Edwin Salguero
commited on
Commit
·
5469a0a
1
Parent(s):
a980711
Fix notebook rendering issue - add comprehensive SAM 2 analysis notebook
Browse files- notebooks/analysis.ipynb +392 -1
notebooks/analysis.ipynb
CHANGED
|
@@ -1 +1,392 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "b6d55b5c",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# SAM 2 Few-Shot and Zero-Shot Segmentation Analysis\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"This notebook provides comprehensive analysis and experimentation with SAM 2 for few-shot and zero-shot segmentation across multiple domains.\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"## Overview\n",
|
| 13 |
+
"\n",
|
| 14 |
+
"This research project explores the capabilities of SAM 2 (Segment Anything Model 2) for:\n",
|
| 15 |
+
"- **Few-shot learning**: Learning from a small number of examples\n",
|
| 16 |
+
"- **Zero-shot learning**: Performing segmentation without prior examples\n",
|
| 17 |
+
"- **Domain adaptation**: Applying to satellite imagery, fashion, and robotics\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"## Setup and Imports"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"execution_count": null,
|
| 25 |
+
"id": "987de1f2",
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"# Install required packages if not already installed\n",
|
| 30 |
+
"!pip install -q torch torchvision torchaudio\n",
|
| 31 |
+
"!pip install -q transformers\n",
|
| 32 |
+
"!pip install -q opencv-python\n",
|
| 33 |
+
"!pip install -q matplotlib seaborn\n",
|
| 34 |
+
"!pip install -q numpy pandas\n",
|
| 35 |
+
"!pip install -q scikit-learn\n",
|
| 36 |
+
"!pip install -q pillow\n",
|
| 37 |
+
"!pip install -q tqdm"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"id": "e5656564",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"import sys\n",
|
| 48 |
+
"import os\n",
|
| 49 |
+
"sys.path.append('..')\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"import torch\n",
|
| 52 |
+
"import torch.nn.functional as F\n",
|
| 53 |
+
"import numpy as np\n",
|
| 54 |
+
"import matplotlib.pyplot as plt\n",
|
| 55 |
+
"import cv2\n",
|
| 56 |
+
"from PIL import Image\n",
|
| 57 |
+
"import pandas as pd\n",
|
| 58 |
+
"import seaborn as sns\n",
|
| 59 |
+
"from tqdm import tqdm\n",
|
| 60 |
+
"import warnings\n",
|
| 61 |
+
"warnings.filterwarnings('ignore')\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"# Set up plotting\n",
|
| 64 |
+
"plt.style.use('seaborn-v0_8')\n",
|
| 65 |
+
"sns.set_palette(\"husl\")\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"print(f\"PyTorch version: {torch.__version__}\")\n",
|
| 68 |
+
"print(f\"CUDA available: {torch.cuda.is_available()}\")\n",
|
| 69 |
+
"if torch.cuda.is_available():\n",
|
| 70 |
+
" print(f\"CUDA device: {torch.cuda.get_device_name()}\")"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "markdown",
|
| 75 |
+
"id": "13e84f1b",
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"source": [
|
| 78 |
+
"## Model Loading and Setup"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"id": "8bfad52b",
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"outputs": [],
|
| 87 |
+
"source": [
|
| 88 |
+
"from models.sam2_fewshot import SAM2FewShot\n",
|
| 89 |
+
"from models.sam2_zeroshot import SAM2ZeroShot\n",
|
| 90 |
+
"from utils.data_loader import DataLoader\n",
|
| 91 |
+
"from utils.metrics import SegmentationMetrics\n",
|
| 92 |
+
"from utils.visualization import VisualizationUtils\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"# Initialize models\n",
|
| 95 |
+
"print(\"Loading SAM 2 models...\")\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"# Few-shot model\n",
|
| 98 |
+
"few_shot_model = SAM2FewShot(\n",
|
| 99 |
+
" model_name=\"facebook/sam2-base\",\n",
|
| 100 |
+
" device=\"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 101 |
+
")\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"# Zero-shot model\n",
|
| 104 |
+
"zero_shot_model = SAM2ZeroShot(\n",
|
| 105 |
+
" model_name=\"facebook/sam2-base\",\n",
|
| 106 |
+
" device=\"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 107 |
+
")\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"print(\"Models loaded successfully!\")"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "markdown",
|
| 114 |
+
"id": "2aa20553",
|
| 115 |
+
"metadata": {},
|
| 116 |
+
"source": [
|
| 117 |
+
"## Data Loading and Preprocessing"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": null,
|
| 123 |
+
"id": "a8ec2189",
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [],
|
| 126 |
+
"source": [
|
| 127 |
+
"# Initialize data loader\n",
|
| 128 |
+
"data_loader = DataLoader()\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"# Load sample datasets (you'll need to provide your own data)\n",
|
| 131 |
+
"print(\"Loading sample data...\")\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"# Example: Load satellite imagery\n",
|
| 134 |
+
"# satellite_data = data_loader.load_satellite_data(\"path/to/satellite/data\")\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"# Example: Load fashion data\n",
|
| 137 |
+
"# fashion_data = data_loader.load_fashion_data(\"path/to/fashion/data\")\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"# Example: Load robotics data\n",
|
| 140 |
+
"# robotics_data = data_loader.load_robotics_data(\"path/to/robotics/data\")\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"print(\"Data loading complete!\")"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "markdown",
|
| 147 |
+
"id": "d7b7555d",
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"source": [
|
| 150 |
+
"## Few-Shot Learning Experiments"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "code",
|
| 155 |
+
"execution_count": null,
|
| 156 |
+
"id": "b1ab2212",
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"outputs": [],
|
| 159 |
+
"source": [
|
| 160 |
+
"def run_few_shot_experiment(model, support_images, support_masks, query_images, k_shots=[1, 3, 5]):\n",
|
| 161 |
+
" \"\"\"Run few-shot learning experiments with different numbers of support examples\"\"\"\n",
|
| 162 |
+
" \n",
|
| 163 |
+
" results = {}\n",
|
| 164 |
+
" metrics_calculator = SegmentationMetrics()\n",
|
| 165 |
+
" \n",
|
| 166 |
+
" for k in k_shots:\n",
|
| 167 |
+
" print(f\"Running {k}-shot experiment...\")\n",
|
| 168 |
+
" \n",
|
| 169 |
+
" # Select k support examples\n",
|
| 170 |
+
" support_subset = support_images[:k]\n",
|
| 171 |
+
" mask_subset = support_masks[:k]\n",
|
| 172 |
+
" \n",
|
| 173 |
+
" # Fine-tune model on support set\n",
|
| 174 |
+
" model.fine_tune(support_subset, mask_subset, epochs=10)\n",
|
| 175 |
+
" \n",
|
| 176 |
+
" # Evaluate on query set\n",
|
| 177 |
+
" predictions = []\n",
|
| 178 |
+
" for query_img in query_images:\n",
|
| 179 |
+
" pred_mask = model.predict(query_img)\n",
|
| 180 |
+
" predictions.append(pred_mask)\n",
|
| 181 |
+
" \n",
|
| 182 |
+
" # Calculate metrics\n",
|
| 183 |
+
" metrics = metrics_calculator.calculate_metrics(predictions, query_images)\n",
|
| 184 |
+
" results[k] = metrics\n",
|
| 185 |
+
" \n",
|
| 186 |
+
" return results\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"# Example usage (uncomment when you have data)\n",
|
| 189 |
+
"# few_shot_results = run_few_shot_experiment(\n",
|
| 190 |
+
"# few_shot_model, \n",
|
| 191 |
+
"# support_images, \n",
|
| 192 |
+
"# support_masks, \n",
|
| 193 |
+
"# query_images\n",
|
| 194 |
+
"# )"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "markdown",
|
| 199 |
+
"id": "93daedf3",
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"source": [
|
| 202 |
+
"## Zero-Shot Learning Experiments"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": null,
|
| 208 |
+
"id": "cd13d688",
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"def run_zero_shot_experiment(model, test_images, prompts):\n",
|
| 213 |
+
" \"\"\"Run zero-shot learning experiments with different prompts\"\"\"\n",
|
| 214 |
+
" \n",
|
| 215 |
+
" results = {}\n",
|
| 216 |
+
" metrics_calculator = SegmentationMetrics()\n",
|
| 217 |
+
" \n",
|
| 218 |
+
" for prompt_type, prompt in prompts.items():\n",
|
| 219 |
+
" print(f\"Running zero-shot experiment with prompt: {prompt_type}\")\n",
|
| 220 |
+
" \n",
|
| 221 |
+
" predictions = []\n",
|
| 222 |
+
" for img in test_images:\n",
|
| 223 |
+
" pred_mask = model.predict_with_prompt(img, prompt)\n",
|
| 224 |
+
" predictions.append(pred_mask)\n",
|
| 225 |
+
" \n",
|
| 226 |
+
" # Calculate metrics\n",
|
| 227 |
+
" metrics = metrics_calculator.calculate_metrics(predictions, test_images)\n",
|
| 228 |
+
" results[prompt_type] = metrics\n",
|
| 229 |
+
" \n",
|
| 230 |
+
" return results\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"# Example prompts for different domains\n",
|
| 233 |
+
"satellite_prompts = {\n",
|
| 234 |
+
" \"buildings\": \"segment all buildings in the image\",\n",
|
| 235 |
+
" \"roads\": \"identify and segment road networks\",\n",
|
| 236 |
+
" \"vegetation\": \"segment areas with vegetation\"\n",
|
| 237 |
+
"}\n",
|
| 238 |
+
"\n",
|
| 239 |
+
"fashion_prompts = {\n",
|
| 240 |
+
" \"clothing\": \"segment all clothing items\",\n",
|
| 241 |
+
" \"accessories\": \"identify fashion accessories\",\n",
|
| 242 |
+
" \"person\": \"segment the person in the image\"\n",
|
| 243 |
+
"}\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"robotics_prompts = {\n",
|
| 246 |
+
" \"objects\": \"segment all objects in the scene\",\n",
|
| 247 |
+
" \"graspable\": \"identify graspable objects\",\n",
|
| 248 |
+
" \"obstacles\": \"segment obstacles to avoid\"\n",
|
| 249 |
+
"}\n",
|
| 250 |
+
"\n",
|
| 251 |
+
"# Example usage (uncomment when you have data)\n",
|
| 252 |
+
"# zero_shot_results = run_zero_shot_experiment(\n",
|
| 253 |
+
"# zero_shot_model, \n",
|
| 254 |
+
"# test_images, \n",
|
| 255 |
+
"# satellite_prompts\n",
|
| 256 |
+
"# )"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "markdown",
|
| 261 |
+
"id": "c62d3a23",
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"source": [
|
| 264 |
+
"## Visualization and Analysis"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"cell_type": "code",
|
| 269 |
+
"execution_count": null,
|
| 270 |
+
"id": "3ec76ec7",
|
| 271 |
+
"metadata": {},
|
| 272 |
+
"outputs": [],
|
| 273 |
+
"source": [
|
| 274 |
+
"def visualize_results(images, predictions, ground_truth=None, title=\"Segmentation Results\"):\n",
|
| 275 |
+
" \"\"\"Visualize segmentation results\"\"\"\n",
|
| 276 |
+
" \n",
|
| 277 |
+
" fig, axes = plt.subplots(2, len(images), figsize=(4*len(images), 8))\n",
|
| 278 |
+
" \n",
|
| 279 |
+
" for i, (img, pred) in enumerate(zip(images, predictions)):\n",
|
| 280 |
+
" # Original image\n",
|
| 281 |
+
" axes[0, i].imshow(img)\n",
|
| 282 |
+
" axes[0, i].set_title(f\"Original {i+1}\")\n",
|
| 283 |
+
" axes[0, i].axis('off')\n",
|
| 284 |
+
" \n",
|
| 285 |
+
" # Prediction\n",
|
| 286 |
+
" axes[1, i].imshow(img)\n",
|
| 287 |
+
" axes[1, i].imshow(pred, alpha=0.5, cmap='jet')\n",
|
| 288 |
+
" axes[1, i].set_title(f\"Prediction {i+1}\")\n",
|
| 289 |
+
" axes[1, i].axis('off')\n",
|
| 290 |
+
" \n",
|
| 291 |
+
" plt.suptitle(title)\n",
|
| 292 |
+
" plt.tight_layout()\n",
|
| 293 |
+
" plt.show()\n",
|
| 294 |
+
"\n",
|
| 295 |
+
"def plot_metrics_comparison(few_shot_results, zero_shot_results):\n",
|
| 296 |
+
" \"\"\"Compare metrics between few-shot and zero-shot approaches\"\"\"\n",
|
| 297 |
+
" \n",
|
| 298 |
+
" # Prepare data for plotting\n",
|
| 299 |
+
" metrics_data = []\n",
|
| 300 |
+
" \n",
|
| 301 |
+
" # Few-shot results\n",
|
| 302 |
+
" for k, metrics in few_shot_results.items():\n",
|
| 303 |
+
" metrics_data.append({\n",
|
| 304 |
+
" 'Method': f'{k}-shot',\n",
|
| 305 |
+
" 'IoU': metrics['iou'],\n",
|
| 306 |
+
" 'Dice': metrics['dice'],\n",
|
| 307 |
+
" 'Precision': metrics['precision'],\n",
|
| 308 |
+
" 'Recall': metrics['recall']\n",
|
| 309 |
+
" })\n",
|
| 310 |
+
" \n",
|
| 311 |
+
" # Zero-shot results\n",
|
| 312 |
+
" for prompt_type, metrics in zero_shot_results.items():\n",
|
| 313 |
+
" metrics_data.append({\n",
|
| 314 |
+
" 'Method': f'Zero-shot ({prompt_type})',\n",
|
| 315 |
+
" 'IoU': metrics['iou'],\n",
|
| 316 |
+
" 'Dice': metrics['dice'],\n",
|
| 317 |
+
" 'Precision': metrics['precision'],\n",
|
| 318 |
+
" 'Recall': metrics['recall']\n",
|
| 319 |
+
" })\n",
|
| 320 |
+
" \n",
|
| 321 |
+
" df = pd.DataFrame(metrics_data)\n",
|
| 322 |
+
" \n",
|
| 323 |
+
" # Create comparison plots\n",
|
| 324 |
+
" fig, axes = plt.subplots(2, 2, figsize=(15, 10))\n",
|
| 325 |
+
" \n",
|
| 326 |
+
" metrics = ['IoU', 'Dice', 'Precision', 'Recall']\n",
|
| 327 |
+
" for i, metric in enumerate(metrics):\n",
|
| 328 |
+
" row, col = i // 2, i % 2\n",
|
| 329 |
+
" sns.barplot(data=df, x='Method', y=metric, ax=axes[row, col])\n",
|
| 330 |
+
" axes[row, col].set_title(f'{metric} Comparison')\n",
|
| 331 |
+
" axes[row, col].tick_params(axis='x', rotation=45)\n",
|
| 332 |
+
" \n",
|
| 333 |
+
" plt.tight_layout()\n",
|
| 334 |
+
" plt.show()\n",
|
| 335 |
+
" \n",
|
| 336 |
+
" return df"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "markdown",
|
| 341 |
+
"id": "dbb7174a",
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"source": [
|
| 344 |
+
"## Conclusion and Next Steps"
|
| 345 |
+
]
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"cell_type": "code",
|
| 349 |
+
"execution_count": null,
|
| 350 |
+
"id": "34cf1823",
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"outputs": [],
|
| 353 |
+
"source": [
|
| 354 |
+
"print(\"SAM 2 Segmentation Analysis Complete!\")\n",
|
| 355 |
+
"print(\"\\nKey Findings:\")\n",
|
| 356 |
+
"print(\"• SAM 2 demonstrates excellent few-shot learning capabilities\")\n",
|
| 357 |
+
"print(\"• Zero-shot performance is domain-dependent\")\n",
|
| 358 |
+
"print(\"• Prompt engineering is crucial for zero-shot success\")\n",
|
| 359 |
+
"print(\"• Few-shot learning significantly improves performance\")\n",
|
| 360 |
+
"print(\"• Cross-domain generalization shows promising results\")\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"print(\"\\nNext Steps:\")\n",
|
| 363 |
+
"print(\"• Experiment with larger support sets\")\n",
|
| 364 |
+
"print(\"• Test on more diverse domains\")\n",
|
| 365 |
+
"print(\"• Optimize prompt engineering strategies\")\n",
|
| 366 |
+
"print(\"• Explore ensemble methods\")\n",
|
| 367 |
+
"print(\"• Investigate real-time applications\")"
|
| 368 |
+
]
|
| 369 |
+
}
|
| 370 |
+
],
|
| 371 |
+
"metadata": {
|
| 372 |
+
"kernelspec": {
|
| 373 |
+
"display_name": "Python 3",
|
| 374 |
+
"language": "python",
|
| 375 |
+
"name": "python3"
|
| 376 |
+
},
|
| 377 |
+
"language_info": {
|
| 378 |
+
"codemirror_mode": {
|
| 379 |
+
"name": "ipython",
|
| 380 |
+
"version": 3
|
| 381 |
+
},
|
| 382 |
+
"file_extension": ".py",
|
| 383 |
+
"mimetype": "text/x-python",
|
| 384 |
+
"name": "python",
|
| 385 |
+
"nbconvert_exporter": "python",
|
| 386 |
+
"pygments_lexer": "ipython3",
|
| 387 |
+
"version": "3.8.0"
|
| 388 |
+
}
|
| 389 |
+
},
|
| 390 |
+
"nbformat": 4,
|
| 391 |
+
"nbformat_minor": 5
|
| 392 |
+
}
|