File size: 7,611 Bytes
16628c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import tensorflow as tf
import tensorflow_datasets as tfds
from data.utils import clean_task_instruction, quaternion_to_euler
import tensorflow as tf
import h5py
import numpy as np
from tqdm import tqdm
import os
import imageio
import concurrent.futures
import fnmatch
import cv2
import random
def _parse_function(proto):
keys_to_features = {
'action': tf.io.FixedLenFeature([], tf.string),
'base_action': tf.io.FixedLenFeature([], tf.string),
'qpos': tf.io.FixedLenFeature([], tf.string),
'qvel': tf.io.FixedLenFeature([], tf.string),
'cam_high': tf.io.FixedLenFeature([], tf.string),
'cam_left_wrist': tf.io.FixedLenFeature([], tf.string),
'cam_right_wrist': tf.io.FixedLenFeature([], tf.string),
'instruction': tf.io.FixedLenFeature([], tf.string),
'terminate_episode': tf.io.FixedLenFeature([], tf.int64)
}
parsed_features = tf.io.parse_single_example(proto, keys_to_features)
action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float32)
base_action = tf.io.parse_tensor(parsed_features['base_action'], out_type=tf.float32)
qpos = tf.io.parse_tensor(parsed_features['qpos'], out_type=tf.float32)
qvel = tf.io.parse_tensor(parsed_features['qvel'], out_type=tf.float32)
cam_high = tf.io.parse_tensor(parsed_features['cam_high'], out_type=tf.uint8)
cam_left_wrist = tf.io.parse_tensor(parsed_features['cam_left_wrist'], out_type=tf.uint8)
cam_right_wrist = tf.io.parse_tensor(parsed_features['cam_right_wrist'], out_type=tf.uint8)
instruction = parsed_features['instruction']
terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64)
action = tf.reshape(action, [14])
base_action = tf.reshape(base_action, [2])
qpos = tf.reshape(qpos, [14])
qvel = tf.reshape(qvel, [14])
cam_high = tf.reshape(cam_high, [480, 640, 3])
cam_left_wrist = tf.reshape(cam_left_wrist, [480, 640, 3])
cam_right_wrist = tf.reshape(cam_right_wrist, [480, 640, 3])
return {
"action": action,
"base_action": base_action,
"qpos": qpos,
"qvel": qvel,
'observation':{
"cam_high": cam_high,
"cam_left_wrist": cam_left_wrist,
"cam_right_wrist": cam_right_wrist
},
"instruction": instruction,
"terminate_episode": terminate_episode
}
def dataset_generator_from_tfrecords(seed):
tfrecord_path = './data/datasets/aloha/tfrecords/aloha_mobile/'
datasets = []
filepaths = []
for root, dirs, files in os.walk(tfrecord_path):
for filename in fnmatch.filter(files, '*.tfrecord'):
filepath = os.path.join(root, filename)
filepaths.append(filepath)
random.seed(seed)
random.shuffle(filepaths)
for filepath in filepaths:
raw_dataset = tf.data.TFRecordDataset(filepath)
dataset = raw_dataset.map(_parse_function)
yield {
'steps': dataset
}
def load_dataset(seed):
dataset = tf.data.Dataset.from_generator(
lambda: dataset_generator_from_tfrecords(seed),
output_signature={
'steps': tf.data.DatasetSpec(
element_spec={
'action': tf.TensorSpec(shape=(14), dtype=tf.float32),
'base_action': tf.TensorSpec(shape=(2), dtype=tf.float32),
'qpos': tf.TensorSpec(shape=(14), dtype=tf.float32),
'qvel': tf.TensorSpec(shape=(14), dtype=tf.float32),
'observation': {
'cam_high': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
'cam_left_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
'cam_right_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
},
'instruction': tf.TensorSpec(shape=(), dtype=tf.string),
'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64)
}
)
}
)
return dataset
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor:
"""
Convert terminate action to a boolean, where True means terminate.
"""
return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True))
def process_step(step: dict) -> dict:
"""
Unify the action format and clean the task instruction.
DO NOT use python list, use tf.TensorArray instead.
"""
# Convert raw action to our action
old_action = step['action']
step['action'] = {}
action = step['action']
step['action']['terminate'] = step['terminate_episode']
# act-plus-plus/utils.py at main · MarkFzp/act-plus-plus
left_arm_pos = old_action[:6]
left_gripper_open = old_action[6:7]
right_arm_pos = old_action[7:13]
right_gripper_open = old_action[13:14]
base_vel_y = step['base_action'][:1]
base_delta_ang = step['base_action'][1:]
base_action = tf.concat([base_vel_y, base_delta_ang], axis=0)
# # No base found
arm_action = tf.concat([left_arm_pos,left_gripper_open,right_arm_pos,right_gripper_open], axis=0)
action['arm_concat'] = arm_action
action['base_concat'] = base_action
# # Write the action format
action['format'] = tf.constant(
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_gripper_open,base_vel_y,base_angular_vel")
state = step['observation']
left_qpos = step['qpos'][:6]
left_gripper_open = step['qpos'][6:7]
right_qpos = step['qpos'][7:13]
right_gripper_open = step['qpos'][13:14]
left_qvel = step['qvel'][:6]
# left_gripper_joint_vel = step['qvel'][6:7]
right_qvel = step['qvel'][7:13]
# right_gripper_joint_vel = step['qvel'][13:14]
state['arm_concat'] = tf.concat([left_qpos, left_qvel, left_gripper_open, right_qpos, right_qvel, right_gripper_open], axis=0)
# # Write the state format
state['format'] = tf.constant(
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_arm_joint_0_vel,left_arm_joint_1_vel,left_arm_joint_2_vel,left_arm_joint_3_vel,left_arm_joint_4_vel,left_arm_joint_5_vel,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_arm_joint_0_vel,right_arm_joint_1_vel,right_arm_joint_2_vel,right_arm_joint_3_vel,right_arm_joint_4_vel,right_arm_joint_5_vel,right_gripper_open")
# Clean the task instruction
# Define the replacements (old, new) as a dictionary
replacements = {
'_': ' ',
'1f': ' ',
'4f': ' ',
'-': ' ',
'50': ' ',
'55': ' ',
'56': ' ',
}
instr = step['instruction']
instr = clean_task_instruction(instr, replacements)
step['observation']['natural_language_instruction'] = instr
return step
if __name__ == "__main__":
import tensorflow_datasets as tfds
from data.utils import dataset_to_path
DATASET_DIR = '/mnt/d/aloha/'
DATASET_NAME = 'dataset'
# Load the dataset
dataset = load_dataset()
for data in dataset.take(1):
for step in data['steps'].take(1):
from IPython import embed; embed()
print(step) |