File size: 2,535 Bytes
9de9fbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import tensorflow as tf
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d
def process_step(step: dict) -> dict:
"""
Unify the action format and clean the task instruction.
DO NOT use python list, use tf.TensorArray instead.
"""
# Convert raw action to our action
action_dict = step['action']
# Robot action
# eef_pos = action_dict['ee_pos'][:3]
# eef_ang = action_dict['ee_pos'][3:6]
# eef_ang = euler_to_rotation_matrix(eef_ang)
# eef_ang = rotation_matrix_to_ortho6d(eef_ang)
eef_pos_vel = action_dict[:3]
eef_ang_vel = action_dict[3:6]
# joint_pos = action_dict['joint_pos'][:-1]
# joint_vel = action_dict['delta_joint'][:-1]
grip_pos = 1 - tf.clip_by_value(action_dict[-1:], 0, 1)
# grip_vel = action_dict['gripper_velocity']
# Concatenate the action
step['action'] = {}
action = step['action']
arm_action = tf.concat([eef_pos_vel, eef_ang_vel, grip_pos], axis=0)
action['arm_concat'] = arm_action
# action['terminate'] = step['is_terminal']
# Write the action format
action['format'] = tf.constant(
"eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw,gripper_joint_0_pos")
# Convert raw state to our state
# Robot state
state = step['observation']
# print(state.keys())
# image = step['observation']['image']
eef_pos = state['state'][:3]
eef_ang = state['state'][3:6]
eef_ang = euler_to_rotation_matrix(eef_ang)
eef_ang = rotation_matrix_to_ortho6d(eef_ang)
# joint_pos = state['joint_pos'][:-1]
grip_pos = state['state'][-2:]
# Concatenate the state
state['arm_concat'] = tf.concat([
grip_pos,eef_pos,eef_ang], axis=0)
# Write the state format
state['format'] = tf.constant(
"gripper_joint_0_pos,gripper_joint_1_pos,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5")
# Clean the task instruction
# Define the replacements (old, new) as a dictionary
replacements = {
'_': ' ',
'1f': ' ',
'4f': ' ',
'-': ' ',
'50': ' ',
'55': ' ',
'56': ' ',
}
instr = step['language_instruction']
# instr = clean_task_instruction(instr, replacements)
step['observation'] = state
step['observation']['natural_language_instruction'] = instr
return step
if __name__ == "__main__":
pass
|