File size: 7,611 Bytes
16628c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import tensorflow as tf
import tensorflow_datasets as tfds
from data.utils import clean_task_instruction, quaternion_to_euler
import tensorflow as tf
import h5py
import numpy as np
from tqdm import tqdm
import os
import imageio
import concurrent.futures
import fnmatch
import cv2
import random

def _parse_function(proto):
    keys_to_features = {
        'action': tf.io.FixedLenFeature([], tf.string),
        'base_action': tf.io.FixedLenFeature([], tf.string),
        'qpos': tf.io.FixedLenFeature([], tf.string),
        'qvel': tf.io.FixedLenFeature([], tf.string),
        'cam_high': tf.io.FixedLenFeature([], tf.string),
        'cam_left_wrist': tf.io.FixedLenFeature([], tf.string),
        'cam_right_wrist': tf.io.FixedLenFeature([], tf.string),
        'instruction': tf.io.FixedLenFeature([], tf.string),
        'terminate_episode': tf.io.FixedLenFeature([], tf.int64)
    }

    parsed_features = tf.io.parse_single_example(proto, keys_to_features)

    action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float32)
    base_action = tf.io.parse_tensor(parsed_features['base_action'], out_type=tf.float32)
    qpos = tf.io.parse_tensor(parsed_features['qpos'], out_type=tf.float32)
    qvel = tf.io.parse_tensor(parsed_features['qvel'], out_type=tf.float32)
    cam_high = tf.io.parse_tensor(parsed_features['cam_high'], out_type=tf.uint8)
    cam_left_wrist = tf.io.parse_tensor(parsed_features['cam_left_wrist'], out_type=tf.uint8)
    cam_right_wrist = tf.io.parse_tensor(parsed_features['cam_right_wrist'], out_type=tf.uint8)
    instruction = parsed_features['instruction']
    terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64)
    action = tf.reshape(action, [14])
    base_action = tf.reshape(base_action, [2])
    qpos = tf.reshape(qpos, [14])
    qvel = tf.reshape(qvel, [14])
    cam_high = tf.reshape(cam_high, [480, 640, 3])
    cam_left_wrist = tf.reshape(cam_left_wrist, [480, 640, 3])
    cam_right_wrist = tf.reshape(cam_right_wrist, [480, 640, 3])

    return {
        "action": action,
        "base_action": base_action,
        "qpos": qpos,
        "qvel": qvel,
        'observation':{
        "cam_high": cam_high,
        "cam_left_wrist": cam_left_wrist,
        "cam_right_wrist": cam_right_wrist
        },
        "instruction": instruction,
        "terminate_episode": terminate_episode
    }

def dataset_generator_from_tfrecords(seed):
    tfrecord_path = './data/datasets/aloha/tfrecords/aloha_mobile/'
    datasets = []
    filepaths = []
    for root, dirs, files in os.walk(tfrecord_path):
        for filename in fnmatch.filter(files, '*.tfrecord'):
            filepath = os.path.join(root, filename)
            filepaths.append(filepath)
            
    random.seed(seed)
    random.shuffle(filepaths)
    for filepath in filepaths:
        raw_dataset = tf.data.TFRecordDataset(filepath)
        dataset = raw_dataset.map(_parse_function)
        yield {
            'steps': dataset
        }

def load_dataset(seed):
    dataset = tf.data.Dataset.from_generator(
        lambda: dataset_generator_from_tfrecords(seed),
        output_signature={
            'steps': tf.data.DatasetSpec(
                element_spec={
                    'action': tf.TensorSpec(shape=(14), dtype=tf.float32),
                    'base_action': tf.TensorSpec(shape=(2), dtype=tf.float32),
                    'qpos': tf.TensorSpec(shape=(14), dtype=tf.float32),
                    'qvel': tf.TensorSpec(shape=(14), dtype=tf.float32),
                    'observation': {
                        'cam_high': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
                        'cam_left_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
                        'cam_right_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
                    },
                    'instruction': tf.TensorSpec(shape=(), dtype=tf.string),
                    'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64)
                }
            )
        }
    )

    return dataset

def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor:
    """
    Convert terminate action to a boolean, where True means terminate.
    """
    return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True))


def process_step(step: dict) -> dict:
    """
    Unify the action format and clean the task instruction.

    DO NOT use python list, use tf.TensorArray instead.
    """
    # Convert raw action to our action
    old_action = step['action']
    step['action'] = {}
    action = step['action']
    step['action']['terminate'] = step['terminate_episode']
    # act-plus-plus/utils.py at main · MarkFzp/act-plus-plus
    left_arm_pos = old_action[:6]
    left_gripper_open = old_action[6:7]
    right_arm_pos = old_action[7:13]
    right_gripper_open = old_action[13:14]

    base_vel_y = step['base_action'][:1]
    base_delta_ang = step['base_action'][1:]
    base_action = tf.concat([base_vel_y, base_delta_ang], axis=0)
    # # No base found
    arm_action = tf.concat([left_arm_pos,left_gripper_open,right_arm_pos,right_gripper_open], axis=0)
    action['arm_concat'] = arm_action
    action['base_concat'] = base_action
    # # Write the action format
    action['format'] = tf.constant(
        "left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_gripper_open,base_vel_y,base_angular_vel")
    
    state = step['observation']
    left_qpos = step['qpos'][:6]
    left_gripper_open = step['qpos'][6:7]
    right_qpos = step['qpos'][7:13]
    right_gripper_open = step['qpos'][13:14]
    left_qvel = step['qvel'][:6]
    # left_gripper_joint_vel = step['qvel'][6:7]
    right_qvel = step['qvel'][7:13]
    # right_gripper_joint_vel = step['qvel'][13:14]

    state['arm_concat'] = tf.concat([left_qpos, left_qvel, left_gripper_open, right_qpos, right_qvel, right_gripper_open], axis=0)
    # # Write the state format
    state['format'] = tf.constant(
        "left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_arm_joint_0_vel,left_arm_joint_1_vel,left_arm_joint_2_vel,left_arm_joint_3_vel,left_arm_joint_4_vel,left_arm_joint_5_vel,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_arm_joint_0_vel,right_arm_joint_1_vel,right_arm_joint_2_vel,right_arm_joint_3_vel,right_arm_joint_4_vel,right_arm_joint_5_vel,right_gripper_open")

    # Clean the task instruction
    # Define the replacements (old, new) as a dictionary
    replacements = {
        '_': ' ',
        '1f': ' ',
        '4f': ' ',
        '-': ' ',
        '50': ' ',
        '55': ' ',
        '56': ' ',
        
    }
    instr = step['instruction']
    instr = clean_task_instruction(instr, replacements)
    step['observation']['natural_language_instruction'] = instr

    return step


if __name__ == "__main__":
    import tensorflow_datasets as tfds
    from data.utils import dataset_to_path

    DATASET_DIR = '/mnt/d/aloha/'
    DATASET_NAME = 'dataset'
    # Load the dataset
    dataset = load_dataset()
    for data in dataset.take(1):
        for step in data['steps'].take(1):
            from IPython import embed; embed()
            print(step)