Upload DATA/test_landmark.py with huggingface_hub
Browse files- DATA/test_landmark.py +158 -0
DATA/test_landmark.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# import cv2
|
| 3 |
+
# import time
|
| 4 |
+
# import glob
|
| 5 |
+
# import argparse
|
| 6 |
+
# import scipy
|
| 7 |
+
# import numpy as np
|
| 8 |
+
# from PIL import Image
|
| 9 |
+
# import torch
|
| 10 |
+
# from tqdm import tqdm
|
| 11 |
+
# from itertools import cycle
|
| 12 |
+
|
| 13 |
+
# from extract_kp_videos_safe import KeypointExtractor
|
| 14 |
+
# import numpy as np
|
| 15 |
+
# from PIL import Image
|
| 16 |
+
# with torch.no_grad():
|
| 17 |
+
# img_np =cv2.imread('Strawberry Monster.png')
|
| 18 |
+
# predictor = KeypointExtractor('cuda')
|
| 19 |
+
# dets = predictor.det_net.detect_faces(img_np, 0.97)
|
| 20 |
+
# if len(dets) == 0:
|
| 21 |
+
# detect = False
|
| 22 |
+
# else:
|
| 23 |
+
# print("success")
|
| 24 |
+
# import os
|
| 25 |
+
# import cv2
|
| 26 |
+
# import torch
|
| 27 |
+
# from tqdm import tqdm
|
| 28 |
+
# from extract_kp_videos_safe import KeypointExtractor
|
| 29 |
+
|
| 30 |
+
# # 创建 KeypointExtractor 实例
|
| 31 |
+
|
| 32 |
+
# # 设置文件夹路径
|
| 33 |
+
# folder_path = 'control_inversion'
|
| 34 |
+
# landmark_detect_false=0
|
| 35 |
+
# landmark_detect_success=0
|
| 36 |
+
# # 遍历文件夹中的图像文件
|
| 37 |
+
# for filename in tqdm(os.listdir(path)):
|
| 38 |
+
# if filename.endswith('.png') or filename.endswith('.jpg'):
|
| 39 |
+
# # 读取图像
|
| 40 |
+
# image_path = os.path.join(folder_path, filename)
|
| 41 |
+
# img_np = cv2.imread(image_path)
|
| 42 |
+
|
| 43 |
+
# # 进行人脸检测和关键点提取
|
| 44 |
+
# with torch.no_grad():
|
| 45 |
+
# predictor = KeypointExtractor('cuda')
|
| 46 |
+
# dets = predictor.det_net.detect_faces(img_np, 0.97)
|
| 47 |
+
# if len(dets) == 0:
|
| 48 |
+
# landmark_detect_false += 1
|
| 49 |
+
# else:
|
| 50 |
+
# landmark_detect_success += 1
|
| 51 |
+
|
| 52 |
+
# detect_rate = landmark_detect_success/(landmark_detect_success+landmark_detect_false)
|
| 53 |
+
# print(detect_rate)
|
| 54 |
+
# import os
|
| 55 |
+
# import cv2
|
| 56 |
+
# import torch
|
| 57 |
+
# from tqdm import tqdm
|
| 58 |
+
# from extract_kp_videos_safe import KeypointExtractor
|
| 59 |
+
|
| 60 |
+
# # 设置文件夹路径
|
| 61 |
+
# folder_path = 'prompts'
|
| 62 |
+
|
| 63 |
+
# # 初始化成功和失败的计数
|
| 64 |
+
# total_landmark_detect_success = 0
|
| 65 |
+
# total_landmark_detect_false = 0
|
| 66 |
+
|
| 67 |
+
# # 遍历文件夹中的 txt 文件
|
| 68 |
+
# for txt_filename in os.listdir(folder_path):
|
| 69 |
+
# if txt_filename.endswith('.txt'):
|
| 70 |
+
# txt_file_path = os.path.join(folder_path, txt_filename)
|
| 71 |
+
|
| 72 |
+
# # 读取 txt 文件中的图片列表
|
| 73 |
+
# with open(txt_file_path, 'r') as file:
|
| 74 |
+
# image_list = file.read().splitlines()
|
| 75 |
+
|
| 76 |
+
# landmark_detect_success = 0
|
| 77 |
+
# landmark_detect_false = 0
|
| 78 |
+
|
| 79 |
+
# # 遍历 txt 文件中的图片列表
|
| 80 |
+
# for image_filename in tqdm(image_list, desc=f'Processing {txt_filename}'):
|
| 81 |
+
# image_path = os.path.join('control_inversion', image_filename+'.png')
|
| 82 |
+
# if image_path.endswith('.png') or image_path.endswith('.jpg'):
|
| 83 |
+
# img_np = cv2.imread(image_path)
|
| 84 |
+
|
| 85 |
+
# # 进行人脸检测和关键点提取
|
| 86 |
+
# with torch.no_grad():
|
| 87 |
+
# predictor = KeypointExtractor('cuda')
|
| 88 |
+
# dets = predictor.det_net.detect_faces(img_np, 0.97)
|
| 89 |
+
|
| 90 |
+
# if len(dets) == 0:
|
| 91 |
+
# landmark_detect_false += 1
|
| 92 |
+
# else:
|
| 93 |
+
# landmark_detect_success += 1
|
| 94 |
+
|
| 95 |
+
# # 计算检测率
|
| 96 |
+
# detect_rate = landmark_detect_success / (landmark_detect_success + landmark_detect_false)
|
| 97 |
+
# print(f'{txt_filename}: Detect Rate = {detect_rate}')
|
| 98 |
+
|
| 99 |
+
# # 更新总的计数
|
| 100 |
+
# total_landmark_detect_success += landmark_detect_success
|
| 101 |
+
# total_landmark_detect_false += landmark_detect_false
|
| 102 |
+
|
| 103 |
+
# # 计算总的检测率
|
| 104 |
+
# total_detect_rate = total_landmark_detect_success / (total_landmark_detect_success + total_landmark_detect_false)
|
| 105 |
+
# print(f'Total Detect Rate = {total_detect_rate}')
|
| 106 |
+
import os
|
| 107 |
+
import sys
|
| 108 |
+
import cv2
|
| 109 |
+
import torch
|
| 110 |
+
from tqdm import tqdm
|
| 111 |
+
from chat_anything.sad_talker.face3d.extract_kp_videos_safe import KeypointExtractor
|
| 112 |
+
|
| 113 |
+
# 设置文件夹路径
|
| 114 |
+
folder_path = sys.argv[1]
|
| 115 |
+
|
| 116 |
+
# 初始化成功和失败的计数
|
| 117 |
+
total_landmark_detect_success = 0
|
| 118 |
+
total_landmark_detect_false = 0
|
| 119 |
+
|
| 120 |
+
# 遍历文件夹中的 txt 文件
|
| 121 |
+
for txt_filename in os.listdir(folder_path):
|
| 122 |
+
if txt_filename.endswith('.txt'):
|
| 123 |
+
txt_file_path = os.path.join(folder_path, txt_filename)
|
| 124 |
+
|
| 125 |
+
# # 读取 txt 文件中的图片列表
|
| 126 |
+
# with open(txt_file_path, 'r') as file:
|
| 127 |
+
# image_list = file.read().splitlines()
|
| 128 |
+
image_list = os.listdir(txt_file_path)
|
| 129 |
+
landmark_detect_success = 0
|
| 130 |
+
landmark_detect_false = 0
|
| 131 |
+
|
| 132 |
+
# 遍历 txt 文件中的图片列表
|
| 133 |
+
for image_filename in tqdm(image_list, desc=f'Processing {txt_filename}'):
|
| 134 |
+
image_path = os.path.join(txt_file_path, image_filename)
|
| 135 |
+
if image_path.endswith('.png') or image_path.endswith('.jpg'):
|
| 136 |
+
img_np = cv2.imread(image_path)
|
| 137 |
+
|
| 138 |
+
# 进行人脸检测和关键点提取
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
predictor = KeypointExtractor('cuda')
|
| 141 |
+
dets = predictor.det_net.detect_faces(img_np, 0.97)
|
| 142 |
+
|
| 143 |
+
if len(dets) == 0:
|
| 144 |
+
landmark_detect_false += 1
|
| 145 |
+
else:
|
| 146 |
+
landmark_detect_success += 1
|
| 147 |
+
|
| 148 |
+
# 计算检测率
|
| 149 |
+
detect_rate = landmark_detect_success / (landmark_detect_success + landmark_detect_false)
|
| 150 |
+
print(f'{txt_filename}: Detect Rate = {detect_rate}')
|
| 151 |
+
|
| 152 |
+
# 更新总的计数
|
| 153 |
+
total_landmark_detect_success += landmark_detect_success
|
| 154 |
+
total_landmark_detect_false += landmark_detect_false
|
| 155 |
+
|
| 156 |
+
# 计算总的检测率
|
| 157 |
+
total_detect_rate = total_landmark_detect_success / (total_landmark_detect_success + total_landmark_detect_false)
|
| 158 |
+
print(f'Total Detect Rate = {total_detect_rate}')
|