|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_quaternion, \ |
|
euler_to_rotation_matrix, rotation_matrix_to_ortho6d |
|
|
|
|
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.float32))) |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
|
|
action = step['action'] |
|
|
|
eef_delta_pos = action['future/xyz_residual'][:3] |
|
|
|
eef_ang = action['future/axis_angle_residual'][:3] |
|
eef_ang = euler_to_quaternion(eef_ang) |
|
|
|
grip_open = tf.cast(tf.expand_dims(1 - action['future/target_close'][0], axis=0), dtype=tf.float32) |
|
|
|
|
|
step['action'] = {} |
|
action = step['action'] |
|
|
|
action['terminate'] = step['is_terminal'] |
|
action['arm_concat'] = tf.concat([eef_delta_pos, eef_ang, grip_open], axis=0) |
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open") |
|
|
|
|
|
state = step['observation'] |
|
|
|
gripper_ang = state['present/axis_angle'] |
|
gripper_ang = euler_to_rotation_matrix(gripper_ang) |
|
gripper_ang = rotation_matrix_to_ortho6d(gripper_ang) |
|
gripper_pos = state['present/xyz'] |
|
|
|
gripper_open = 1- state['present/sensed_close'] |
|
|
|
|
|
|
|
state = step['observation'] |
|
state['arm_concat'] = tf.concat([gripper_pos, gripper_ang, gripper_open], axis=0) |
|
|
|
|
|
state['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['observation']['natural_language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'fractal20220817_data' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
for episode in dataset: |
|
for step in episode['steps']: |
|
print(step) |
|
|