|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_quaternion, euler_to_rotation_matrix,\ |
|
rotation_matrix_to_ortho6d |
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
|
|
origin_action = step['action'] |
|
step['action']={} |
|
action=step['action'] |
|
action['terminate'] = step['is_terminal'] |
|
|
|
eef_pos=tf.cast(origin_action,dtype=tf.float32) |
|
eef_ang=tf.cast(step['action_angle'][2:3],dtype=tf.float32) |
|
eef_ang = euler_to_quaternion(tf.stack([0,0,eef_ang[0]],axis=0)) |
|
|
|
|
|
|
|
action['arm_concat'] = tf.concat([eef_pos,eef_ang],axis=0) |
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_delta_pos_x,eef_delta_pos_y,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w") |
|
|
|
|
|
state = step['observation'] |
|
|
|
eef_pos=tf.cast(state['position'],dtype=tf.float32) |
|
eef_ang=tf.cast(state['yaw'],dtype=tf.float32) |
|
eef_ang = euler_to_rotation_matrix(tf.stack([0,0,eef_ang[0]],axis=0)) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
state['arm_concat'] = tf.concat([eef_pos/100,eef_ang],axis=0) |
|
|
|
state['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y,eef_angle_x,eef_angle_y,eef_angle_z,eef_angle_w") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'berkeley_gnm_recon' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
for episode in dataset: |
|
for step in episode['steps']: |
|
print(step['action'][6:7]) |
|
|
|
|