|
import json |
|
import random |
|
import os |
|
import fnmatch |
|
import random |
|
|
|
import tensorflow as tf |
|
|
|
|
|
def _parse_function(proto, precomputed_instr_embed_path): |
|
keys_to_features = { |
|
'action': tf.io.FixedLenFeature([], tf.string), |
|
'base_action': tf.io.FixedLenFeature([], tf.string), |
|
'qpos': tf.io.FixedLenFeature([], tf.string), |
|
'qvel': tf.io.FixedLenFeature([], tf.string), |
|
'cam_high': tf.io.FixedLenFeature([], tf.string), |
|
'cam_left_wrist': tf.io.FixedLenFeature([], tf.string), |
|
'cam_right_wrist': tf.io.FixedLenFeature([], tf.string), |
|
'instruction': tf.io.FixedLenFeature([], tf.string), |
|
'terminate_episode': tf.io.FixedLenFeature([], tf.int64) |
|
} |
|
|
|
parsed_features = tf.io.parse_single_example(proto, keys_to_features) |
|
|
|
action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float32) |
|
base_action = tf.io.parse_tensor(parsed_features['base_action'], out_type=tf.float32) |
|
qpos = tf.io.parse_tensor(parsed_features['qpos'], out_type=tf.float32) |
|
qvel = tf.io.parse_tensor(parsed_features['qvel'], out_type=tf.float32) |
|
cam_high = tf.io.parse_tensor(parsed_features['cam_high'], out_type=tf.string) |
|
cam_left_wrist = tf.io.parse_tensor(parsed_features['cam_left_wrist'], out_type=tf.string) |
|
cam_right_wrist = tf.io.parse_tensor(parsed_features['cam_right_wrist'], out_type=tf.string) |
|
|
|
terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64) |
|
|
|
cam_high = tf.image.decode_jpeg(cam_high, channels=3, dct_method='INTEGER_ACCURATE') |
|
cam_left_wrist = tf.image.decode_jpeg(cam_left_wrist, channels=3, dct_method='INTEGER_ACCURATE') |
|
cam_right_wrist = tf.image.decode_jpeg(cam_right_wrist, channels=3, dct_method='INTEGER_ACCURATE') |
|
|
|
cam_high = tf.reverse(cam_high, axis=[-1]) |
|
cam_left_wrist = tf.reverse(cam_left_wrist, axis=[-1]) |
|
cam_right_wrist = tf.reverse(cam_right_wrist, axis=[-1]) |
|
|
|
action = tf.reshape(action, [14]) |
|
base_action = tf.reshape(base_action, [2]) |
|
qpos = tf.reshape(qpos, [14]) |
|
qvel = tf.reshape(qvel, [14]) |
|
cam_high = tf.reshape(cam_high, [480, 640, 3]) |
|
cam_left_wrist = tf.reshape(cam_left_wrist, [480, 640, 3]) |
|
cam_right_wrist = tf.reshape(cam_right_wrist, [480, 640, 3]) |
|
|
|
return { |
|
"action": action, |
|
"base_action": base_action, |
|
"qpos": qpos, |
|
"qvel": qvel, |
|
'observation':{ |
|
"cam_high": cam_high, |
|
"cam_left_wrist": cam_left_wrist, |
|
"cam_right_wrist": cam_right_wrist |
|
}, |
|
"instruction": precomputed_instr_embed_path, |
|
"terminate_episode": terminate_episode, |
|
} |
|
|
|
|
|
def dataset_generator_from_tfrecords(seed): |
|
tfrecord_path = './data/datasets/agilex/tfrecords/' |
|
filepaths = [] |
|
for root, dirs, files in os.walk(tfrecord_path): |
|
for filename in fnmatch.filter(files, '*.tfrecord'): |
|
filepath = os.path.join(root, filename) |
|
filepaths.append(filepath) |
|
|
|
random.seed(seed) |
|
random.shuffle(filepaths) |
|
for filepath in filepaths: |
|
raw_dataset = tf.data.TFRecordDataset(filepath) |
|
dataset = raw_dataset.map(lambda x: _parse_function(x, os.path.dirname(filepath))) |
|
yield { |
|
'steps': dataset |
|
} |
|
|
|
|
|
def load_dataset(seed): |
|
dataset = tf.data.Dataset.from_generator( |
|
lambda: dataset_generator_from_tfrecords(seed), |
|
output_signature={ |
|
'steps': tf.data.DatasetSpec( |
|
element_spec={ |
|
'action': tf.TensorSpec(shape=(14), dtype=tf.float32), |
|
'base_action': tf.TensorSpec(shape=(2), dtype=tf.float32), |
|
'qpos': tf.TensorSpec(shape=(14), dtype=tf.float32), |
|
'qvel': tf.TensorSpec(shape=(14), dtype=tf.float32), |
|
'observation': { |
|
'cam_high': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
'cam_left_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
'cam_right_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
}, |
|
'instruction': tf.TensorSpec(shape=(), dtype=tf.string), |
|
'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64), |
|
} |
|
) |
|
} |
|
) |
|
|
|
return dataset |
|
|
|
|
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) |
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
old_action = step['action'] |
|
step['action'] = {} |
|
action = step['action'] |
|
step['action']['terminate'] = step['terminate_episode'] |
|
|
|
left_arm_pos = old_action[:6] |
|
left_gripper_open = old_action[6:7] / 11.8997 |
|
right_arm_pos = old_action[7:13] |
|
right_gripper_open = old_action[13:14] / 13.9231 |
|
|
|
|
|
arm_action = tf.concat([left_arm_pos,left_gripper_open,right_arm_pos,right_gripper_open], axis=0) |
|
action['arm_concat'] = arm_action |
|
|
|
action['format'] = tf.constant( |
|
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_gripper_open") |
|
|
|
state = step['observation'] |
|
left_qpos = step['qpos'][:6] |
|
left_gripper_open = step['qpos'][6:7] / 4.7908 |
|
right_qpos = step['qpos'][7:13] |
|
right_gripper_open = step['qpos'][13:14] / 4.7888 |
|
state['arm_concat'] = tf.concat([left_qpos, left_gripper_open,right_qpos, right_gripper_open], axis=0) |
|
|
|
state['format'] = tf.constant( |
|
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_gripper_open") |
|
|
|
|
|
instr_type = tf.random.uniform(shape=(), minval=0, maxval=3, dtype=tf.int32) |
|
|
|
|
|
|
|
@tf.function |
|
def f0(): |
|
return tf.strings.join([step['instruction'], tf.constant('/lang_embed_0.pt')]) |
|
@tf.function |
|
def f1(): |
|
return tf.strings.join([step['instruction'], tf.constant('/lang_embed_1.pt')]) |
|
@tf.function |
|
def f2(): |
|
index = tf.random.uniform(shape=(), minval=0, maxval=100, dtype=tf.int32) |
|
return tf.strings.join([ |
|
step['instruction'], tf.constant('/lang_embed_'), tf.strings.as_string(index+2), tf.constant('.pt')]) |
|
|
|
instr = tf.case([ |
|
(tf.equal(instr_type, 0), f0), |
|
(tf.equal(instr_type, 1), f1), |
|
(tf.equal(instr_type, 2), f2) |
|
], exclusive=True) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
dataset = load_dataset(42) |
|
|
|
for episode in dataset: |
|
for step in episode['steps']: |
|
step = process_step(step) |
|
|
|
print(step['observation']['natural_language_instruction']) |
|
|