|
import tensorflow as tf |
|
import tensorflow_datasets as tfds |
|
from data.utils import clean_task_instruction, quaternion_to_euler |
|
import tensorflow as tf |
|
import h5py |
|
import numpy as np |
|
from tqdm import tqdm |
|
import os |
|
import imageio |
|
import concurrent.futures |
|
import fnmatch |
|
import cv2 |
|
import random |
|
|
|
def get_all_hdf5s(root_dir): |
|
num_files = 0 |
|
for root, dirs, files in os.walk(root_dir): |
|
for filename in fnmatch.filter(files, '*.hdf5'): |
|
num_files += 1 |
|
return num_files |
|
|
|
def stash_image_into_observation(step): |
|
step['observation'] = {'cam_high': [], 'cam_left_wrist': [], 'cam_right_wrist':[], 'cam_low':[] } |
|
step['observation']['cam_high'] = step['cam_high'] |
|
step['observation']['cam_left_wrist'] = step['cam_left_wrist'] |
|
step['observation']['cam_right_wrist'] = step['cam_right_wrist'] |
|
step['observation']['cam_low'] = step['cam_low'] |
|
return step |
|
|
|
def _parse_function(proto): |
|
keys_to_features = { |
|
'action': tf.io.FixedLenFeature([], tf.string), |
|
'qpos': tf.io.FixedLenFeature([], tf.string), |
|
'qvel': tf.io.FixedLenFeature([], tf.string), |
|
'cam_high': tf.io.FixedLenFeature([], tf.string), |
|
'cam_left_wrist': tf.io.FixedLenFeature([], tf.string), |
|
'cam_right_wrist': tf.io.FixedLenFeature([], tf.string), |
|
'cam_low': tf.io.FixedLenFeature([], tf.string), |
|
'instruction': tf.io.FixedLenFeature([], tf.string), |
|
'terminate_episode': tf.io.FixedLenFeature([], tf.int64) |
|
} |
|
|
|
parsed_features = tf.io.parse_single_example(proto, keys_to_features) |
|
|
|
action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float32) |
|
qpos = tf.io.parse_tensor(parsed_features['qpos'], out_type=tf.float32) |
|
qvel = tf.io.parse_tensor(parsed_features['qvel'], out_type=tf.float32) |
|
cam_high = tf.io.parse_tensor(parsed_features['cam_high'], out_type=tf.uint8) |
|
cam_left_wrist = tf.io.parse_tensor(parsed_features['cam_left_wrist'], out_type=tf.uint8) |
|
cam_right_wrist = tf.io.parse_tensor(parsed_features['cam_right_wrist'], out_type=tf.uint8) |
|
cam_low = tf.io.parse_tensor(parsed_features['cam_low'], out_type=tf.uint8) |
|
instruction = parsed_features['instruction'] |
|
terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64) |
|
action = tf.reshape(action, [14]) |
|
qpos = tf.reshape(qpos, [14]) |
|
qvel = tf.reshape(qvel, [14]) |
|
cam_high = tf.reshape(cam_high, [480, 640, 3]) |
|
cam_left_wrist = tf.reshape(cam_left_wrist, [480, 640, 3]) |
|
cam_right_wrist = tf.reshape(cam_right_wrist, [480, 640, 3]) |
|
cam_low = tf.reshape(cam_low, [480, 640, 3]) |
|
return { |
|
"action": action, |
|
"qpos": qpos, |
|
"qvel": qvel, |
|
'observation':{ |
|
"cam_high": cam_high, |
|
"cam_left_wrist": cam_left_wrist, |
|
"cam_right_wrist": cam_right_wrist, |
|
"cam_low":cam_low |
|
}, |
|
"instruction": instruction, |
|
"terminate_episode": terminate_episode |
|
} |
|
|
|
def dataset_generator_from_tfrecords(seed): |
|
tfrecord_path = './data/datasets/aloha/tfrecords/aloha_static_cotraining_datasets/' |
|
datasets = [] |
|
filepaths = [] |
|
for root, dirs, files in os.walk(tfrecord_path): |
|
for filename in fnmatch.filter(files, '*.tfrecord'): |
|
filepath = os.path.join(root, filename) |
|
filepaths.append(filepath) |
|
|
|
random.seed(seed) |
|
random.shuffle(filepaths) |
|
for filepath in filepaths: |
|
raw_dataset = tf.data.TFRecordDataset(filepath) |
|
dataset = raw_dataset.map(_parse_function) |
|
yield { |
|
'steps': dataset |
|
} |
|
|
|
def load_dataset(seed): |
|
dataset = tf.data.Dataset.from_generator( |
|
lambda: dataset_generator_from_tfrecords(seed), |
|
output_signature={ |
|
'steps': tf.data.DatasetSpec( |
|
element_spec={ |
|
'action': tf.TensorSpec(shape=(14), dtype=tf.float32), |
|
'qpos': tf.TensorSpec(shape=(14), dtype=tf.float32), |
|
'qvel': tf.TensorSpec(shape=(14), dtype=tf.float32), |
|
'observation': { |
|
'cam_high': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
'cam_left_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
'cam_right_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
'cam_low': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), |
|
}, |
|
'instruction': tf.TensorSpec(shape=(), dtype=tf.string), |
|
'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64) |
|
} |
|
) |
|
} |
|
) |
|
|
|
return dataset |
|
|
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
old_action = step['action'] |
|
step['action'] = {} |
|
action = step['action'] |
|
step['action']['terminate'] = step['terminate_episode'] |
|
|
|
left_arm_pos = old_action[:6] |
|
left_gripper_open = old_action[6:7] |
|
right_arm_pos = old_action[7:13] |
|
right_gripper_open = old_action[13:14] |
|
|
|
arm_action = tf.concat([left_arm_pos,left_gripper_open,right_arm_pos,right_gripper_open], axis=0) |
|
|
|
action['arm_concat'] = arm_action |
|
|
|
action['format'] = tf.constant( |
|
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_gripper_open") |
|
|
|
state = step['observation'] |
|
left_qpos = step['qpos'][:6] |
|
left_gripper_open = step['qpos'][6:7] |
|
right_qpos = step['qpos'][7:13] |
|
right_gripper_open = step['qpos'][13:14] |
|
left_qvel = step['qvel'][:6] |
|
|
|
right_qvel = step['qvel'][7:13] |
|
|
|
|
|
state['arm_concat'] = tf.concat([left_qpos, left_qvel, left_gripper_open, right_qpos, right_qvel, right_gripper_open], axis=0) |
|
|
|
state['format'] = tf.constant( |
|
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_arm_joint_0_vel,left_arm_joint_1_vel,left_arm_joint_2_vel,left_arm_joint_3_vel,left_arm_joint_4_vel,left_arm_joint_5_vel,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_arm_joint_0_vel,right_arm_joint_1_vel,right_arm_joint_2_vel,right_arm_joint_3_vel,right_arm_joint_4_vel,right_arm_joint_5_vel,right_gripper_open") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = '/mnt/d/aloha/' |
|
DATASET_NAME = 'dataset' |
|
|
|
dataset = load_dataset() |
|
for data in dataset.take(1): |
|
for step in data['steps'].take(1): |
|
from IPython import embed; embed() |
|
print(step) |