RoboticsDiffusionTransformer
/
data
/preprocess_scripts
/berkeley_rpt_converted_externally_to_rlds.py
import tensorflow as tf | |
from data.utils import clean_task_instruction, quaternion_to_euler | |
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: | |
""" | |
Convert terminate action to a boolean, where True means terminate. | |
""" | |
return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.int32))) | |
def process_step(step: dict) -> dict: | |
""" | |
Unify the action format and clean the task instruction. | |
DO NOT use python list, use tf.TensorArray instead. | |
""" | |
# Convert raw action to our action | |
action = step['action'] | |
# Robot action, consists of [7 delta joint pos,1x gripper binary state]. | |
delta_joint_pos = action[:7] | |
grip_open = tf.expand_dims(1 - action[7], axis=0) | |
# Concatenate the action | |
# action['arm_concat'] = tf.concat([eef_delta_pos, eef_ang, grip_open], axis=0) | |
step['action'] = {} | |
action = step['action'] | |
action['arm_concat'] = tf.concat([delta_joint_pos, grip_open], axis=0) | |
action['terminate'] = step['is_terminal'] | |
# Write the action format | |
action['format'] = tf.constant( | |
"arm_joint_0_delta_pos,arm_joint_1_delta_pos,arm_joint_2_delta_pos,arm_joint_3_delta_pos,arm_joint_4_delta_pos,arm_joint_5_delta_pos,arm_joint_6_delta_pos,gripper_open") | |
# Convert raw state to our state | |
state = step['observation'] | |
# xArm joint positions (7 DoF). | |
arm_joint_pos = state['joint_pos'] | |
# Binary gripper state (1 - closed, 0 - open) | |
grip_open = tf.expand_dims(1 - tf.cast(state['gripper'],dtype=tf.float32), axis=0) | |
# Concatenate the state | |
state['arm_concat'] = tf.concat([arm_joint_pos, grip_open], axis=0) | |
# Write the state format | |
state['format'] = tf.constant( | |
"arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,gripper_open") | |
# Clean the task instruction | |
# Define the replacements (old, new) as a dictionary | |
replacements = { | |
'_': ' ', | |
'1f': ' ', | |
'4f': ' ', | |
'-': ' ', | |
'50': ' ', | |
'55': ' ', | |
'56': ' ', | |
} | |
instr = step['language_instruction'] | |
instr = clean_task_instruction(instr, replacements) | |
step['observation']['natural_language_instruction'] = instr | |
return step | |
if __name__ == "__main__": | |
import tensorflow_datasets as tfds | |
from data.utils import dataset_to_path | |
DATASET_DIR = 'data/datasets/openx_embod' | |
DATASET_NAME = 'fractal20220817_data' | |
# Load the dataset | |
dataset = tfds.builder_from_directory( | |
builder_dir=dataset_to_path( | |
DATASET_NAME, DATASET_DIR)) | |
dataset = dataset.as_dataset(split='all') | |
# Inspect the dataset | |
for episode in dataset: | |
for step in episode['steps']: | |
print(step) | |