|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, quaternion_to_euler, euler_to_quaternion |
|
|
|
|
|
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: |
|
""" |
|
Convert terminate action to a boolean, where True means terminate. |
|
""" |
|
return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
action = step['action'] |
|
action['terminate'] = terminate_act_to_bool(action['terminate_episode']) |
|
|
|
eef_delta_pos = action['world_vector'] |
|
eef_ang = action['rotation_delta'] |
|
eef_ang = euler_to_quaternion(eef_ang) |
|
|
|
|
|
|
|
|
|
|
|
|
|
arm_action = tf.concat([eef_delta_pos, eef_ang], axis=0) |
|
action['arm_concat'] = arm_action |
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w") |
|
|
|
|
|
state = step['observation'] |
|
eef_pos = state['robot_state'] |
|
|
|
|
|
state['arm_concat'] = eef_pos |
|
|
|
|
|
state['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['observation']['natural_language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'columbia_cairlab_pusht_real' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
for episode in dataset: |
|
for step in episode['steps']: |
|
print(step) |
|
|