|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, quaternion_to_euler,euler_to_quaternion |
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) |
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
|
|
origin_action = step['action'] |
|
step['action']={} |
|
action=step['action'] |
|
action['terminate']=terminate_act_to_bool(origin_action[7]) |
|
|
|
|
|
eef_pos=origin_action[:3] |
|
eef_ang=origin_action[3:6] |
|
eef_ang = euler_to_quaternion(eef_ang) |
|
grip_open=origin_action[6:7] |
|
|
|
|
|
|
|
action['arm_concat'] = tf.concat([eef_pos,eef_ang,grip_open],axis=0) |
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open") |
|
|
|
|
|
state = step['observation'] |
|
|
|
eef_pos_x = state['state'][0:1] |
|
eef_pos_z = state['state'][2:3] |
|
grip_open = state['state'][3:4] |
|
state['arm_concat'] = tf.concat( |
|
[eef_pos_x, eef_pos_z, grip_open], axis=0) |
|
|
|
state['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_z,gripper_open") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'cmu_stretch' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
for episode in dataset: |
|
for step in episode['steps']: |
|
print(step['action'][6:7]) |
|
|
|
|