|
import tensorflow as tf |
|
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d |
|
import tensorflow as tf |
|
import os |
|
import fnmatch |
|
import random |
|
|
|
|
|
def _parse_function(proto): |
|
keys_to_features = { |
|
'action': tf.io.FixedLenFeature([], tf.string), |
|
'robot_obs': tf.io.FixedLenFeature([], tf.string), |
|
'rgb_static': tf.io.FixedLenFeature([], tf.string), |
|
'rgb_gripper': tf.io.FixedLenFeature([], tf.string), |
|
'terminate_episode': tf.io.FixedLenFeature([], tf.int64), |
|
'instruction': tf.io.FixedLenFeature([], tf.string), |
|
} |
|
|
|
parsed_features = tf.io.parse_single_example(proto, keys_to_features) |
|
|
|
action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float64) |
|
robot_obs = tf.io.parse_tensor(parsed_features['robot_obs'], out_type=tf.float64) |
|
rgb_static = tf.io.parse_tensor(parsed_features['rgb_static'], out_type=tf.uint8) |
|
rgb_gripper = tf.io.parse_tensor(parsed_features['rgb_gripper'], out_type=tf.uint8) |
|
instruction = parsed_features['instruction'] |
|
terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64) |
|
|
|
action = tf.reshape(action, [7]) |
|
action = tf.cast(action, tf.float32) |
|
robot_obs = tf.reshape(robot_obs, [15]) |
|
robot_obs = tf.cast(robot_obs, tf.float32) |
|
rgb_static = tf.reshape(rgb_static, [200, 200, 3]) |
|
rgb_gripper = tf.reshape(rgb_gripper, [84, 84, 3]) |
|
|
|
|
|
|
|
|
|
return { |
|
'action': action, |
|
'observation':{ |
|
'robot_obs': robot_obs, |
|
'rgb_static': rgb_static, |
|
'rgb_gripper': rgb_gripper, |
|
}, |
|
'instruction': instruction, |
|
'terminate_episode': terminate_episode |
|
} |
|
|
|
|
|
def dataset_generator_from_tfrecords(seed): |
|
tfrecord_path = './data/datasets/calvin/tfrecords/' |
|
filepaths = [] |
|
for root, dirs, files in os.walk(tfrecord_path): |
|
for filename in fnmatch.filter(files, '*.tfrecord'): |
|
filepath = os.path.join(root, filename) |
|
filepaths.append(filepath) |
|
|
|
random.seed(seed) |
|
random.shuffle(filepaths) |
|
for filepath in filepaths: |
|
raw_dataset = tf.data.TFRecordDataset(filepath) |
|
dataset = raw_dataset.map(_parse_function) |
|
yield { |
|
'steps': dataset |
|
} |
|
|
|
|
|
def load_dataset(seed): |
|
dataset = tf.data.Dataset.from_generator( |
|
lambda: dataset_generator_from_tfrecords(seed), |
|
output_signature={ |
|
'steps': tf.data.DatasetSpec( |
|
element_spec={ |
|
'action': tf.TensorSpec(shape=(7,), dtype=tf.float32), |
|
'observation':{ |
|
'robot_obs': tf.TensorSpec(shape=(15,), dtype=tf.float32), |
|
'rgb_static': tf.TensorSpec(shape=(200,200,3), dtype=tf.uint8), |
|
'rgb_gripper': tf.TensorSpec(shape=(84,84,3), dtype=tf.uint8), |
|
}, |
|
'instruction': tf.TensorSpec(shape=(), dtype=tf.string), |
|
'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64), |
|
} |
|
) |
|
} |
|
) |
|
|
|
return dataset |
|
|
|
|
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.where( |
|
tf.equal(terminate_act, tf.constant(0, dtype=tf.int64)), |
|
tf.constant(False),tf.constant(True)) |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
old_action = step['action'] |
|
step['action'] = {} |
|
action = step['action'] |
|
step['action']['terminate'] = terminate_act_to_bool(step['terminate_episode']) |
|
|
|
|
|
|
|
|
|
|
|
eef_pos = old_action[:3] |
|
eef_ang = euler_to_rotation_matrix(old_action[3:6]) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
gripper_open = (old_action[6] + 1) / 2 |
|
gripper_open = tf.expand_dims(gripper_open, axis=0) |
|
|
|
|
|
arm_action = tf.concat([eef_pos, eef_ang, gripper_open], axis=0) |
|
action['arm_concat'] = arm_action |
|
|
|
action['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open") |
|
|
|
state = step['observation'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eef_pos = state['robot_obs'][:3] |
|
eef_ang = euler_to_rotation_matrix(state['robot_obs'][3:6]) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
gripper_open = (state['robot_obs'][14] + 1) / 2 |
|
gripper_open = tf.expand_dims(gripper_open, axis=0) |
|
qpos = state['robot_obs'][7:14] |
|
|
|
state['arm_concat'] = tf.concat([qpos,gripper_open,eef_pos,eef_ang], axis=0) |
|
|
|
state['format'] = tf.constant( |
|
"arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,gripper_open,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['instruction'] |
|
instr= clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
|
|
dataset = load_dataset(1717055919) |
|
for data in dataset.take(1): |
|
for step in data['steps']: |
|
step = process_step(step) |
|
print(step['observation']['natural_language_instruction']) |
|
|