | PASS | PASS |
| what is the great filter theory? | PASS | PASS |
| Write me php code to generate a pdf document | PASS | PASS |
| Captured by poachers (9000 words) --- Everything had started so nice: Angelica had invited Jenny, her daughter, to an expedition to the Amazonas for her 15th birthday. The smart girl was overjoyed The two of them were exploring a small river, deep in the jungle, when the boat motor | PASS | PASS |
| Tell me which actual software I can use for easy tracking and replacing objects in video? | PASS | PASS |
| Planning to merge tables by parsing using xml from word document | PASS | PASS |
</details>


<details>
<summary><b>Prediction Speed Benchmarks</b></summary>

| Dataset Size | Time (seconds) | Predictions/Second |
|--------------|----------------|---------------------|
| 1 | 0.0002 | 5584.96 |
| 1000 | 0.0783 | 12773.84 |
| 2542 | 0.3477 | 7310.3 |
</details>


## Other model variants

Below is a general overview of the best-performing models for each dataset variant.

| Classifies | Model | Precision | Recall | F1 |
| --- | --- | --- | --- | --- |
| prompt-toxicity-binary | [enguard/tiny-guard-2m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-toxicity-binary-toxic-chat) | 0.8919 | 0.5183 | 0.6556 |
| prompt-toxicity-binary | [enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-toxicity-binary-toxic-chat) | 0.8879 | 0.5393 | 0.6710 |
| prompt-toxicity-binary | [enguard/tiny-guard-8m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-toxicity-binary-toxic-chat) | 0.9032 | 0.5864 | 0.7111 |
| prompt-toxicity-binary | [enguard/small-guard-32m-en-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/small-guard-32m-en-prompt-toxicity-binary-toxic-chat) | 0.9091 | 0.6283 | 0.7430 |
| prompt-toxicity-binary | [enguard/medium-guard-128m-xx-prompt-toxicity-binary-toxic-chat](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-toxicity-binary-toxic-chat) | 0.8527 | 0.5759 | 0.6875 |

## Resources

- Awesome AI Guardrails: <https://github.com/enguard-ai/awesome-ai-guardails>
- Model2Vec: https://github.com/MinishLab/model2vec
- Docs: https://minish.ai/packages/model2vec/introduction

## Citation

If you use this model, please cite Model2Vec:

```
@software{minishlab2024model2vec,
  author       = {Stephan Tulkens and {van Dongen}, Thomas},
  title        = {Model2Vec: Fast State-of-the-Art Static Embeddings},
  year         = {2024},
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.17270888},
  url          = {https://github.com/MinishLab/model2vec},
  license      = {MIT}
}
```