euijinrnd's picture
Add files using upload-large-folder tool
16628c8 verified
import tensorflow as tf
import tensorflow_datasets as tfds
from data.utils import clean_task_instruction, quaternion_to_euler
import tensorflow as tf
import h5py
import numpy as np
from tqdm import tqdm
import os
import imageio
import concurrent.futures
import fnmatch
import cv2
import random
def get_all_hdf5s(root_dir):
num_files = 0
for root, dirs, files in os.walk(root_dir):
for filename in fnmatch.filter(files, '*.hdf5'):
num_files += 1
return num_files
def stash_image_into_observation(step):
step['observation'] = {'cam_high': [], 'cam_left_wrist': [], 'cam_right_wrist':[], 'cam_low':[] }
step['observation']['cam_high'] = step['cam_high']
step['observation']['cam_left_wrist'] = step['cam_left_wrist']
step['observation']['cam_right_wrist'] = step['cam_right_wrist']
step['observation']['cam_low'] = step['cam_low']
return step
def _parse_function(proto):
keys_to_features = {
'action': tf.io.FixedLenFeature([], tf.string),
'qpos': tf.io.FixedLenFeature([], tf.string),
'qvel': tf.io.FixedLenFeature([], tf.string),
'cam_high': tf.io.FixedLenFeature([], tf.string),
'cam_left_wrist': tf.io.FixedLenFeature([], tf.string),
'cam_right_wrist': tf.io.FixedLenFeature([], tf.string),
'cam_low': tf.io.FixedLenFeature([], tf.string),
'instruction': tf.io.FixedLenFeature([], tf.string),
'terminate_episode': tf.io.FixedLenFeature([], tf.int64)
}
parsed_features = tf.io.parse_single_example(proto, keys_to_features)
action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float32)
qpos = tf.io.parse_tensor(parsed_features['qpos'], out_type=tf.float32)
qvel = tf.io.parse_tensor(parsed_features['qvel'], out_type=tf.float32)
cam_high = tf.io.parse_tensor(parsed_features['cam_high'], out_type=tf.uint8)
cam_left_wrist = tf.io.parse_tensor(parsed_features['cam_left_wrist'], out_type=tf.uint8)
cam_right_wrist = tf.io.parse_tensor(parsed_features['cam_right_wrist'], out_type=tf.uint8)
cam_low = tf.io.parse_tensor(parsed_features['cam_low'], out_type=tf.uint8)
instruction = parsed_features['instruction']
terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64)
action = tf.reshape(action, [14])
qpos = tf.reshape(qpos, [14])
qvel = tf.reshape(qvel, [14])
cam_high = tf.reshape(cam_high, [480, 640, 3])
cam_left_wrist = tf.reshape(cam_left_wrist, [480, 640, 3])
cam_right_wrist = tf.reshape(cam_right_wrist, [480, 640, 3])
cam_low = tf.reshape(cam_low, [480, 640, 3])
return {
"action": action,
"qpos": qpos,
"qvel": qvel,
'observation':{
"cam_high": cam_high,
"cam_left_wrist": cam_left_wrist,
"cam_right_wrist": cam_right_wrist,
"cam_low":cam_low
},
"instruction": instruction,
"terminate_episode": terminate_episode
}
def dataset_generator_from_tfrecords(seed):
tfrecord_path = './data/datasets/aloha/tfrecords/aloha_static_cotraining_datasets/'
datasets = []
filepaths = []
for root, dirs, files in os.walk(tfrecord_path):
for filename in fnmatch.filter(files, '*.tfrecord'):
filepath = os.path.join(root, filename)
filepaths.append(filepath)
random.seed(seed)
random.shuffle(filepaths)
for filepath in filepaths:
raw_dataset = tf.data.TFRecordDataset(filepath)
dataset = raw_dataset.map(_parse_function)
yield {
'steps': dataset
}
def load_dataset(seed):
dataset = tf.data.Dataset.from_generator(
lambda: dataset_generator_from_tfrecords(seed),
output_signature={
'steps': tf.data.DatasetSpec(
element_spec={
'action': tf.TensorSpec(shape=(14), dtype=tf.float32),
'qpos': tf.TensorSpec(shape=(14), dtype=tf.float32),
'qvel': tf.TensorSpec(shape=(14), dtype=tf.float32),
'observation': {
'cam_high': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
'cam_left_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
'cam_right_wrist': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
'cam_low': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8),
},
'instruction': tf.TensorSpec(shape=(), dtype=tf.string),
'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64)
}
)
}
)
return dataset
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor:
"""
Convert terminate action to a boolean, where True means terminate.
"""
return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True))
def process_step(step: dict) -> dict:
"""
Unify the action format and clean the task instruction.
DO NOT use python list, use tf.TensorArray instead.
"""
# Convert raw action to our action
old_action = step['action']
step['action'] = {}
action = step['action']
step['action']['terminate'] = step['terminate_episode']
# act-plus-plus/utils.py at main · MarkFzp/act-plus-plus
left_arm_pos = old_action[:6]
left_gripper_open = old_action[6:7]
right_arm_pos = old_action[7:13]
right_gripper_open = old_action[13:14]
arm_action = tf.concat([left_arm_pos,left_gripper_open,right_arm_pos,right_gripper_open], axis=0)
action['arm_concat'] = arm_action
# # Write the action format
action['format'] = tf.constant(
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_gripper_open")
state = step['observation']
left_qpos = step['qpos'][:6]
left_gripper_open = step['qpos'][6:7]
right_qpos = step['qpos'][7:13]
right_gripper_open = step['qpos'][13:14]
left_qvel = step['qvel'][:6]
# left_gripper_joint_vel = step['qvel'][6:7]
right_qvel = step['qvel'][7:13]
# right_gripper_joint_vel = step['qvel'][13:14]
state['arm_concat'] = tf.concat([left_qpos, left_qvel, left_gripper_open, right_qpos, right_qvel, right_gripper_open], axis=0)
# # Write the state format
state['format'] = tf.constant(
"left_arm_joint_0_pos,left_arm_joint_1_pos,left_arm_joint_2_pos,left_arm_joint_3_pos,left_arm_joint_4_pos,left_arm_joint_5_pos,left_arm_joint_0_vel,left_arm_joint_1_vel,left_arm_joint_2_vel,left_arm_joint_3_vel,left_arm_joint_4_vel,left_arm_joint_5_vel,left_gripper_open,right_arm_joint_0_pos,right_arm_joint_1_pos,right_arm_joint_2_pos,right_arm_joint_3_pos,right_arm_joint_4_pos,right_arm_joint_5_pos,right_arm_joint_0_vel,right_arm_joint_1_vel,right_arm_joint_2_vel,right_arm_joint_3_vel,right_arm_joint_4_vel,right_arm_joint_5_vel,right_gripper_open")
# Clean the task instruction
# Define the replacements (old, new) as a dictionary
replacements = {
'_': ' ',
'1f': ' ',
'4f': ' ',
'-': ' ',
'50': ' ',
'55': ' ',
'56': ' ',
}
instr = step['instruction']
instr = clean_task_instruction(instr, replacements)
step['observation']['natural_language_instruction'] = instr
return step
if __name__ == "__main__":
import tensorflow_datasets as tfds
from data.utils import dataset_to_path
DATASET_DIR = '/mnt/d/aloha/'
DATASET_NAME = 'dataset'
# Load the dataset
dataset = load_dataset()
for data in dataset.take(1):
for step in data['steps'].take(1):
from IPython import embed; embed()
print(step)