euijinrnd's picture
Add files using upload-large-folder tool
9de9fbf verified
import tensorflow as tf
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d
import tensorflow as tf
import os
import fnmatch
import random
def _parse_function(proto):
keys_to_features = {
'action': tf.io.FixedLenFeature([], tf.string),
'robot_obs': tf.io.FixedLenFeature([], tf.string),
'rgb_static': tf.io.FixedLenFeature([], tf.string),
'rgb_gripper': tf.io.FixedLenFeature([], tf.string),
'terminate_episode': tf.io.FixedLenFeature([], tf.int64),
'instruction': tf.io.FixedLenFeature([], tf.string),
}
parsed_features = tf.io.parse_single_example(proto, keys_to_features)
action = tf.io.parse_tensor(parsed_features['action'], out_type=tf.float64)
robot_obs = tf.io.parse_tensor(parsed_features['robot_obs'], out_type=tf.float64)
rgb_static = tf.io.parse_tensor(parsed_features['rgb_static'], out_type=tf.uint8)
rgb_gripper = tf.io.parse_tensor(parsed_features['rgb_gripper'], out_type=tf.uint8)
instruction = parsed_features['instruction']
terminate_episode = tf.cast(parsed_features['terminate_episode'], tf.int64)
action = tf.reshape(action, [7])
action = tf.cast(action, tf.float32)
robot_obs = tf.reshape(robot_obs, [15])
robot_obs = tf.cast(robot_obs, tf.float32)
rgb_static = tf.reshape(rgb_static, [200, 200, 3])
rgb_gripper = tf.reshape(rgb_gripper, [84, 84, 3])
# RGB to BGR
# rgb_static = rgb_static[:, :, ::-1]
# rgb_gripper = rgb_gripper[:, :, ::-1]
return {
'action': action,
'observation':{
'robot_obs': robot_obs,
'rgb_static': rgb_static,
'rgb_gripper': rgb_gripper,
},
'instruction': instruction,
'terminate_episode': terminate_episode
}
def dataset_generator_from_tfrecords(seed):
tfrecord_path = './data/datasets/calvin/tfrecords/'
filepaths = []
for root, dirs, files in os.walk(tfrecord_path):
for filename in fnmatch.filter(files, '*.tfrecord'):
filepath = os.path.join(root, filename)
filepaths.append(filepath)
random.seed(seed)
random.shuffle(filepaths)
for filepath in filepaths:
raw_dataset = tf.data.TFRecordDataset(filepath)
dataset = raw_dataset.map(_parse_function)
yield {
'steps': dataset
}
def load_dataset(seed):
dataset = tf.data.Dataset.from_generator(
lambda: dataset_generator_from_tfrecords(seed),
output_signature={
'steps': tf.data.DatasetSpec(
element_spec={
'action': tf.TensorSpec(shape=(7,), dtype=tf.float32),
'observation':{
'robot_obs': tf.TensorSpec(shape=(15,), dtype=tf.float32),
'rgb_static': tf.TensorSpec(shape=(200,200,3), dtype=tf.uint8),
'rgb_gripper': tf.TensorSpec(shape=(84,84,3), dtype=tf.uint8),
},
'instruction': tf.TensorSpec(shape=(), dtype=tf.string),
'terminate_episode': tf.TensorSpec(shape=(), dtype=tf.int64),
}
)
}
)
return dataset
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor:
"""
Convert terminate action to a boolean, where True means terminate.
"""
return tf.where(
tf.equal(terminate_act, tf.constant(0, dtype=tf.int64)),
tf.constant(False),tf.constant(True))
def process_step(step: dict) -> dict:
"""
Unify the action format and clean the task instruction.
DO NOT use python list, use tf.TensorArray instead.
"""
# Convert raw action to our action
old_action = step['action']
step['action'] = {}
action = step['action']
step['action']['terminate'] = terminate_act_to_bool(step['terminate_episode'])
# ['actions']
# (dtype=np.float32, shape=(7,))
# tcp position (3): x,y,z in absolute world coordinates
# tcp orientation (3): euler angles x,y,z in absolute world coordinates
# gripper_action (1): binary (close = -1, open = 1)
eef_pos = old_action[:3]
eef_ang = euler_to_rotation_matrix(old_action[3:6])
eef_ang = rotation_matrix_to_ortho6d(eef_ang)
gripper_open = (old_action[6] + 1) / 2
gripper_open = tf.expand_dims(gripper_open, axis=0)
# # No base found
arm_action = tf.concat([eef_pos, eef_ang, gripper_open], axis=0)
action['arm_concat'] = arm_action
# # Write the action format
action['format'] = tf.constant(
"eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open")
state = step['observation']
# ['robot_obs']
# (dtype=np.float32, shape=(15,))
# tcp position (3): x,y,z in world coordinates
# tcp orientation (3): euler angles x,y,z in world coordinates
# gripper opening width (1): in meter
# arm_joint_states (7): in rad
# gripper_action (1): binary (close = -1, open = 1)
eef_pos = state['robot_obs'][:3]
eef_ang = euler_to_rotation_matrix(state['robot_obs'][3:6])
eef_ang = rotation_matrix_to_ortho6d(eef_ang)
gripper_open = (state['robot_obs'][14] + 1) / 2
gripper_open = tf.expand_dims(gripper_open, axis=0)
qpos = state['robot_obs'][7:14]
state['arm_concat'] = tf.concat([qpos,gripper_open,eef_pos,eef_ang], axis=0)
# # Write the state format
state['format'] = tf.constant(
"arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,gripper_open,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5")
# Clean the task instruction
# Define the replacements (old, new) as a dictionary
replacements = {
'_': ' ',
'1f': ' ',
'4f': ' ',
'-': ' ',
'50': ' ',
'55': ' ',
'56': ' ',
}
instr = step['instruction']
instr= clean_task_instruction(instr, replacements)
step['observation']['natural_language_instruction'] = instr
return step
if __name__ == "__main__":
import tensorflow_datasets as tfds
from data.utils import dataset_to_path
# Load the dataset
dataset = load_dataset(1717055919)
for data in dataset.take(1):
for step in data['steps']:
step = process_step(step)
print(step['observation']['natural_language_instruction'])