File size: 12,977 Bytes
d899b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
import numpy as np
import torch
from PIL import Image
from torchvision import transforms
from configs.state_vec import STATE_VEC_IDX_MAPPING
from models.multimodal_encoder.siglip_encoder import SiglipVisionTower
from models.multimodal_encoder.t5_encoder import T5Embedder
from models.rdt_runner import RDTRunner
# The indices that the raw vector should be mapped to in the unified action vector
AGILEX_STATE_INDICES = [
STATE_VEC_IDX_MAPPING[f"left_arm_joint_{i}_pos"] for i in range(6)
] + [
STATE_VEC_IDX_MAPPING["left_gripper_open"]
] + [
STATE_VEC_IDX_MAPPING[f"right_arm_joint_{i}_pos"] for i in range(6)
] + [
STATE_VEC_IDX_MAPPING[f"right_gripper_open"]
]
TABLETOP_6D_INDICES_NAMES = [
'left_eef_pos_x','left_eef_pos_y','left_eef_pos_z','left_eef_angle_0','left_eef_angle_1','left_eef_angle_2','left_eef_angle_3','left_eef_angle_4','left_eef_angle_5','left_gripper_open','right_eef_pos_x','right_eef_pos_y','right_eef_pos_z','right_eef_angle_0','right_eef_angle_1','right_eef_angle_2','right_eef_angle_3','right_eef_angle_4','right_eef_angle_5','right_gripper_open']
TABLETOP_6D_INDICES = [STATE_VEC_IDX_MAPPING[n] for n in TABLETOP_6D_INDICES_NAMES]
# Create the RDT model
def create_model(args, **kwargs):
model = RoboticDiffusionTransformerModel(args, **kwargs)
pretrained = kwargs.get("pretrained", None)
if (
pretrained is not None
and os.path.isfile(pretrained)
):
model.load_pretrained_weights(pretrained)
return model
class RoboticDiffusionTransformerModel(object):
"""A wrapper for the RDT model, which handles
1. Model initialization
2. Encodings of instructions
3. Model inference
"""
def __init__(
self, args,
device='cuda',
dtype=torch.bfloat16,
image_size=None,
control_frequency=25,
pretrained=None,
pretrained_vision_encoder_name_or_path=None,
pretrained_text_encoder_name_or_path=None
):
self.args = args
self.dtype = dtype
self.image_size = image_size
self.device = device
self.control_frequency = control_frequency
# We do not use the text encoder due to limited GPU memory
self.text_tokenizer, self.text_model = self.get_text_encoder(pretrained_text_encoder_name_or_path)
self.image_processor, self.vision_model = self.get_vision_encoder(pretrained_vision_encoder_name_or_path)
self.policy = self.get_policy(pretrained)
self.reset()
def get_policy(self, pretrained):
"""Initialize the model."""
# Initialize model with arguments
if (
pretrained is None
or os.path.isfile(pretrained)
):
img_cond_len = (self.args["common"]["img_history_size"]
* self.args["common"]["num_cameras"]
* self.vision_model.num_patches)
_model = RDTRunner(
action_dim=self.args["common"]["state_dim"],
pred_horizon=self.args["common"]["action_chunk_size"],
config=self.args["model"],
lang_token_dim=self.args["model"]["lang_token_dim"],
img_token_dim=self.args["model"]["img_token_dim"],
state_token_dim=self.args["model"]["state_token_dim"],
max_lang_cond_len=self.args["dataset"]["tokenizer_max_length"],
img_cond_len=img_cond_len,
img_pos_embed_config=[
# No initial pos embed in the last grid size
# since we've already done in ViT
("image", (self.args["common"]["img_history_size"],
self.args["common"]["num_cameras"],
-self.vision_model.num_patches)),
],
lang_pos_embed_config=[
# Similarly, no initial pos embed for language
("lang", -self.args["dataset"]["tokenizer_max_length"]),
],
dtype=self.dtype,
)
else:
_model = RDTRunner.from_pretrained(pretrained)
return _model
def get_text_encoder(self, pretrained_text_encoder_name_or_path):
text_embedder = T5Embedder(from_pretrained=pretrained_text_encoder_name_or_path,
model_max_length=self.args["dataset"]["tokenizer_max_length"],
device=self.device)
tokenizer, text_encoder = text_embedder.tokenizer, text_embedder.model
return tokenizer, text_encoder
def get_vision_encoder(self, pretrained_vision_encoder_name_or_path):
vision_encoder = SiglipVisionTower(vision_tower=pretrained_vision_encoder_name_or_path, args=None)
image_processor = vision_encoder.image_processor
return image_processor, vision_encoder
def reset(self):
"""Set model to evaluation mode.
"""
device = self.device
weight_dtype = self.dtype
self.policy.eval()
# self.text_model.eval()
self.vision_model.eval()
self.policy = self.policy.to(device, dtype=weight_dtype)
# self.text_model = self.text_model.to(device, dtype=weight_dtype)
self.vision_model = self.vision_model.to(device, dtype=weight_dtype)
def load_pretrained_weights(self, pretrained=None):
if pretrained is None:
return
print(f'Loading weights from {pretrained}')
filename = os.path.basename(pretrained)
if filename.endswith('.pt'):
checkpoint = torch.load(pretrained)
self.policy.load_state_dict(checkpoint["module"])
elif filename.endswith('.safetensors'):
from safetensors.torch import load_model
load_model(self.policy, pretrained)
else:
raise NotImplementedError(f"Unknown checkpoint format: {pretrained}")
def encode_instruction(self, instruction, device="cuda"):
"""Encode string instruction to latent embeddings.
Args:
instruction: a string of instruction
device: a string of device
Returns:
pred: a tensor of latent embeddings of shape (text_max_length, 512)
"""
tokens = self.text_tokenizer(
instruction, return_tensors="pt",
padding="longest",
truncation=True
)["input_ids"].to(device)
tokens = tokens.view(1, -1)
with torch.no_grad():
pred = self.text_model(tokens).last_hidden_state.detach()
return pred
def _format_joint_to_state(self, joints):
"""
Format the joint proprioception into the unified action vector.
Args:
joints (torch.Tensor): The 6D EEF proprioception to be formatted.
qpos ([B, N, 20]).
Returns:
state (torch.Tensor): The formatted vector for RDT ([B, N, 128]).
"""
# Rescale the gripper to the range of [0, 1]
joints = joints / torch.tensor(
[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]],
device=joints.device, dtype=joints.dtype
)
B, N, _ = joints.shape
state = torch.zeros(
(B, N, self.args["model"]["state_token_dim"]),
device=joints.device, dtype=joints.dtype
)
# Fill into the unified state vector
state[:, :, TABLETOP_6D_INDICES] = joints
# Assemble the mask indicating each dimension's availability
state_elem_mask = torch.zeros(
(B, self.args["model"]["state_token_dim"]),
device=joints.device, dtype=joints.dtype
)
state_elem_mask[:,TABLETOP_6D_INDICES] = 1
return state, state_elem_mask
def _unformat_action_to_joint(self, action):
"""
Unformat the unified action vector into the joint action to be executed.
Args:
action (torch.Tensor): The unified action vector to be unformatted.
([B, N, 128])
Returns:
joints (torch.Tensor): The unformatted robot joint action.
qpos ([B, N, 14]).
"""
action_indices = TABLETOP_6D_INDICES
joints = action[:, :, action_indices]
# Rescale the gripper back to the action range
# Note that the action range and proprioception range are different
# for Mobile ALOHA robot
joints = joints * torch.tensor(
[[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]],
device=joints.device, dtype=joints.dtype
)
return joints
@torch.no_grad()
def step(self, proprio, images, instruction):
"""
Predict the next action chunk given the
proprioceptive states, images, and instruction embeddings.
Args:
proprio: proprioceptive states
images: RGB images, the order should be
[ext_{t-1}, right_wrist_{t-1}, left_wrist_{t-1},
ext_{t}, right_wrist_{t}, left_wrist_{t}]
text_embeds: instruction embeddings
Returns:
action: predicted action
"""
device = self.device
dtype = self.dtype
# The background image used for padding
background_color = np.array([
int(x*255) for x in self.image_processor.image_mean
], dtype=np.uint8).reshape(1, 1, 3)
background_image = np.ones((
self.image_processor.size["height"],
self.image_processor.size["width"], 3), dtype=np.uint8
) * background_color
# Preprocess the images by order and encode them
image_tensor_list = []
for image in images:
if image is None:
# Replace it with the background image
image = Image.fromarray(background_image)
if self.image_size is not None:
image = transforms.Resize(self.data_args.image_size)(image)
if self.args["dataset"].get("auto_adjust_image_brightness", False):
pixel_values = list(image.getdata())
average_brightness = sum(sum(pixel) for pixel in pixel_values) / (len(pixel_values) * 255.0 * 3)
if average_brightness <= 0.15:
image = transforms.ColorJitter(brightness=(1.75,1.75))(image)
if self.args["dataset"].get("image_aspect_ratio", "pad") == 'pad':
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x*255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
image_tensor_list.append(image)
image_tensor = torch.stack(image_tensor_list, dim=0).to(device, dtype=dtype)
image_embeds = self.vision_model(image_tensor).detach()
image_embeds = image_embeds.reshape(-1, self.vision_model.hidden_size).unsqueeze(0)
# Prepare the proprioception states and the control frequency
joints = proprio.to(device).unsqueeze(0) # (1, 1, 14)
states, state_elem_mask = self._format_joint_to_state(joints) # (1, 1, 128), (1, 128)
states, state_elem_mask = states.to(device, dtype=dtype), state_elem_mask.to(device, dtype=dtype)
states = states[:, -1:, :] # (1, 1, 128)
ctrl_freqs = torch.tensor([self.control_frequency]).to(device)
# text_embeds = text_embeds.to(device, dtype=dtype)
text_embeds = self.encode_instruction(instruction=instruction)
# Predict the next action chunk given the inputs
trajectory = self.policy.predict_action(
lang_tokens=text_embeds,
lang_attn_mask=torch.ones(
text_embeds.shape[:2], dtype=torch.bool,
device=text_embeds.device),
img_tokens=image_embeds,
state_tokens=states,
action_mask=state_elem_mask.unsqueeze(1),
ctrl_freqs=ctrl_freqs
)
trajectory = self._unformat_action_to_joint(trajectory).to(torch.float32)
return trajectory
|